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Abstract

The supplementary motor area (SMA) is believed to contribute to higher-order aspects of motor 

control. We considered a key higher-order role: tracking progress throughout an action. We 

propose that doing so requires population activity to display ‘low trajectory divergence’: situations 

with different future motor outputs should be distinct, even when present motor output is identical. 

We examined neural activity in SMA and primary motor cortex (M1) as monkeys cycled various 

distances through a virtual environment. SMA exhibited multiple response features that were 

absent in M1. At the single-neuron level these included ramping firing rates and cycle-specific 

responses. At the population level they included a helical population-trajectory geometry with 

shifts in the occupied subspace as movement unfolded. These diverse features all served to reduce 

trajectory divergence, which was much lower in SMA versus M1. Analogous population-trajectory 
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geometry, also with low divergence, naturally arose in networks trained to internally guide multi-

cycle movement.

eTOC Blurb

The supplementary motor area is believed to guide action by ‘looking ahead’ in time. Russo et 

al. formalize this idea, and predict a basic property that neural activity must have to serve that 

purpose. That property is present, explains diverse features of activity, and distinguishes higher 

from lower-level motor areas.

Introduction

The supplementary motor area (SMA) is implicated in higher-order aspects of motor control 

(Eccles, 1982; Penfield and Welch, 1951; Roland et al., 1980). SMA lesions cause motor 

neglect (Krainik et al., 2001; Laplane et al., 1977), unintended utilization (Boccardi et 

al., 2002), deficits in bimanual coordination (Brinkman, 1984), and difficulty performing 

sequences (Shima and Tanji, 1998). Relative to primary motor cortex (M1), SMA activity 

is less coupled to actions of a specific body part (Boudrias et al., 2006; Tanji and Kurata, 

1982; Tanji and Mushiake, 1996; Yokoi et al., 2018). Instead, SMA computations appear 

related to learned sensory-motor associations (Nachev et al., 2008; Tanji and Kurata, 1982), 

reward anticipation (Sohn and Lee, 2007), internal initiation and guidance of movement 

(Eccles, 1982; Romo and Schultz, 1992; Thaler et al., 1995), timing (Merchant and de 

Lafuente, 2014; Remington et al., 2018b; Wang et al., 2018) and sequencing (Kornysheva 

and Diedrichsen, 2014; Mushiake et al., 1991; Nakamura et al., 1998; Tanji and Shima, 

1994). SMA neurons show abstracted but task-specific responses, such as selective bursts 

during sequences (Shima and Tanji, 2000) and continuous ramping and rhythmic activity 

during a timing task (Cadena-Valencia et al., 2018). This suggests that SMA computations 

are critical when pending action must be guided by abstract “contextual” factors; e.g., 

knowing the overall action and one’s moment-by-moment progress within it (Tanji and 

Shima, 1994). Such guidance may be important both when performing movements from 

memory and for appropriately leveraging sensory cues (Gamez et al., 2019).

Tracking of context is presumably particularly important during temporally extended 

actions, of which sequences are the most commonly studied (Kornysheva and Diedrichsen, 

2014; Mushiake et al., 1991; Nakamura et al., 1998; Rhodes et al., 2004; Shima and Tanji, 

2000; Tanji and Shima, 1994; Yokoi and Diedrichsen, 2019). During sequences, SMA 

neurons respond phasically with various forms of sequence selectivity (Shima and Tanji, 

2000; Tanji and Mushiake, 1996). Such selectivity is proposed to reflect a key computation: 

arranging multiple distinct movements in the correct order, out of many possible orders 

(Tanji, 2001). Importantly, not all movements require sequencing (Krakauer et al., 2019; 

Wong and Krakauer, 2019). E.g., a tennis swing lacks discrete elements that can be 

arbitrarily arranged, and SMA is proposed not to be critical for movements of this type 

(Tanji, 2001). Yet there exist many actions that, while not meeting the strict definition of 

a sequence, last longer than a tennis swing and may require computations regarding ‘what 

comes next’ beyond what can be accomplished by M1 alone. A unifying hypothesis is 

that SMA computations relate to that general need: guiding action by internally tracking 
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context. What properties should one expect of a neural population performing that class of 

computation?

Inquiring whether neural responses are consistent with a hypothesized computation is a 

common goal (e.g., Gallego et al., 2018; Pandarinath et al., 2018; Saxena and Cunningham, 

2019). Standard approaches include decoding hypothesized signals (e.g., via regression; 

Morrow and Miller, 2003), and/or direct comparisons between empirical and simulated 

population activity (e.g., via canonical correlation; Sussillo et al., 2015). An emerging 

approach is to consider the geometry of the population response: the arrangement of 

population states across conditions (DiCarlo et al., 2012; Diedrichsen and Kriegeskorte, 

2017; Gallego et al., 2018; Saez et al., 2015; Schaffelhofer and Scherberger, 2016; Stringer 

et al., 2019) and/or the time-evolving trajectory of activity in neural state-space (Ames 

et al., 2014; Foster et al., 2014; Hall et al., 2014; Henaff et al., 2019; Michaels et al., 

2016; Raposo et al., 2014; Remington et al., 2018a; Remington et al., 2018b; Stopfer and 

Laurent, 1999; Sussillo and Barak, 2013; Sussillo et al., 2015). A given geometry may be 

consistent with some computations but not others (Driscoll et al., 2018). An advantage of 

this approach is that certain geometric properties are expected to hold for a broad class 

of computations, regardless of the specific computation deployed during a particular task. 

For example, we recently characterized M1 activity using a metric, trajectory tangling, that 

assesses whether activity is consistent with noise-robust dynamics (Russo et al., 2018). This 

approach revealed a population-level property – low trajectory tangling – that was conserved 

across tasks and species.

Here we consider the hypothesis that SMA guides movement by tracking contextual factors, 

and derive a prediction regarding population trajectory geometry. We predict that SMA 

trajectories should avoid ‘divergence’; trajectories should be structured, across time and 

conditions, such that it is never the case that two trajectories follow the same path and then 

separate. Low trajectory divergence is essential to ensure that neural activity can distinguish 

situations with different future motor outputs, even if current motor output is similar. We 

hypothesize that the need to avoid divergence shapes the population trajectory, and thus the 

response features observed within a particular task.

We employed a cycling task that shares some features with sequence tasks but involves 

continuous motor output and thus provides a novel perspective on SMA response properties. 

We found that the population response in SMA, but not M1, exhibits low trajectory 

divergence. The major features of SMA responses, at both the population and single-

neuron levels, could be understood as serving to maintain low divergence. Simulations 

confirmed that low divergence was necessary for a network to guide action based on 

internal / contextual information. Furthermore, artificial networks naturally adopted SMA-

like trajectories when they had to internally track contextual factors. Thus, a broad 

hypothesis regarding the class of computations performed by SMA accounts for population 

activity in a novel task.
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Results

Task and behavior

We trained two rhesus macaque monkeys to grasp a hand-pedal and cycle through a virtual 

landscape (Figure 1A; Russo et al., 2018). Each trial required cycling between two targets. 

The trial began with the monkey’s virtual position stationary on the first target, with the 

pedal orientated either straight up (‘top-start’) or down (‘bottom-start’). After a 1000 ms 

hold period, the second target appeared. Its distance determined the required number of 

revolutions: 1, 2, 4, or 7 cycles. After a 500–1000 ms randomized delay period, a go 

cue (brightening of the second target) was delivered. The monkey cycled to that target 

and remained stationary to receive juice reward. Because targets were separated by an 

integer number of cycles, the second target was acquired with the same pedal orientation 

as the first. Landscape color indicated whether forward virtual motion required cycling 

forward or backward (forward is defined as the hand moving away from the body at the 

cycle’s top). Using a block-randomized design, monkeys performed all combinations of two 

cycling directions, two starting orientations, and four cycling distances. Averages of hand 

kinematics, muscle activity and neural activity were computed after temporal alignment.

Vertical and horizontal hand velocity had nearly sinusoidal temporal profiles (Figure 

1B). Muscle activity patterns (Figure 1C) were often non-sinusoidal. Initial-cycle and 

terminal-cycle muscle patterns often departed from the middle-cycle pattern, an expected 

consequence of accelerating / decelerating the arm (e.g., the initial-cycle response is larger 

in Figure 1C). Muscle activity and hand kinematics differed in many ways, yet shared the 

following property: the response when cycling a given distance was a concatenation of 

an initial-cycle response, middle cycles with a repeating response, and a terminal-cycle 

response. We refer to the middle cycles as ‘steady-state’, reflecting the repetition of 

kinematics and muscle activity across such cycles, both within a cycling distance and across 

distances. Seven-cycle movements had ~5 steady-state cycles and four-cycle movements had 

~2 steady-state cycles. Two- and one-cycle movements involved little or no steady-state 

cycling.

Cycling is not strictly speaking a sequence. Muscle activity during a four-cycle movement 

roughly follows an ABBC pattern, but these elements lack well-defined boundaries and are 

neither discrete nor orderable (C can’t be performed before A). Nevertheless, cycling seems 

likely to require ‘temporal structuring of movement’ (Tanji and Shima, 1994) beyond what 

M1 alone can contribute. Our motivating hypothesis – that SMA tracks contextual factors 

for the purpose of guiding action – predicts that the SMA population response should be 

structured to distinguish situations with different future actions, even when current motor 

output is identical. The cycling task produced multiple instances of this scenario, both within 

and between conditions. Consider the second and fifth cycles of a seven-cycle movement 

(Figure 1B,C). Motor output is essentially identical, but will differ in two more cycles. The 

same is true when comparing the second cycle of seven-cycle and four-cycle movements. 

Distinguishing between such situations requires tracking context via some combination of 

‘dead-reckoning’ and interpretation of visual cues (optic flow and the looming target). Does 

the need to track context account for the geometry of the SMA population response? While 
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this is fundamentally a population-level question, we begin by examining single-neuron 

responses. We then document specific features of the population response. Finally, we 

consider a general property of population trajectory geometry that is necessary for tracking 

context. We ask whether the data have this general property, and whether it explains the 

specific response features observed during cycling.

Single-neuron responses

Well-isolated single neurons were recorded consecutively from SMA and M1. M1 

recordings spanned sulcal and surface primary motor cortex and the immediately adjacent 

aspect of dorsal premotor cortex (Russo et al., 2018). In both SMA and M1, neurons were 

robustly modulated during cycling. Of neurons that spiked often enough to be noticed and 

isolated, nearly all were task modulated. Isolations that were not task modulated were 

abandoned and not considered further (a total of 6 SMA and 4 M1 isolations across both 

monkeys). All other isolated neurons were analyzed regardless of their response properties. 

This included 77 and 70 SMA neurons (monkeys C and D) and 116 and 117 M1 neurons. 

Firing rate modulation (maximum minus minimum rate) averaged 52 and 57 spikes/s for 

SMA (monkey C and D) and 73 and 64 spikes/s for M1.

In M1, single-neuron responses (Figure 2A–C) were typically complex, yet showed two 

consistent features. First, for a given cycling distance, responses repeated across steady-state 

cycles. For example, for a seven-cycle movement, the firing rate profile was very similar 

across cycles 2–6 (Russo et al., 2018). Second, response elements – initial-cycle, steady-

state, and terminal-cycle responses – were conserved across distances. Thus, although M1 

responses rarely matched patterns of muscle activity or kinematics, they shared the same 

general structure: responses were essentially a concatenation of an initial-cycle response, a 

steady-state response, and a terminal-cycle response. Even complex responses that might be 

mistaken as ‘noise’ displayed this structure (Figure 2C).

Neurons in SMA (Figure 2D–F) displayed different properties. Responses were typically 

a mixture of rhythmic and ramp-like features. As a result, during steady-state cycling, 

single-neuron responses in SMA had a greater proportion of power well below the ~2 Hz 

cycling frequency (Figure 3A,B). Due in part to these slow changes in firing rate, a clear 

‘steady-state’ response was rarely reached. Furthermore, the initial-cycle response in SMA 

often differed across cycling distances (e.g., compare seven-cycle and two-cycle responses 

in Figure 2E) even when muscle and M1 responses were similar. In contrast, terminal-cycle 

responses were similar across distances. For example, in Figure 2E, the response during a 

four-cycle movement resembles that during the last four cycles of a seven-cycle movement.

Individual-cycle responses are more distinct in SMA

We compared the response on each cycle with that on every other cycle, both within 

seven-cycle movements and between seven- and four-cycle movements. For each neuron, we 

compared time-varying firing rates for the two cycles of interest. The ‘response distance’ 

between these two firing rates, averaged across all neurons, was computed using the 

crossnobis estimator (Diedrichsen and Kriegeskorte, 2017; Yokoi et al., 2018), providing 

an unbiased estimate of squared distance. Response distance was normalized based on the 
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typical intra-cycle firing-rate modulation for that condition. This analysis thus assesses the 

degree to which responses are different for two cycles, relative to the response magnitude 

within a single cycle. Response distance for a given comparison was averaged across the two 

cycling directions and starting positions (Figure 3C–F,I,J), or shown independently for each 

(Figure 3G,H).

Figure 3C–F plot response distances in matrix form. For M1, responses were similar 

among all steady-state cycles, resulting in a central dark block of low distances. This block 

is square for within-seven-cycle comparisons and rectangular for seven-versus-four-cycle 

comparisons. Outer rows and columns are lighter (higher response distances) because 

initial- and terminal-cycle responses differed from one another and from steady-state 

responses. This analysis confirms that M1 responses involve a distinct initial-cycle response, 

a repeating steady-state response, and a distinct terminal-cycle response. These results agree 

with the finding that M1 activity relates to execution of the present movement (Hatsopoulos 

et al., 2003; Lara et al., 2018; Yokoi et al., 2018). Motor output (muscle activity and hand 

kinematics) is similar across steady-state cycles. M1 activity was correspondingly similar.

For SMA, the central block of high similarity was largely absent. Instead, response distance 

grew steadily with temporal separation. For example, within a seven-cycle movement, the 

second-cycle response was modestly different from the third-cycle response, fairly different 

from the fifth-cycle response, and very different from the seventh-cycle response. Average 

response distance was larger for SMA versus M1, both across all comparisons (p<10−10 for 

each monkey; resampling test) and for comparisons among steady-state cycles (p<10−8 for 

each monkey).

Steady-state comparisons are particularly relevant because motor output is essentially 

identical across steady-state-cycles. If activity within an area primarily reflects the present 

motor output, distances among steady-state cycles should be small. If activity tracks motor 

context, distances should be larger, especially when comparing cycles with different future 

motor outputs (e.g., three-of-seven versus three-of-four). We plotted response distance for 

SMA versus M1 for all steady-state comparisons (Figure 3G,H) both within seven-cycle 

movements (circles) and between seven- and four-cycle movements (triangles). Comparisons 

were made independently for each condition (the two directions and starting positions). 

Results agreed with the analyses in panels C-F (which averaged across conditions): response 

distance was always low for M1 but was often high for SMA.

Intriguingly, when comparing seven- and four-cycle movements, SMA response distance 

reflected whether steady-state cycles shared the same future motor output. Response 

distance was modest when comparing cycles equidistant from movement end (red triangles) 

and higher (p<0.05 for both monkeys, t-test) for cycles equidistant from the beginning 

(green triangles). The task affords a further comparison of this type: seven- and four-cycle 

movements share initial-cycle motor outputs, but become different in ~3 cycles (~1500 ms). 

In contrast, terminal-cycle motor output is similar and remains so as the monkey becomes 

stationary. Thus, if activity tracks motor context, response distance should be greater when 

comparing initial versus terminal cycles. This was indeed the case: SMA response distance 

was much larger between initial cycles than between final cycles (Figure 3I,J). Initial-cycle 
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responses tended to share some structure; response distance was not as large as for some 

other comparisons (e.g., cycle one versus four). Yet initial-cycle responses were much more 

dissimilar than final-cycle responses, reflecting what can be seen in Figure 2D–F. This 

asymmetry was present in both areas but was larger for SMA (p<0.05 and p<10−10, monkey 

C and D; resampling test).

Cycle-to-cycle response specificity in SMA somewhat resembles contingency-specific 

activity during movement sequences (e.g., a neuron that bursts only when pulling will be 

followed by turning; Shima and Tanji, 2000). Yet specificity during cycling is manifested 

differently, by responses that evolve continuously rather than burst at a key moment. The 

ramping activity we observed was more reminiscent of pre-movement responses in a timing 

task (Cadena-Valencia et al., 2018). That said, ramping activity was not the only source 

of cycle-to-cycle response differences. To further explore such differences, we consider the 

evolution of population trajectories.

SMA and M1 display different population trajectories

To gain intuition, we first visualized population trajectories in three dimensions. Projections 

onto the top three PCs are shown for one seven-cycle condition for M1 (Figure 4A,B) 

and SMA (Figure 4C,D), shaded light to dark to denote the passage of time. For M1, 

trajectories exited a baseline state just before movement onset, entered a periodic orbit 

during steady-state cycling, and remained there until settling back to baseline as movement 

ended. To examine within-cycle structure, we also applied PCA separately for each cycle 

(bottom of each panel). For M1, this revealed little new; the dominant structure on each 

cycle was an ellipse, as was seen in the projection of the full response.

In SMA, the dominant geometry was quite different and also more difficult to summarize in 

three dimensions. We first consider data for monkey C (Figure 4C). Just before movement 

onset, the population trajectory moved sharply away from baseline (from left to right in the 

plot). The trajectory returned to baseline in a rough spiral, with each cycle separated from 

the last. The population trajectory for monkey D was different in some details (Figure 4D) 

but it was again the case that a translation separated cycle-specific features.

SMA population trajectories appear to have a ‘messier’ geometry than M1 trajectories; 

e.g., cycle-specific loops appear non-elliptical and kinked. Yet it should be stressed that a 

three-dimensional projection is necessarily a compromise. The view is optimized to capture 

the largest features in the data; smaller features can be missed or partially captured and 

distorted. We thus employed cycle-specific PCs to visualize the trajectory on each cycle 

separately. Doing so revealed near-circular trajectories, much as in M1. Thus, individual-

cycle orbits are present in SMA, but are a smaller feature relative to the large translation.

In summary, M1 trajectories are dominated by a repeating elliptical orbit while SMA 

trajectories are better described as helical. Each cycle involves an orbit, but these are 

separated by a translation. This translation reflects ramp-like responses in single-neurons. 

Yet the translation does not account for all the cycle-to-cycle differences in SMA. Unlike an 

idealized helix, individual-cycle orbits in SMA occur in somewhat different subspaces. This 

property is explored below.
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The SMA population response occupies different dimensions across cycles

To ask whether activity on different cycles occupies the same dimensions, we computed 

subspace overlap (Elsayed et al., 2016). For example, to compare cycle one and two, 

we computed PCs from activity during cycle one, projected activity during cycle two, 

and computed the variance explained. We employed six PCs, which captured most of the 

response variance for a given cycle. Essentially identical results were obtained using fewer 

or more PCs (Figure S1). Variance was normalized so that unity indicates that two cycles 

occupy the same subspace. We employed cross-validation so that sampling error did not 

bias overlap toward lower values. As in Figure 3C–F, we compared within seven-cycle 

movements (Figure 5A,C) and between seven- and four-cycle movements (Figure 5B,D).

For M1, subspace overlap was high among steady-state cycles, producing a central block 

structure (Figure 5A–D, top row). That block was square when comparing within seven-

cycle movements (cycles 2–6 versus 2–6) and rectangular when comparing between seven- 

and four-cycle movements (cycles 2–6 versus 2–3). Thus, in M1, the subspace found for any 

steady-state cycle overlapped heavily with that for all other steady-state cycles.

For SMA (bottom row) the central block was less well-defined. Comparing within seven-

cycle movements, SMA subspace overlap declined steadily as cycles became more distant 

from one another. For example, for monkey D, overlap declined from 0.97 when comparing 

cycle two versus three, to 0.39 when comparing two versus six (monkey C: from 0.91 

to 0.49). A similar effect was present when comparing seven- and four-cycle movements. 

For example, overlap was only 0.54 (monkey C) and 0.38 (monkey D) when comparing 

cycle two-of-seven with three-of-four, even though these cycles had similar motor output. 

Overall, subspace overlap among steady-state cycles was lower for SMA versus M1: p<10−7 

for both monkeys for within-seven-cycle comparisons, and p<10−10 for both monkeys for 

seven-versus-four-cycle comparisons (resampling test).

The analyses in Figure 5A–D average across the four conditions. Figure 5E,F considers each 

condition separately for all comparisons among steady-state cycles, both within seven-cycle 

and between seven- and four-cycle movements. M1 subspace overlap was reasonably high 

for all comparisons (always >0.71 for monkey C and >0.79 for D). SMA subspace overlap 

was significantly lower overall (p<10−10 for each monkey, paired t-test) with minima of 

0.23 and 0.29. Yet SMA subspace overlap was not always low. It was typically high 

when comparing cycles equidistant from movement end (red triangles). In contrast, overlap 

was lower (p<0.05 and p<0.005; monkey C and D, paired t-test) when comparing cycles 

equidistant from movement beginning (green triangles ). Thus, subspace overlap was high 

when two situations shared a similar future, and low otherwise.

Population trajectories in artificial networks

‘Motor context’ – i.e., abstract information that guides future action – may be remembered 

(e.g., “I am performing a particular sequence”; Shima and Tanji, 2000), internally estimated 

(“it has been 800 ms since the last button press”; Gamez et al., 2019), or derived from 

abstract cues (“this color means reach quickly”; Lara et al., 2018). In the cycling task, salient 

contextual information arrives when the target appears, specifying the number of cycles to 
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be produced. The current motor context (how many cycles remain) can then be updated 

throughout the movement, based on both visual cues and internal knowledge of the number 

of cycles already produced.

Our hypothesis is that the helical SMA population trajectory is a natural solution to the 

problem of internally tracking motor context during multi-cycle rhythmic movement. Is 

this hypothesis sufficient to explain the helical structure, or are additional assumptions 

(regarding parameters that are represented or other computations that are performed) 

necessary? Conversely, are the elliptical M1 trajectories indeed what is expected if a network 

does not internally track motor context?

To address these questions, we trained artificial recurrent networks that did, or did not, 

need to internally track motor context. We considered simplified inputs (pulses at specific 

times) and simplified outputs (pure sinusoids lasting four or seven cycles). We trained 

two families of recurrent networks. A family of ‘context-naïve’ networks received one 

input pulse indicating that output generation should commence, and a different input 

pulse indicating that output should be terminated. These pulses were separated by four 

or seven cycles, corresponding to the desired output. Thus, context-naïve networks had no 

information regarding context until the second input. Nor did they need to track context; 

the key information was provided at the critical moment. In contrast, a family of ‘context-

tracking’ networks received only an initiating input pulse, which differed depending on 

whether a four- or seven-cycle output should be produced. Context-tracking networks then 

had to generate a sinusoid with the appropriate number of cycles, and terminate with no 

further external guidance. For each family, we trained 500 networks that differed in their 

initial connection weights (Methods).

The two network families learned qualitatively different solutions involving population 

trajectories with different geometries. Context-naïve networks employed an elliptical limit 

cycle (Figure 6A). The initiating input caused the trajectory to enter an orbit, and the 

terminating input prompted the trajectory to return to baseline. This solution was not 

enforced but emerged naturally. There was network-to-network variation in how quickly 

activity settled into the limit cycle (Figure S2) but all networks that succeeded in performing 

the task employed a version of this strategy.

Context-tracking networks utilized population trajectories that were more helical; the 

trajectory on each cycle was separated from the others by an overall translation (Figure 6B). 

While there was network-to-network variation (Figure S3), all successful context-tracking 

networks employed some form of helical or spiral trajectory. This solution is intuitive: 

context-tracking networks do not have the luxury of following a repeating orbit. If they 

did, information regarding context would be lost, and the network would have no way of 

‘knowing’ when to terminate its output.

For context-tracking networks, trajectories could also occupy somewhat different subspaces 

on different cycles. Projected onto three dimensions, this geometry resulted in individual-

cycle trajectories of seemingly different magnitude (Figure 6B, first and third examples). 

As with the helical structure, this geometry creates separation between individual-cycle 
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trajectories. There was considerable variation in the degree to which this strategy was 

employed. Some context-tracking networks used nearly identical subspaces for every cycle 

while others used quite different subspaces. Context-naïve networks never employed this 

strategy.

The population geometry adopted by context-naïve and context-tracking networks bears 

obvious similarities to the empirical population geometry in M1 and SMA, respectively. 

That said, we stress that neither family is intended to faithfully model the corresponding 

area. Furthermore, reasonable alternative modeling choices exist. For example, rather than 

asking context-tracking networks to track progress using internal dynamics alone, one can 

provide a ramping input. Providing an external input respects the fact that, during cycling, 

tracking of context can and presumably does benefit from visual inputs (optic flow and 

the looming of the target). Interestingly, context-tracking networks trained in the presence / 

absence of ramps employed similar population trajectories (Figure S4). The slow translation 

that produces helical structure is a useful computational tool – one that networks produced 

on their own if needed, but were also content to inherit from upstream sources. For these 

reasons, we focus not on the details of individual network trajectories, but rather on the 

geometric features that differentiate context-tracking from context-naïve trajectories, and 

that might similarly differentiate M1 and SMA trajectories.

Trajectory divergence

Trajectories displayed by context-tracking networks reflect specific solutions to a general 

problem: ensuring that two trajectory segments never trace the same path and then diverge. 

Avoiding such divergence is critical when network activity must distinguish situations that 

have the same present motor output but different future outputs. Rather than assessing the 

specific paths of individual-network solutions, we developed a general metric of trajectory 

divergence. We note that trajectory divergence differs from trajectory tangling (Russo et al., 

2018), which was very low in both SMA and M1 (Figure S5). Trajectory tangling assesses 

whether trajectories are consistent with a locally smooth flow-field. Trajectory divergence 

assesses whether similar paths eventually separate, smoothly or otherwise. A trajectory can 

have low tangling but high divergence, or vice versa (Figure S6).

To construct a metric of trajectory divergence, we consider times t and t′, associated 

population states xt and xt′, and future population states xt + Δ and xt′ + Δ. We consider 

all possible pairings of t and t′ across both times and cycling distances. Thus, t and t′ 
might occur during different cycles of the same movement or during different distances. We 

compute the ratio 
xt + Δ − xt′ + Δ 2

xt − xt′ 2 + α
, which becomes large if xt + Δ differs from xt′ + Δ despite 

xt and xt′ being similar. The constant α is small and proportional to the variance of x, and 

prevents hyperbolic growth.

Given that the difference between two random states is typically sizeable, the above ratio 

will be small for most values of t′. As we are interested in whether the ratio ever becomes 

large, we take the maximum, and define divergence for time t as:
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D(t) = max
t′, Δ

xt + Δ − xt′ + Δ
2

xt − xt′
2 + α

. 1

We consider only positive values of Δ. Thus, D (t) is large if similar trajectories diverge but 

not if dissimilar trajectories converge. Divergence was assessed using a twelve-dimensional 

neural state. Results were similar for all reasonable choices of dimensionality.

D (t) differentiated between context-tracking and context-naïve networks. To compare, we 

considered pairs of networks, one context-tracking and one context-naïve. For each time, 

we plotted D (t) for the context-tracking network versus that for the context-naïve network. 

Trajectory divergence was consistently lower for context-tracking networks (Figure 6C, 

p<0.0001, rank sum test). This was further confirmed by taking the difference in D (t) 
for every time and all network pairs (Figure 6D). Both context-tracking and context-naïve 

trajectories contained many moments when divergence was low, resulting in a narrow peak 

near zero. However, context-naïve trajectories (but not context-tracking trajectories) also 

contained moments when divergence was high, yielding a large set of negative differences.

Trajectory divergence is lower for SMA

The roughly helical structure of the empirical SMA population response (Figure 4) 

suggests low trajectory divergence, as does the finding that SMA responses differ across 

cycles (Figures 3 and 5). Yet the complex shape of the empirical trajectories makes it 

impossible to ascertain, via inspection, whether divergence is low. Furthermore, it is unclear 

whether cycle-to-cycle response differences ensure low divergence across both time and 

cycling distances. We therefore directly measured trajectory divergence for the empirical 

trajectories.

Plotting SMA versus M1 trajectory divergence for each time (Figure 7A,B) revealed 

that divergence was almost always lower in SMA. We next computed the difference in 

divergence, at matched times, between SMA and M1 (Figure 7C,D). There was a narrow 

peak at zero (moments where divergence was low for both) and a large set of negative 

values, indicating lower divergence for SMA. Strongly positive values (lower divergence for 

M1) were absent (monkey C) or very rare (monkey D; 0.13% of points > 20). Distributions 

were significantly negative (p<0.00001 for monkey A and B, bootstrap). The overall scale of 

divergence was smaller for the empirical data than for the networks. Specifically, divergence 

reached higher values for context-naïve networks than for the empirical M1 trajectories. This 

occurs because simulated trajectories can repeat almost perfectly, yielding very small values 

of the denominator in equation 1. Other than this difference in scale, trajectory divergence 

for SMA and M1 differed in much the same way as for context-tracking and context-naïve 

networks (compare Figure 7C,D with Figure 6D).

The ability to consider both network and neural trajectories (despite differences across 

networks and across monkeys) underscores that the divergence metric describes trajectory 

geometry at a useful level of abstraction. Multiple features can contribute to low divergence, 

including ramping activity, cycle-specific responses, and different subspaces on different 
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cycles. Different network instantiations may use these different ‘strategies’ to different 

degrees. Trajectory divergence provides a useful summary of a computationally-relevant 

property, regardless of the specifics of how it was achieved.

Because trajectory divergence abstracts away from the details of specific trajectories, it 

can be readily applied in new situations. For example, the cycling task involved not 

only different cycling distances, but also different cycling directions and different starting 

positions. The latter is particularly relevant, because movements ended at the same position 

(cycle top or bottom) as they started. Thus, how a movement will end depends on 

information present at the beginning. Dowa SMA distinguish between movements that will 

end in one position versus the other? One could address this using a traditional approach, 

perhaps assessing the presence and timing of ‘starting-position-tuning.’ However, it is 

simpler, and more relevant to the hypothesis being considered, to ask whether divergence 

remains low when comparisons are made across all conditions including starting positions. 

This was indeed the case (Figure S7).

Computational implications of trajectory divergence

We considered trajectory divergence because of its expected computational implications. A 

network with a high-divergence trajectory can accurately and robustly generate its output 

on short timescales. Yet unless guided by external inputs at key moments, such a network 

may be susceptible to errors on longer timescales. For example, if a trajectory approximately 

repeats, a likely error would be the generation of extra cycles or the skipping of a cycle.

To test these intuitions, we employed a new set of simulations using an atypical training 

approach that enforced an internal network trajectory (Russo et al., 2018), as opposed to 

the usual approach of training a target output. We trained networks to precisely follow 

the empirical M1 trajectory, recorded during a four-cycle movement, without any input 

indicating when to stop (Figure 8A). Networks were trained in the presence of additive 

noise. Using data from each monkey, we trained forty networks: ten for each of the 

four four-cycle conditions. Networks were able to reproduce the cyclic portion of the 

M1 trajectory. However, without the benefit of a stopping pulse, these networks failed 

to consistently complete the trajectory. For example, networks sometimes erroneously 

produced extra cycles (Figure 8B) or skipped cycles and stopped early (Figure 8C).

We also trained networks to follow the empirical SMA trajectories. Those trajectories 

contained a rhythmic component and lower-frequency ‘ramping’ signals (Figure 8D) related 

to the translation seen in Figure 4C,D. In contrast to the high-divergence M1 trajectories, 

which were never consistently followed for the full trajectory, the majority of network 

initializations resulted in good solutions where the low-divergence SMA trajectory was 

successfully followed from beginning to end. Thus, in the absence of a stopping pulse, SMA 

trajectories could be reliably produced and terminated but M1 trajectories could not.

Discussion

Many studies argue that SMA contributes to the guidance of action based on internal, 

abstract, or contextual factors (Cadena-Valencia et al., 2018; Kornysheva and Diedrichsen, 
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2014; Merchant and de Lafuente, 2014; Mushiake et al., 1991; Nakamura et al., 1998; 

Remington et al., 2018b; Romo and Schultz, 1992; Shima and Tanji, 2000; Sohn and Lee, 

2007; Tanji and Kurata, 1982; Tanji and Shima, 1994; Thaler et al., 1995; Wang et al., 

2018). We translated this hypothesis into a prediction regarding the geometry of population 

activity. As predicted, trajectory divergence was low in SMA, and provided a cohesive 

explanation for diverse response features. Slowly ramping firing-rates are, at the surface 

level, a very different feature from changes in the occupied subspace. Yet both contribute 

to low divergence. Other features (which we did not attempt to isolate) maintained low 

divergence across cycling directions and starting positions. This raises a broader point: the 

features that subserve low divergence will almost certainly be task and situation specific. 

For example, during sequences of reaches, SMA neurons exhibit burst-like responses with 

various forms of selectivity. Such selectivity presumably produces low divergence, although 

this remains to be explicitly tested. Thus, a reasonable hypothesis is that, during a given task, 

SMA responses will exhibit some of the dominant response features seen in M1 (transient 

responses when reaching, rhythmic activity during cycling, etc.) combined with additional 

response features that ensure low divergence.

An essential strategy is to focus on specific features that relate to how a network might 

perform a particular task (Churchland et al., 2012; Driscoll et al., 2018; Gallego et al., 2017; 

Kaufman et al., 2014; Mante et al., 2013; Remington et al., 2018b; Stopfer and Laurent, 

1999). A complementary strategy is to quantify general properties that may be preserved 

across a class of computations. Our divergence metric was designed with this goal. We 

recently considered a different geometric property, trajectory tangling (Russo et al., 2018), 

which is necessary for a network to robustly generate an output via internal dynamics. 

Low trajectory tangling was observed in M1 across a range of tasks, in both monkeys and 

mice. As another example, studies of the visual system have employed linear separability (a 

different definition of ‘untangled’) to assess whether population geometry is consistent with 

a class of computation having been performed (DiCarlo and Cox, 2007; Pagan et al., 2013).

The advantages of this approach come with a limitation: geometry may strongly suggest 

a class of computations, yet do little to delineate the specific computation. For example, 

low trajectory divergence in SMA is consistent with internal tracking of context, but does 

not specify the input-output relationship the network is trying to accomplish. Indeed, 

we observed low-divergence trajectories regardless of whether context-tracking networks 

received a ramping input or internally generated their own ramp. Similarly, it remains 

unclear what signals SMA conveys to downstream areas. Possibilities include start/stop 

signals, a ‘keep moving’ signal that remains high during movement, or a rhythmic signal 

that entrains downstream pattern generation (Schoner and Kelso, 1988). Deciphering the 

computation used to perform a particular task will typically require a level of detail below 

that captured by measures of population geometry.

A goal of assessing population geometry is to find general properties. At the same time, 

exceptions may be informative. For example, during grasping, trajectory tangling becomes 

high in M1, suggesting a shift in the balance of input-driven versus internally driven activity 

(Suresh et al., 2019). We expect that, in SMA, there will be situations where divergence 

becomes revealingly high. For example, there are presumably limits on the timescales 
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across which SMA can track context, which may be revealed in the timescales over which 

divergence stays low. Trajectory divergence is also likely to become high when action is 

guided by sudden, unpredictable cues.

Given the benefits of low divergence, why employ separate areas – SMA and M1 – with low 

and high divergence? Why not unify context tracking and pattern generation? Allowing high 

divergence in M1 may be useful for two reasons. First, dispensing with divergence-avoiding 

signals frees dynamic range for other computations, such as generating fine-grained aspects 

of the outgoing motor command. Second, low divergence may interfere with adaptation; 

learning on one cycle would have no clear way of transferring to other cycles (Sheahan et 

al., 2016).

The concepts in the present study are informed by our field’s understanding of how 

recurrent networks perform computations (Mante et al., 2013; Michaels et al., 2016; 

Remington et al., 2018b; Russo et al., 2018; Stringer et al., 2019). Because recurrent-

network-based computations are commonly described via flow-fields governing a neural 

state (Maheswaranathan, 2019; Sussillo and Barak, 2013), this perspective has been termed 

a ‘dynamical systems view’ (Shenoy et al., 2013). This view intersects with ideas regarding 

how dynamical systems can perform computations (van Gelder, 1998) or describe behavior 

(Kelso, 2012). It has been argued that dynamics-based explanations should supplant 

‘representational’ explanations (van Gelder, 1998). This view is extreme; dynamical systems 

may involve representations (Bechtel, 2012). Yet it is true that purely representational 

thinking can be limiting. For example, the question of whether M1 is more concerned with 

‘muscles versus movements’ is poorly addressed by inquiring whether neural activity is 

a function of muscle activity versus movement kinematics (Fetz, 1992; Scott, 2008). M1 

is dominated by signals that are neither muscle-like nor kinematic-like, but are readily 

understood as necessary for low trajectory tangling (Russo et al., 2018).

Correspondingly, multiple aspects of the SMA population response are readily understood 

as aiding low trajectory divergence. It is tempting to apply representational interpretations to 

some of those properties. For example, there is a dimension in which activity is ramp-like 

during cycling, which might be thought of as a representation of ‘time’, ‘distance’, or 

‘progress within the overall movement’. While it is conceivable that this dimension might 

consistently represent these things during other tasks, there is presently no evidence for 

this. Furthermore, low divergence is aided by additional features that lack a straightforward 

representational interpretation, such as occupancy of different subspaces across cycles. The 

dynamical perspective helps one to see the connection between these seemingly disjoint 

response features, in a way that a purely representational perspective does not.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Dr. Mark M. Churchland 

(mc3502@columbia.edu).
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Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Datasets are provided at https://data.mendeley.com/

datasets/tfcwp8bp5j/1. Code is provided at https://github.com/aarusso/trajectory-divergence.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Main experimental datasets—Subjects were two adult male rhesus macaques (monkeys 

C and D). Animal protocols were approved by the Columbia University Institutional Animal 

Care and Use Committee. Experiments were controlled and data collected under computer 

control (Speedgoat Real-time Target Machine). During experiments, monkeys sat in a 

customized chair with the head restrained via a surgical implant. Stimuli were displayed 

on a monitor in front of the monkey. A tube dispensed juice rewards. The left arm was 

loosely restrained using a tube and a cloth sling. With their right arm, monkeys manipulated 

a pedal-like device. The device consisted of a cylindrical rotating grip (the pedal), attached 

to a crank-arm, which rotated upon a main axel. That axel was connected to a motor and 

a rotary encoder that reported angular position with 1/8000 cycle precision. In real time, 

information about angular position and its derivatives was used to provide virtual mass 

and viscosity, with the desired forces delivered by the motor. The delay between encoder 

measurement and force production was 1 ms.

Horizontal and vertical hand position were computed based on angular position and the 

length of the crank-arm (64 mm). To minimize extraneous movement, the right wrist rested 

in a brace attached to the hand pedal. The motion of the pedal was thus almost entirely 

driven by changes in shoulder and elbow angle, with the wrist moving only slightly to 

maintain a comfortable posture.

METHOD DETAILS

Task—Monkeys performed the ‘cycling task’ as described previously (Russo et al., 

2018). The monitor displayed a virtual landscape, generated by the Unity engine (Unity 

Technologies, San Francisco). Surface texture and landmarks provided visual cues regarding 

movement through the landscape along a linear ‘track’. One rotation of the pedal produced 

one arbitrary unit of movement. Targets on the track indicated where the monkey should stop 

for juice reward.

Each trial began with the monkey stationary on top of an initial target. After a 1000 ms hold 

period, the final target appeared at a prescribed distance. Following a randomized (500–1000 

ms) delay period, a gocue (brightening of the final target) was given. The monkey then had 

to cycle to acquire the final target. After remaining stationary in the final target for 1500 

ms, the monkey received a reward. The full task included 20 conditions distinguishable by 

final target distance (half-, one-, two-, four-, and seven-cycles), initial starting position (top 

or bottom of the cycle), and cycling direction (forward or backward). Half-cycle distances 

evoked quite brief movements. Because of the absence of a full-cycle response, they are not 

amenable to many of the analyses we employ, and were thus not analyzed.

Salient visual cues (landscape color) indicated whether cycling must be ‘forward’ (the hand 

moved away from the body at the top of the cycle) or ‘backward’ (the hand moved toward 
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the body at the top of the cycle) to produce forward virtual progress. Trials were blocked 

into forward and backward cycling. Other trials types were interleaved, randomly, within 

those blocks.

Neural recordings during cycling—After initial training, we performed a sterile 

surgery during which monkeys were implanted with a head restraint and recording cylinders 

(Crist Instruments, Hagerstown, MD). Cylinders were located based on magnetic resonance 

imaging scans. For M1 recordings, the cylinder was placed surface normal to the cortex and 

centered over the border between caudal PMd and primary motor cortex. After recording 

in M1, we performed a second sterile surgery to move the cylinder over the SMA. SMA 

cylinders were angled at ~20° degrees to avoid the superior sagittal sinus. The skull within 

the cylinders was left intact and covered with a thin layer of dental acrylic. Electrodes 

were introduced through small (3.5 mm diameter) burr holes drilled by hand through the 

acrylic and skull, under ketamine / xylazine anesthesia. Neural recordings were made using 

conventional single electrodes (Frederick Haer Company, Bowdoinham, ME) driven by a 

hydraulic microdrive (David Kopf Instruments, Tujunga, CA). The use of conventional 

electrodes, as opposed to electrode arrays, allowed recordings to be made from the medial 

bank (where most of the SMA is located) and from both surface and sulcal M1.

Recording locations were guided via microstimulation, light touch, and muscle palpation 

protocols to confirm the trademark properties of each region. For motor cortex, recordings 

were made from primary motor cortex (both surface and sulcal) and the adjacent (caudal) 

aspect of dorsal premotor cortex. These recordings are analyzed together as a single motor 

cortex population. All recordings were restricted to regions where microstimulation elicited 

responses in shoulder and arm muscles.

Neural signals were amplified, filtered, and manually sorted using Blackrock Microsystems 

hardware (Digital Hub and 128-channel Neural Signal Processor). On each trial, the spikes 

of the recorded neuron were filtered with a Gaussian (25 ms standard deviation; SD) to 

produce an estimate of firing rate versus time. These were then temporally aligned and 

averaged across trials(Russo et al., 2018) (details below).

EMG recordings—Intra-muscular EMG was recorded from the major shoulder and 

arm muscles using percutaneous pairs of hook-wire electrodes (30mm x 27 gauge, Natus 

Neurology) inserted ~1 cm into the belly of the muscle for the duration of single recording 

sessions. Electrode voltages were amplified, bandpass filtered (10–500 Hz) and digitized 

at 1000 Hz. To ensure that recordings were of high quality, signals were visualized on an 

oscilloscope throughout the duration of the recording session. Recordings were aborted if 

they contained significant movement artifact or weak signal. Offline, EMG records were 

high-pass filtered at 40 Hz and rectified. Rectified EMG voltages were smoothed with 

a Gaussian (25 ms SD, same as neural data) and trial averaged (see below). Recordings 

were made from the following muscles: the three heads of the deltoid, the two heads 

of the biceps brachii, the three heads of the triceps brachii, trapezius, latissimus dorsi, 
pectoralis, brachioradialis, extensor carpi ulnaris, extensor carpi radialis, flexor carpi ulnaris, 
flexor carpi radialis, and pronator. Recordings were made from 1–8 muscles at a time, 

on separate days from neural recordings. We often made multiple recordings for a given 
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muscle, especially those that we previously noted could display responses that vary with 

recording location (e.g., the deltoid). We made 29 (monkey C) and 35 (monkey D) total 

muscle recordings.

Trial alignment and averaging—To preserve response features, it was important to 

compute the average firing rate across trials with nearly identical behavior. This was 

achieved by 1) training to a high level of stereotyped behavior, 2) discarding rare aberrant 

trials, and 3) adaptive alignment of individual trials prior to averaging. Because of the 

temporally extended nature of cycling movements, standard alignment procedures (e.g., 
locking to movement onset) often misalign responses later in the movement. For example, a 

seven-cycle movement lasted ~3500 ms. By the last cycle, a trial 5% faster than normal and 

a trial 5% slower than normal would be misaligned by 350 ms, or over half a cycle.

To ensure response features were not lost to misalignment, we adaptively aligned trials 

within a condition (Russo et al., 2018). First, trials were aligned on movement onset. 

Individual trials were then scaled so that all trials had the same duration (set to be the 

median duration across trials). Because monkeys usually cycled at a consistent speed (within 

a given condition) this brought trials largely into alignment: e.g., the top of each cycle 

occurred at nearly the same time for each trial. An adaptive alignment procedure was used to 

correct any remaining slight misalignments. To do so, the time-base for each trial was scaled 

so that the position trace on that trial closely matched the average position of all trials. This 

involved a slight non-uniform stretching, and resulted in the timing of all key moments – 

such as when the hand passed the top of the cycle – being nearly identical across trials. This 

ensured that high-frequency temporal response features were not lost to averaging.

Neural firing rates and EMG activity were computed on each trial before adaptive alignment. 

Thus, the above procedure never alters the magnitude of these variables, but simply aligns 

when those values occur across trials. The adaptive procedure was used once to align trials 

within a condition on a given recording session, and again to align data across recording 

sessions. A similar alignment procedure was used within the response distance analysis to 

ensure all cycles were of the same duration. For all datasets, averages were made across a 

median of ~15 trials.

Data Preprocessing—We standardly (Churchland et al., 2012; Russo et al., 2018; Seely 

et al., 2016) use soft normalization to balance the desire for analyses to explain the 

responses of all neurons with the desire that weak responses not contribute on an equal 

footing with robust responses. For example, many of our analyses employ PCA. Because 

PCA seeks to capture variance, it can be disproportionately influenced by differences in 

firing rate range (e.g., a neuron with a range of 100 spikes/s has 25 times the variance 

of a similar neuron with a range of 20 spikes/s). The response of each neuron was thus 

normalized prior to application of PCA. Neural data were ‘soft’ normalized: response 
≔ response/(range(response) +5). Soft normalization is also helpful for non-PCA-based 

analyses (e.g., of response distance) to avoid results being dominated by a few high-firing-

rate neurons.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Response distance—Response distance assesses the degree to which the population 

response is different on two different cycles (either within a seven-cycle movement, 

or between seven-cycle and four-cycle movements of the same type). Consider ri(t), a 

vector containing the trial-averaged firing rate of every neuron at time t within cycle 

i. The simplest definition of response distance between cycles i and j is equivalent to 

∑t Δi, j(t) ⋅ Δi, j(t) where Δi, j(t) = ri(t) − rj(t) and ‘∙’ indicates the dot product. However, this 

approach allows distance to be increased by sampling error in r. We therefore employed 

the crossnobis estimator(Diedrichsen and Kriegeskorte, 2017; Yokoi et al., 2018), which 

provides an unbiased estimate of squared distance. We randomly divided trials into two 

non-overlapping partitions, and computed two trial-averaged firing rate vectors: ri
(1)(t) and 

ri
(2)(t). (Partitioning was done separately for each neuron as most neurons were not recorded 

simultaneously). The crossnobis estimator was then the average, across twenty random 

partitions, of ∑tΔi, j
(1)(t) ⋅ Δi, j

(2)(t). Virtually identical results were obtained if we employed a 

different method to combat sampling error: denoising the average firing rate of each neuron 

by reconstructing it based on the top twelve population-level principal components.

We employed temporal alignment to ensure that response distance was not inflated if 

two cycles had similar responses but different durations. This is of little concern when 

comparing among steady-state cycles (duration was highly stereotyped) but becomes a 

concern when comparing an initial-cycle response with a steady-state cycle response. To 

avoid misalignment, the response on each cycle was scaled both to have the same duration 

and such that the angular position matched at all times. After alignment, response distance is 

zero if two responses are the same except for their time-course.

Comparisons were made within a given seven-cycle condition and between seven-cycle 

and four-cycle conditions. Comparisons were always made between conditions of the 

same type (i.e., the same cycling direction and starting position). Response distances were 

normalized by response magnitude within a steady-state cycle of the same condition type. 

For simplicity, we chose the fourth cycle of the seven-cycle movement. Response magnitude 

was the squared distance of the firing rate from its mean (computed in a cross-validated 

fashion).

We used resampling, across neurons, to assess the statistical significance of differences 

between SMA and M1. For example, we found that response distance, averaged across 

steady-state cycles, was higher in SMA. A key question is whether this difference is 

reliable, or might simply have occurred between any two random populations of neurons. 

To address this, we pooled all neurons for both areas, and created two resampled ‘areas’ 

by random partition. We computed the key metric (e.g., average response distance across 

steady-state cycles) for both resampled areas, and took the difference. The distribution of 

such differences, across 100 random partitions, is an estimate of the sampling distribution 

of measured differences if there is no true difference between the two populations. This 

distribution was approximately Gaussian, and p-values were thus based on a Gaussian fit.
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Subspace overlap—Subspace overlap was used to measure the degree to which the 

population response occupied different neural dimensions on different cycles (different 

cycles within a distance, or between distances). Subspace overlap was always computed for 

a pair of cycles: a reference cycle and a comparison cycle. The population response for the 

reference cycle was put in matrix form, Rref, of size t x n where t is the number of times 

within that cycle and n is the number of neurons. Analogously, the population response 

during the comparison cycle was Rcomp. We applied PCA to Rref, yielding Wref, an n x 

k matrix of principal components. We similarly applied PCA to Rcomp, yielding Wcomp. 

We define variance captured as V (R, W ) = 1 −
R − RW W T F

∥ R ∥F
. Subspace overlap was then 

computed as: 
V Rcomp, W ref

V Rcomp, W comp
.

The subspace overlap should be unity if the population response on reference and 

comparison cycles occupies the same dimensions (i.e., are spanned by the same PCs). 

However, subspace overlap can be diluted by sampling error (i.e., two responses that are in 

truth identical, but appear slightly different because average firing rates were computed for 

a finite number of trials). We thus computed subspace overlap using cross validation. To do 

so we partitioned the data (by randomly partitioning the trials recorded for each neuron) to 

produce Rref
(1), Rref

(2), Rcomp 
(1)  and Rcomp

(2) . Cross-validated subspace overlap was then the average 

(over 20 partitions) of:

1
2

V Rcomp
(1) , W ref

(2)

V Rcomp
(1) , W comp

(2) +
V Rcomp

(2) , W ref
(1)

V Rcomp
(2) , W comp

(1)

Cross-validation was helpful in reducing the impact of sampling error. However, similar 

results were obtained if we did not employ cross-validation and simply computed the 

uncorrected subspace overlap as above. To test for statistical significance, we used the 

resampling procedure described in the previous section.

Trajectory Divergence—Consider times t and t′. These times could occur within the 

same movement. E.g., t could be a time near the middle of the movement and t′ could 

be a time near the end. The two times could also occur for different distances within the 

same condition type. E.g., if we consider forward cycling that starts at the top, t could occur 

during a two-cycle movement and t′ could occur during a seven-cycle movement.

Consider the associated neural states xt and xt′. The squared distance between these states 

is ∥ xt − xt′ ∥2 The squared distance between the corresponding states, some time Δ in the 

future, is ∥ xt + Δ − xt′ + Δ ∥2 Divergence assess whether this future distance ever becomes 

large despite the present distance being small. We define the divergence for a given time, 

during a given condition, as:
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D(t) = max
t′, Δ

xt + Δ − xt′ + Δ 2

xt − xt′ 2 + α

Where t′ indexes across all times within all movements of the same type, and Δ indexes 

from one to the largest time that can be considered: min T − t, T ′ − t′ where T is the duration 

of the condition associated with time t and T′ is the duration of the condition associated with 

time t′ For our primary analysis, divergence was measured separately for each of the four 

condition types. For example, if the condition type is forward cycling starting at the top, t′ 
indexes across times and across distances of that type. The same effect was observed (SMA 

divergence lower than M1 divergence) if t′ indexed across all conditions regardless of type 

(Figure S7).

The state vectors xt were found by applying PCA to the population response across all 

times (starting 100 ms before movement onset and ending 100 ms after movement offset) 

and across all conditions considered by the analysis. We term this full dimensional matrix 

Xfull. Every column of Xfull contains the data for one neuron. We used PCA to reduce the 

dimensionality of the data to twelve, yielding a matrix X with twelve columns. The state 

vector xt was then the appropriate row (corresponding to the time and condition in question) 

of X. Twelve PCs captured an average of 89% and 87% of the data variance in M1 and 

SMA respectively. Results were not sensitive to the choice of dimensionality; divergence 

was always much lower for SMA versus M1. This was also true if we did not employ 

PCA, but simply used Xfull. That said, we still preferred to use PCA as a preprocessing 

step. Reducing dimensionality makes analysis much faster, and the accompanying denoising 

of the data reduces concerns that sampling error might impact the denominator in the 

divergence computation. To ensure that denominator was well behaved (e.g., did not become 

too close to zero) we also included the constant α, set to 0.01 times the variance of X. 

Results were essentially identical across a range of reasonable values of α

We used a bootstrap procedure to assess the statistical significance of differences in 

trajectory divergence between SMA and M1. For each region for each monkey, neurons 

were resampled with replacement before application of PCA. Trajectory divergence was 

then analyzed for the resampled populations. The difference was taken between trajectory 

divergence in the resampled SMA population and the resampled M1 population and we 

assessed whether the resulting distribution of differences had a negative mean (i.e., whether 

divergence tends to be lower for SMA). This bootstrap procedure was repeated for 1000 

iterations.

Recurrent Neural Networks—We trained recurrent neural networks to produce four and 

seven cycles of a sinusoid in response to external inputs. A network consisted of N = 50 

firing-rate units with dynamics:

τ dr
dt = − r(t) + f(Ar + I(t) + b)
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z = wout T r

where τ is a time-constant, r represents an N-dimensional vector of firing rates, f ≔tanh is 

a nonlinear input-output function, A is an N × N matrix of recurrent weights, I(t) represents 

time-varying external input, and b is a vector of constant biases. The network output z is 

a linear readout of the rates. Components of both A and wout were initially drawn from a 

normal distribution of zero mean and variance 1/N. b was initialized to zero. Throughout 

training, A, wout, and b were modified.

Context-tracking networks were trained to generate a four-cycle versus seven-cycle output 

after receiving a short go pulse (a square pulse lasting half a cycle prior to the start of 

the output) without the benefit of a stopping pulse. For context-tracking networks only, 

go pulses were different depending on whether four or seven cycles should be produced. 

The two go pulses were temporally identical, but entered the network through different sets 

of random input weights; I(t) = w4I(t) or I(t) = w7I(t), where I(t) is a square pulse of unit 

amplitude.

Context-naïve networks received both a go pulse and a stop pulse. Go and stop pulses 

were distinguished by entering the network through different sets of random input weights; 

I(t) = wg0I(t) or I(t) = Wstop I(t). Go and stop pulses were separated by an appropriate 

amount of time to complete the desired number of cycles. We analyzed network activity 

only when go and stop pulses were separated by four or seven cycles. Yet we did not wish 

context-naïve networks to learn overly specific solutions. Thus, during training, we also 

included trials where the network had to cycle continuously in the absence of a stop-pulse. 

This ensured that context-naïve networks learned a general solution; e.g., they could cycle 

for six cycles and stop if the go and stop pulses were separated by six cycles.

We also considered a modification of context-tracking networks that received a downward 

ramping input through another set of weights, wramp. The ramping input has a constant 

slope but different starting values for different numbers of desired cycles. The end of the 

cycling period was indicated by the ramp signal reaching zero. Thus, such networks received 

explicit and continuous information about time to the end of movement, and could inherit 

this information rather than constructing it through their own internal dynamics.

Networks were trained using back-propagation-through-time (Werbos, 1988) using 

TensorFlow and an Adam optimizer to adjust A, wout and b to minimize the squared 

difference between the network output z and the sinusoidal target function. Input weights, 

w4, w7, wgo, wstop and wramp, were drawn from a zero-mean unit-variance normal 

distribution and remain fixed throughout training. The amplitude of pulses and cycles were 

set to a value that produced a response but avoided saturating the units. The maximum 

height of the ramp signal was set to the same amplitude as the input pulses for the 

seven-cycle condition. For each condition, we trained 500 networks, each initialized with 

a different realization of A and wout
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Trajectory-constrained Neural Networks—To test the computational implications of 

trajectory divergence, we trained recurrent neural networks with an atypical approach. 

Rather than training networks to produce an output, we trained them to autonomously follow 

a target internal trajectory (DePasquale et al., 2018; Russo et al., 2018). We then asked 

whether networks were able to follow those trajectories from beginning to end, without the 

benefit of any inputs indicating when to stop.

Target trajectories were derived from neural recordings (M1, and SMA) during the 

four-cycle movements for each of the four condition types (forward-bottom-start, forward-

top-start, backward-bottom-start, backward-top-start). Target trajectories spanned the time 

period from movement onset until 250 ms after movement offset. To emphasize that the 

network should complete the trajectory and remain in the final state, we extended the final 

sample of the target trajectory for an additional 500 ms. To obtain target trajectories, neural 

data were mean-centered and projected onto the top six PCs (computed for that condition). 

Each target trajectory was normalized by its greatest norm (across times). We trained a total 

of 160 networks, each with a different weight initialization. The eighty networks for each 

monkey included ten each for the two cortical areas and four condition types (two starting 

positions by two cycling directions).

Network dynamics were governed by:

v(t + Δt) = v(t) + Δt/τ( − v(t) + Af(v(t)) + w(t))

where f ≔tanh and w ∼ N 0, σW
2 I  adds noise. V  can be thought of as the membrane voltage 

and f(v(t)) as the firing rate. Af(v(t))is then the vector of inputs to each unit: i.e., the 

firing rates weighted by the connection strengths. Network training attempted to minimize 

the difference between this input vector and a target trajectory: starg(t)Training focused on 

the vector of inputs, rather than the vector of outputs (firing rates) purely for technical 

purposes. The end result is much the same as inputs and outputs are related by a monotonic 

function. A was trained using recursive least squares. The target trajectory was constructed 

as starg(t) = Gytarg(t) ⋅ ytarg is the six-dimensional trajectory derived from the physiological 

data. G is an N × 6 matrix of random weights, sampled from U[ − .5, .5], that maps the 

global target trajectory onto a target input of each model unit. This construction ensures 

that the target network trajectory is isomorphic with the physiological trajectory, with each 

unit having random ‘tuning’ for the underlying factors. The entries of A were initialized by 

draws from a centered normal distribution with variance 1/N (where N = 50, the number of 

network units). Simulation employed 4 ms time steps.

To begin a given training epoch, the initial state was set with v(0) based on starg(0) and A. 

The network was simulated, applying recursive least squares (Sussillo and Abbott, 2009) 

with parameter α =1 to modify A as time unfolds. After 1000 training epochs, stability was 

assessed by simulating the network 100 times, and computing the mean squared difference 

between the actual and target trajectory. That error was normalized by the variance of the 

target trajectory, yielding an R2 value. An average (across the 100 simulated trials) R2 < 0.9 

was considered a failure.
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Because the empirical population trajectories never perfectly repeated, it was trivially true 

that networks could follow the full trajectory, for both M1 and SMA, in the complete 

absence of noise (i.e., for σw = 0). For the larger value of σW  used for our primary analysis, 

all networks failed to follow the M1 trajectories while most networks successfully followed 

the SMA trajectories (although there were still some network initializations that never 

resulted in good solutions). It is of course unclear what value of σW  is physiologically 

relevant. We therefore also performed an analysis where we swept the value of σW  until 

failure. The level of noise that was tolerated was much greater when networks followed the 

SMA trajectories. Indeed, some M1 trajectories (for particular conditions) could never be 

consistently followed even at the lowest noise level tested.

To visualize network activity (Figure 8B–D) we ‘decoded’ the network population. To do so, 

we reconstructed the first three dimensions of the trajectory (which should match the first 

three dimensions of the target trajectory) by pseudo-inverting G.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Y. Pavlova for animal care and Najja J. Marshall who collected a portion of the EMG data. Work was 
supported by the Grossman Charitable Trust, Simons Foundation (MMC, JPC, LFA), McKnight Foundation (MMC, 
JPC), NIH Director’s DP2 NS083037 (MMC), NIH CRCNS R01NS100066 (MMC, JPC), NIH 1U19NS104649 
(MMC, LFA, JPC), NIH 5T32NS064929 (AAR), P30 EY019007, NSF DBI-1707398 (SRB, RK), Kavli Foundation 
(MMC), and The Gatsby Charitable Foundation (RK, LFA).

References

Ames KC, Ryu SI, and Shenoy KV (2014). Neural Dynamics of Reaching following Incorrect or 
Absent Motor Preparation. Neuron 81, 438–451. [PubMed: 24462104] 

Bechtel W (2012). Representing Time of Day in Circadian Clocks. In Newen A, Bartels A, & Jung 
E-M (Eds), Knowledge and representation Palo Alto, CA: CSLI Publications.

Boccardi E, Della Sala S, Motto C, and Spinnler H (2002). Utilisation behaviour consequent to 
bilateral SMA softening. Cortex 38, 289–308. [PubMed: 12146657] 

Boudrias MH, Belhaj-Saif A, Park MC, and Cheney PD (2006). Contrasting properties of motor output 
from the supplementary motor area and primary motor cortex in rhesus macaques. Cereb Cortex 16, 
632–638. [PubMed: 16049188] 

Brinkman C (1984). Supplementary motor area of the monkey’s cerebral cortex: short- and long-term 
deficits after unilateral ablation and the effects of subsequent callosal section. J Neurosci 4, 918–
929. [PubMed: 6716131] 

Cadena-Valencia J, Garcia-Garibay O, Merchant H, Jazayeri M, and de Lafuente V (2018). 
Entrainment and maintenance of an internal metronome in supplementary motor area. Elife 7.

Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, and Shenoy KV 
(2012). Neural population dynamics during reaching. Nature 487, 51-+.

DePasquale B, Cueva CJ, Rajan K, Escola GS, and Abbott LF (2018). full-FORCE: A target-based 
method for training recurrent networks. PLoS One 13, e0191527.

DiCarlo JJ, and Cox DD (2007). Untangling invariant object recognition. Trends Cogn Sci 11, 333–
341. [PubMed: 17631409] 

DiCarlo JJ, Zoccolan D, and Rust NC (2012). How does the brain solve visual object recognition? 
Neuron 73, 415–434. [PubMed: 22325196] 

Russo et al. Page 23

Neuron. Author manuscript; available in PMC 2022 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Diedrichsen J, and Kriegeskorte N (2017). Representational models: A common framework 
for understanding encoding, pattern-component, and representational-similarity analysis. PLoS 
Comput Biol 13, e1005508.

Driscoll LN, Golub MD, and Sussillo D (2018). Computation through Cortical Dynamics. Neuron 98, 
873–875. [PubMed: 29879388] 

Eccles JC (1982). The Initiation of Voluntary Movements by the Supplementary Motor Area. Arch 
Psychiat Nerven 231, 423–441.

Elsayed GF, Lara AH, Kaufman MT, Churchland MM, and Cunningham JP (2016). 
Reorganization between preparatory and movement population responses in motor cortex. Nature 
Communications 7, 13239.

Fetz EE (1992). Are movement parameters recognizably coded in the activity of single neurons? 
Behavioral and Brain Sciences 15, 679–690.

Foster JD, Nuyujukian P, Freifeld O, Gao H, Walker R, S IR, T HM, Murmann B, M JB, and Shenoy 
KV (2014). A freely-moving monkey treadmill model. J Neural Eng 11, 046020.

Gallego JA, Perich MG, Miller LE, and Solla SA (2017). Neural Manifolds for the Control of 
Movement. Neuron 94, 978–984. [PubMed: 28595054] 

Gallego JA, Perich MG, Naufel SN, Ethier C, Solla SA, and Miller LE (2018). Cortical population 
activity within a preserved neural manifold underlies multiple motor behaviors. Nat Commun 9, 
4233. [PubMed: 30315158] 

Gamez J, Mendoza G, Prado L, Betancourt A, and Merchant H (2019). The amplitude in periodic 
neural state trajectories underlies the tempo of rhythmic tapping. PLoS Biol 17, e3000054.

Hall TM, de Carvalho F, and Jackson A (2014). A common structure underlies low-frequency cortical 
dynamics in movement, sleep, and sedation. Neuron 83, 1185–1199. [PubMed: 25132467] 

Hatsopoulos NG, Paninski L, and Donoghue JP (2003). Sequential movement representations based on 
correlated neuronal activity. Exp Brain Res 149, 478–486. [PubMed: 12677328] 

Henaff OJ, Goris RLT, and Simoncelli EP (2019). Perceptual straightening of natural videos. Nat 
Neurosci 22, 984–991. [PubMed: 31036946] 

Kaufman MT, Churchland MM, Ryu SI, and Shenoy KV (2014). Cortical activity in the null space: 
permitting preparation without movement. Nat Neurosci 17, 440–448. [PubMed: 24487233] 

Kelso JA (2012). Multistability and metastability: understanding dynamic coordination in the brain. 
Philos Trans R Soc Lond B Biol Sci 367, 906–918. [PubMed: 22371613] 

Kornysheva K, and Diedrichsen J (2014). Human premotor areas parse sequences into their spatial and 
temporal features. Elife 3, e03043.

Krainik A, Lehericy S, Duffau H, Vlaicu M, Poupon F, Capelle L, Cornu P, Clemenceau S, Sahel M, 
Valery CA, et al. (2001). Role of the supplementary motor area in motor deficit following medial 
frontal lobe surgery. Neurology 57, 871–878. [PubMed: 11552019] 

Krakauer JW, Hadjiosif AM, Xu J, Wong AL, and Haith AM (2019). Motor Learning. Compr Physiol 
9, 613–663. [PubMed: 30873583] 

Laplane D, Talairach J, Meininger V, Bancaud J, and Orgogozo JM (1977). Clinical Consequences 
of Corticectomies Involving Supplementary Motor Area in Man. J Neurol Sci 34, 301–314. 
[PubMed: 591992] 

Lara AH, Cunningham JP, and Churchland MM (2018). Different population dynamics in the 
supplementary motor area and motor cortex during reaching. Nat Commun 9, 2754. [PubMed: 
30013188] 

Maheswaranathan NW,AHMD; Ganguli S; Sussillo D (2019). Universality and individuality in neural 
dynamics across large populations of recurrent networks. ArXiv.

Mante V, Sussillo D, Shenoy KV, and Newsome WT (2013). Context-dependent computation by 
recurrent dynamics in prefrontal cortex. Nature 503, 78-+.

Merchant H, and de Lafuente V (2014). Introduction to the neurobiology of interval timing. Adv Exp 
Med Biol 829, 1–13. [PubMed: 25358702] 

Michaels JA, Dann B, and Scherberger H (2016). Neural Population Dynamics during Reaching Are 
Better Explained by a Dynamical System than Representational Tuning. PLoS Comput Biol 12, 
e1005175.

Russo et al. Page 24

Neuron. Author manuscript; available in PMC 2022 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Morrow MM, and Miller LE (2003). Prediction of muscle activity by populations of sequentially 
recorded primary motor cortex neurons. J Neurophysiol 89, 2279–2288. [PubMed: 12612022] 

Mushiake H, Inase M, and Tanji J (1991). Neuronal activity in the primate premotor, supplementary, 
and precentral motor cortex during visually guided and internally determined sequential 
movements. J Neurophysiol 66, 705–718. [PubMed: 1753282] 

Nachev P, Kennard C, and Husain M (2008). Functional role of the supplementary and 
presupplementary motor areas. Nat Rev Neurosci 9, 856–869. [PubMed: 18843271] 

Nakamura K, Sakai K, and Hikosaka O (1998). Neuronal activity in medial frontal cortex during 
learning of sequential procedures. Journal of Neurophysiology 80, 2671–2687. [PubMed: 
9819272] 

Pagan M, Urban LS, Wohl MP, and Rust NC (2013). Signals in inferotemporal and perirhinal cortex 
suggest an untangling of visual target information. Nat Neurosci 16, 1132–1139. [PubMed: 
23792943] 

Pandarinath C, Ames KC, Russo AA, Farshchian A, Miller LE, Dyer EL, and Kao JC (2018). Latent 
Factors and Dynamics in Motor Cortex and Their Application to Brain-Machine Interfaces. J 
Neurosci 38, 9390–9401. [PubMed: 30381431] 

Penfield W, and Welch K (1951). The Supplementary Motor Area of the Cerebral Cortex - a Clinical 
and Experimental Study. Ama Arch Neurol Psy 66, 289–317.

Raposo D, Kaufman MT, and Churchland AK (2014). A category-free neural population supports 
evolving demands during decision-making. Nat Neurosci 17, 1784–1792. [PubMed: 25383902] 

Remington ED, Egger SW, Narain D, Wang J, and Jazayeri M (2018a). A Dynamical Systems 
Perspective on Flexible Motor Timing. Trends Cogn Sci 22, 938–952. [PubMed: 30266152] 

Remington ED, Narain D, Hosseini EA, and Jazayeri M (2018b). Flexible Sensorimotor Computations 
through Rapid Reconfiguration of Cortical Dynamics. Neuron 98, 1005-+.

Rhodes BJ, Bullock D, Verwey WB, Averbeck BB, and Page MP (2004). Learning and production of 
movement sequences: behavioral, neurophysiological, and modeling perspectives. Hum Mov Sci 
23, 699–746. [PubMed: 15589629] 

Roland PE, Larsen B, Lassen NA, and Skinhoj E (1980). Supplementary Motor Area and Other 
Cortical Areas in Organization of Voluntary Movements in Man. Journal of Neurophysiology 43, 
118–136. [PubMed: 7351547] 

Romo R, and Schultz W (1992). Role of primate basal ganglia and frontal cortex in the internal 
generation of movements. III. Neuronal activity in the supplementary motor area. Exp Brain Res 
91, 396–407. [PubMed: 1483514] 

Russo AA, Bittner SR, Perkins SM, Seely JS, London BM, Lara AH, Miri A, Marshall NJ, Kohn 
A, Jessell TM, et al. (2018). Motor Cortex Embeds Muscle-like Commands in an Untangled 
Population Response. Neuron 97, 953-+.

Saez A, Rigotti M, Ostojic S, Fusi S, and Salzman CD (2015). Abstract Context Representations in 
Primate Amygdala and Prefrontal Cortex. Neuron 87, 869–881. [PubMed: 26291167] 

Saxena S, and Cunningham JP (2019). Towards the neural population doctrine. Current opinion in 
neurobiology 55, 103–111. [PubMed: 30877963] 

Schaffelhofer S, and Scherberger H (2016). Object vision to hand action in macaque parietal, 
premotor, and motor cortices. Elife 5.

Schoner G, and Kelso JA (1988). Dynamic pattern generation in behavioral and neural systems. 
Science 239, 1513–1520. [PubMed: 3281253] 

Scott SH (2008). Inconvenient truths about neural processing in primary motor cortex. J Physiol 586, 
1217–1224. [PubMed: 18187462] 

Seely JS, Kaufman MT, Ryu SI, Shenoy KV, Cunningham JP, and Churchland MM (2016). Tensor 
Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of 
Areas M1 and V1. PLoS Comput Biol 12, e1005164.

Sheahan HR, Franklin DW, and Wolpert DM (2016). Motor Planning, Not Execution, Separates Motor 
Memories. Neuron 92, 773–779. [PubMed: 27817979] 

Shenoy KV, Sahani M, and Churchland MM (2013). Cortical Control of Arm Movements: A 
Dynamical Systems Perspective. Annual Review of Neuroscience, Vol 36 36, 337–359.

Russo et al. Page 25

Neuron. Author manuscript; available in PMC 2022 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Shima K, and Tanji J (1998). Both supplementary and presupplementary motor areas are crucial 
for the temporal organization of multiple movements. J Neurophysiol 80, 3247–3260. [PubMed: 
9862919] 

Shima K, and Tanji J (2000). Neuronal activity in the supplementary and presupplementary motor 
areas for temporal organization of multiple movements. J Neurophysiol 84, 2148–2160. [PubMed: 
11024102] 

Sohn JW, and Lee D (2007). Order-dependent modulation of directional signals in the supplementary 
and presupplementary motor areas. J Neurosci 27, 13655–13666. [PubMed: 18077677] 

Stopfer M, and Laurent G (1999). Short-term memory in olfactory network dynamics. Nature 402, 
664–668. [PubMed: 10604472] 

Stringer C, Pachitariu M, Steinmetz N, Carandini M, and Harris KD (2019). High-dimensional 
geometry of population responses in visual cortex. Nature 571, 361–365. [PubMed: 31243367] 

Suresh AK, Goodman JM, Okorokova EV, Kaufman MT, Hatsopoulos NG, and Bensmaia SJ (2019). 
Neural Population Dynamics in Motor Cortex are Different for Reach and Grasp. bioRrxiv.

Sussillo D, and Abbott LF (2009). Generating coherent patterns of activity from chaotic neural 
networks. Neuron 63, 544–557. [PubMed: 19709635] 

Sussillo D, and Barak O (2013). Opening the Black Box: Low-Dimensional Dynamics in High-
Dimensional Recurrent Neural Networks. Neural Comput 25, 626–649. [PubMed: 23272922] 

Sussillo D, Churchland MM, Kaufman MT, and Shenoy KV (2015). A neural network that finds a 
naturalistic solution for the production of muscle activity. Nat Neurosci 18, 1025-+.

Tanji J (2001). Sequential organization of multiple movements: involvement of cortical motor areas. 
Annu Rev Neurosci 24, 631–651. [PubMed: 11520914] 

Tanji J, and Kurata K (1982). Comparison of movement-related activity in two cortical motor areas of 
primates. J Neurophysiol 48, 633–653. [PubMed: 7131050] 

Tanji J, and Mushiake H (1996). Comparison of neuronal activity in the supplementary motor area and 
primary motor cortex. Brain Res Cogn Brain Res 3, 143–150. [PubMed: 8713555] 

Tanji J, and Shima K (1994). Role for supplementary motor area cells in planning several movements 
ahead. Nature 371, 413–416. [PubMed: 8090219] 

Thaler D, Chen YC, Nixon PD, Stern CE, and Passingham RE (1995). The functions of the medial 
premotor cortex. I. Simple learned movements. Exp Brain Res 102, 445–460. [PubMed: 7737391] 

van Gelder T (1998). The dynamical hypothesis in cognitive science. Behav Brain Sci 21, 615–628. 
[PubMed: 10097022] 

Wang J, Narain D, Hosseini EA, and Jazayeri M (2018). Flexible timing by temporal scaling of 
cortical responses. Nat Neurosci 21, 102-+.

Werbos PJ (1988). Generalization of backpropagation with application to a recurrent gas market 
model. Neural Networks 1, 339–356.

Wong AL, and Krakauer JW (2019). Why Are Sequence Representations in Primary Motor Cortex So 
Elusive? Neuron 103, 956–958. [PubMed: 31557458] 

Yokoi A, Arbuckle SA, and Diedrichsen J (2018). The Role of Human Primary Motor Cortex in the 
Production of Skilled Finger Sequences. J Neurosci 38, 1430–1442. [PubMed: 29305534] 

Yokoi A, and Diedrichsen J (2019). Neural Organization of Hierarchical Motor Sequence 
Representations in the Human Neocortex. Neuron 103, 1178–1190 e1177.

Russo et al. Page 26

Neuron. Author manuscript; available in PMC 2022 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Guiding action across time necessitates population activity with ‘low 

divergence’.

• The supplementary motor area, but not motor cortex, exhibits low divergence.

• Low divergence explains diverse single-neuron and population-level features.
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Figure 1. 
Illustration of task, behavior, and muscle activity

A) Monkeys grasped a hand pedal and cycled through a virtual environment. The schematic 

illustrates forward cycling, instructed by a green environment. Backward cycling was 

instructed by an orange, desert-like environment.

B) Trial-averaged hand velocity for seven-cycle, four-cycle, two-cycle and one-cycle 

movements. Data are for forward cycling, starting at cycle’s bottom (monkey C). Vertical 

velocity traces are colored from tan to black to indicate time with respect to the end of 

movement. Black dots indicate target appearance. Gray box with shading indicates the 

epoch when the pedal was moving (preceding go cue not shown). Shading indicates vertical 

hand position; light shading indicates cycle apex. Ticks show cycle divisions used for 

analysis. Small schematics at right illustrate relationship between number of cycles and 

target distance.

C) Muscle activity, recorded from the medial head of the triceps (monkey D). Intra-

muscularly recorded voltages were rectified, filtered, and trial averaged. Data are shown 

for backward cycling, starting at cycle’s top.
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Figure 2. 
Responses of example neurons

A-C) Firing rates for three example M1 neurons. Plotting conventions as in Figure 1C. Each 

panel’s label indicates the region, monkey (C or D), and cycling direction for which data 

were recorded. Cycling started from the bottom position. All calibrations are 40 spikes/s. 

Gray envelopes around each trace (typically barely visible) give the standard error of the 

mean.

D-F) Firing rates for three SMA neurons.
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Figure 3. 
SMA responses show greater cycle-to-cycle differences

A) Histogram of the proportion of low-frequency (< 1 Hz) power in the trial-averaged firing 

rate. Right-shifted histograms indicate more low-frequency power. For each neuron, power 

was computed for each seven-cycle condition after mean centering (ensuring no power at 

0 Hz). Proportion of power < 1 Hz was averaged across conditions to yield one value per 

neuron. Data for monkey C.

B) Same for monkey D.

C) Matrices of response distances when comparing cycles within a seven-cycle movement. 

For each comparison (e.g., cycle two versus three) normalized response distance was 

computed for each condition (two directions and starting locations) and averaged. The 

matrix is symmetric because the distance metric is symmetric. The diagonal is not exactly 

zero due to cross-validation. Data for monkey C.

D) Matrices of response distances comparing seven-cycle and four-cycle movements. Data 

for monkey C.
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E) Same as panel C, but for monkey D.

F) Same as panel D, but for monkey D.

G) SMA versus M1 response distance for comparisons among steady-state cycles within 

seven-cycle movements (circles) and between seven- and four-cycle movements (triangles). 

For each of the four conditions, there are ten within-seven-cycle comparisons (square inset) 

and ten seven-versus-four-cycle comparisons (rectangular inset). Red triangles highlight 

comparisons between cycles equidistant from movement end: e.g., six-of-seven versus three-

of-four. Green triangles highlight comparisons between cycles equidistant from movement 

beginning. Data for monkey C.

H) Same for monkey D.

I) Response distance when comparing initial cycles (one-of-seven verses one-of-four) and 

terminal cycles (seven-of-seven verses four-of-four). These are the same values as in panel D 

(comparisons highlighted in inset), plotted here for direct comparisons.

J) Same for monkey D.
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Figure 4. 
Visualization of population trajectories

A) M1 population trajectory during a seven-cycle movement (cycling forward from the 

bottom). Top trajectory is the projection onto the top three PCs, from 1500 ms before 

movement onset until 500 after, shaded from tan (movement beginning) to black (movement 

end). PCs were found using all four seven-cycle conditions and data from 200 ms before 

movement onset until 200 ms after movement offset (narrower than the plotted range, to 

prioritize dimensions that capture movement-related activity). Small plots at bottom show 

projections of each steady-state cycle (2–6) onto the first two PCs found using data from that 

cycle only.
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B) Same for monkey D, data are from the seven-cycle, forward, top-start condition.

C) SMA population trajectory for monkey C. Same condition as in A.

D) SMA population trajectory for monkey D. Same condition as in B.
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Figure 5. 
Subspace overlap between responses on different cycles

A) Subspace overlap, comparing cycles within seven-cycle movements. Each matrix entry 

shows subspace overlap for one comparison. Rows indicate the cycle used to find the PCs, 

and columns indicate the cycle for which variance captured is computed. Overlap is not 

symmetric. Data are averaged across conditions (pedaling directions and starting positions). 

Diagonal entries are not exactly unity due to cross-validation. Data for monkey C.

B) Cross-validated subspace overlap comparing seven-cycle with four-cycle movements. 

Data for monkey C.

C) Same as panel A but for monkey D.

D) Same as panel B but for monkey D.
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E) Subspace overlap for SMA versus M1 for comparisons among steady-state cycles 

within seven-cycle movements (circles) and between seven- and four-cycle movements 

(triangles). For each of the four conditions there are twenty within-seven-cycle comparisons 

(square inset) and ten seven-versus-four-cycle comparisons (rectangular inset). Red triangles 

highlight comparisons between cycles equidistant from movement end. Green triangles 

highlight comparisons between cycles equidistant from movement beginning. Data for 

monkey C.

F) Same for monkey D.

See also Figure S1.

Russo et al. Page 35

Neuron. Author manuscript; available in PMC 2022 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Trajectory geometry in simulated networks.

A) Population trajectories for three example context-naïve networks during the four-cycle 

condition. Left, right, and vertical axes correspond to PC 1, 2, and 3.

B) Population trajectories for three example context-tracking networks.

C) Trajectory divergence for context-tracking versus context-naïve networks. Comparison 

involves 500 networks of each type, paired arbitrarily. Each dot plots Dtracking versus Dnaïve 

for one time during one pairing. Diagonal line indicates unity.
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D) Distribution of differences in trajectory divergence between context-naïve and context 

tracking networks. Dtracking – Dnaïve was computed for every time and all possible pairings 

(every context-tracking network with every context-naïve network).

See also Figures S2–S4
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Figure 7. 
Trajectory divergence in M1 and SMA

A) Trajectory divergence for SMA versus M1 (monkey C). Each dot corresponds to one 

time during one condition. Divergence was computed considering all times for all distances 

that shared a direction and starting position. Data for all conditions is then plotted together. 

Blue and black tick mark denotes 90th percentile trajectory divergence for SMA and M1 

respectively.

B) Same for monkey D.

C) Distribution of the differences in trajectory divergence between SMA and M1 (monkey 

C). Same data as in panel A, but for each time / condition we computed the difference in 

divergence.
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D) Same for monkey D.

See also Figures S5–S7
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Figure 8. 
Networks trained to follow empirical population trajectories.

A) Networks were trained to autonomously follow a target trajectory defined by the top six 

PCs of the empirical population trajectory for a four-cycle movement, including stopping at 

the end. Dashed lines show the target trajectory for three PCs for one example: monkey D, 

M1, cycling backward starting at the bottom. The activity of every neuron in the network 

was trained to follow a random combination of the projection onto the top six PCs. This 

ensured that the simulated population trajectory matched the empirical trajectory.

B) Example network (solid) and target (dashed) trajectories on one trial, for a network 

trained to produce the empirical M1 trajectory. The network trajectory initially matches the 

target, but continues ‘cycling’ when it should have ended. This resulted in an R2 (variance in 

the target accounted for by the network trajectory) well below unity.

C) As in panel B, but for an example trial where the opposite error was made: the network 

trajectory stops early. This trajectory is produced by the same network as in B; the only 

difference is the additive noise on that particular trial.

D) Example network (blue) and target (dashed) trajectories on one trial, for a network 

trained to produce the empirical SMA trajectory. The level of additive noise was the same as 

for the network in panels B and C, but the network succeeds in following the trajectory to 

the end.
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