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SUMMARY

Cellular plasticity associated with fluctuations in transcriptional programs allows individual cells
in a tumor to adopt heterogeneous differentiation states and switch phenotype during their adaptive
responses to therapies. Despite increasing knowledge of such transcriptional programs, the
molecular basis of cellular plasticity remains poorly understood. Here, we combine multiplexed
transcriptional and protein measurements at population and single-cell levels with multivariate
statistical modeling to show that the state of AP-1 transcription factor network plays a unifying
role in explaining diverse patterns of plasticity in melanoma. We find that a regulated balance
among AP-1 factors cJUN, JUND, FRA2, FRA1, and cFOS determines the intrinsic diversity of
differentiation states and adaptive responses to MAPK inhibitors in melanoma cells. Perturbing
this balance through genetic depletion of specific AP-1 proteins, or by MAPK inhibitors, shifts
cellular heterogeneity in a predictable fashion. Thus, AP-1 may serve as a critical node for
manipulating cellular plasticity with potential therapeutic implications.

In brief

Comandante-Lou et al. show that a regulated balance between AP-1 protein levels and
their transcriptional activities predict previously characterized heterogeneities in melanoma
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differentiation states. Perturbing this balance, via genetic depletion of AP-1 proteins or
pharmacological inhibition of the MAPK pathway, induces differentiation state switching and
heterogeneity in a controllable manner.

Graphical Abstract

AP-1 levels predict differentiation state heterogeneity in melanoma cells
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INTRODUCTION

Individual cells, even those derived from the same clone, respond heterogeneously

to environmental perturbations (Mitchell and Hoffmann, 2018; Munsky et al., 2012).
Nongenetic heterogeneity can arise because of variances associated with transcriptional
state plasticity (Battich et al., 2015; Gupta et al., 2011; Munsky et al., 2012; Symmons
and Raj, 2016). Although such plasticity is required for the proper development of
complex organisms (Arias and Hayward, 2006), it limits the efficacy of therapies that
target abnormally activated signaling pathways (Boumahdi and de Sauvage, 2020; Sharma
etal., 2010). An example of cell-to-cell transcriptional heterogeneity with phenotypic
consequences for therapy resistance is observed in melanomas (Emert et al., 2021; Fallahi-
Sichani et al., 2017; Shaffer et al., 2017). Numerous studies have associated fluctuations
in the state of MAPK inhibitor sensitivity across BRAF-mutant melanoma cells to
intrinsic variations in their differentiation state (Baron et al., 2020; Belote et al., 2021,
Khaliqg et al., 2021; Rambow et al., 2018; Tsoi et al., 2018; Wouters et al., 2020). The
reported heterogeneity spans a range of transcriptionally distinguishable states, including
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a melanocytic phenotype that expresses melanocyte lineage markers SOX10 and MITF

(Lin and Fisher, 2007), to less drug-sensitive states, including neural crest-like cells that
express NGFR (Fallahi-Sichani et al., 2017; Mica et al., 2013) and innately drug-resistant,
undifferentiated cells characterized by the overexpression of AXL and loss of SOX10 and
MITF (Konieczkowski et al., 2014; Muller et al., 2014). In addition to intrinsic disparities

in differentiation state, drug-induced responses may help a fraction of cells rewire their state
of MAPK inhibitor sensitivity, most commonly through adaptive changes in differentiation
state (Fallahi-Sichani et al., 2017; Marin-Bejar et al., 2021; Rambow et al., 2018; Smith et
al., 2016) or via reactivation of the MAPK pathway (Gerosa et al., 2020; Lito et al., 2012).
Although the emergence and consequences of such intrinsic and adaptive heterogeneities are
widely recognized, there is still more to learn about their origins and possible connection

at a molecular level. For example, it is unclear whether these seemingly distinct forms of
heterogeneity arise from independent mechanisms or whether the observed variability in the
initial state of cells and adaptive changes following MAPK inhibitor treatment could both be
traced back to a common subset of molecular players.

Transcription factor networks that regulate the expression of genes in response to signaling
pathway perturbations play a key role in creating the biological noise that leads to
population heterogeneity (Huang, 2009; Pedraza and van Oudenaarden, 2005). The AP-1
protein family is one such network that serves as a major transcription node, integrating
inputs from the upstream MAPK signaling pathway (Karin, 1995). In addition to linking
signal transduction to transcription, AP-1 proteins have been recently identified to serve

as pioneer factors, establishing chromatin states that predispose cells to transcriptional
programs driven by other transcription factors or histone modifications, thereby guiding
cells towards paths of differentiation or cell state reprogramming (Madrigal and Alasoo,
2018; Martinez-Zamudio et al., 2020; Phanstiel et al., 2017; Vierbuchen et al., 2017). These
roles are consistent with numerous reports on AP-1 proteins’ being involved in resistance
to MAPK inhibitors, cell-state heterogeneity, and therapy-induced dedifferentiation in
melanomas and other cancers (Emmons et al., 2019; Fallahi-Sichani et al., 2015, 2017;
Haas et al., 2021; Johannessen et al., 2013; Kong et al., 2017; Maurus et al., 2017; Ramsdale
et al., 2015; Riesenberg et al., 2015; Torre et al., 2021; Wouters et al., 2020). Despite these
reports, we lack a clear understanding of the rules that define AP-1 behavior and its role in
explaining the intrinsic plasticity and the diversity of adaptive responses to MAPK signaling
perturbations. This gap in our knowledge may be addressed by a system-wide analysis

with single-cell precision to reveal interdependencies between an array of AP-1 proteins,
which constitute more than a dozen transcription factors, including JUN, FOS, and ATF
subfamilies (Rodriguez-Martinez et al., 2017), their post-translational modification states,
and their association with melanoma cell phenotypes at a single-cell level.

In this study, we test the hypothesis that the state of the AP-1 transcription factor network
determines the intrinsic diversity of phenotypic states (i.e., differentiation states) and drug-
induced changes in MAPK signaling in BRAF-mutated melanoma cells. We define the
AP-1 state as the combinatorial concentrations of AP-1 proteins, their phosphorylation state,
and their transcriptional activity, which are either measurable experimentally or inferable

by using bioinformatics tools. Our systems biology approach combines multiplexed
measurements of the AP-1 state, MAPK signaling activity, and differentiation state, at
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population and single-cell levels, across many genetically characterized melanoma cell lines
before and after their exposure to BRAF/MEK inhibitors. We apply statistical learning to
capture the predictivity of AP-1 states, and corresponding AP-1 factors, for phenotypic
heterogeneity in melanoma cultures and patient-derived tumors. We then use RNAI-
mediated knockdown experiments to validate the causality of our statistical predictions in
heterogeneous melanoma cell populations. We find that a tightly regulated balance between
AP-1 transcription factors cJUN, JUND, FRA2, FRAL, and cFOS and their transcriptional
activity determines the baseline differentiation state of melanoma cells. This balance is
perturbed following MAPK pathway inhibition. Nevertheless, MAPK inhibitor-induced
changes in the AP-1 state, including the abundance of cJUN and its phosphorylation, as well
as the phosphorylation state of FRAL, remain strong predictors of drug-induced changes

in differentiation state and the efficiency of MAPK pathway inhibition, respectively. These
results show that the state of AP-1 network offers a critical transcriptional context, which
controls not only the initial state of melanoma cells and their population heterogeneity but
also their adaptive changes immediately following MAPK pathway inhibition.

RESULTS

Single-cell AP-1 protein levels predict differentiation state heterogeneity in melanoma cells

To quantify the baseline heterogeneities in differentiation state and to assess their
covariation with AP-1 proteins across genetically diverse or isogenic melanoma cell
populations, we used an iterative indirect immunofluorescence imaging (4i) protocol (Gut
et al., 2018) in conjunction with high-throughput automated microscopy (Figure 1A). We
multiplexed measurements of 21 proteins using 4i-validated antibodies in 19 BRAF-mutant
melanoma cell lines (Figure 1B). The measurements included total levels of eleven AP-1
transcription factors (cFOS, FRAL, FRA2, cJUN, JUNB, JUND, ATF2, ATF3, ATF4,
ATF5, and ATF8), six AP-1 phosphorylation states (p-cFOS532, p-FRA15265 p-cJUNST3,
p-ATF1563 pATF2T71 and p-ATF45245), and four differentiation state markers (MITF,
SOX10, NGFR, and AXL). Importantly, these four differentiation state markers were
previously reported to represent transcriptionally distinct melanoma differentiation states
(Khaliq et al., 2021; Tsoi et al., 2018). The panel of 19 melanoma cell lines tested
represented a broad spectrum of differentiation states, including populations of melanocytic
(MITEHIgh/SOX10HIINGFREOW/AXLEOW) transitory (MITFHISN/SOX10HIgNGFRHIgN,
AXLLW) neuralcrest-like(MITFLOW/SOX10H19"/NGFRHIO/AXLHIGN)  and undifferentiated
(MITFLOW/SOX10-oW/NGFRLOW/AXLHIGN) cells (Figures 1C and S1A). We and others have
shown that the frequency of these states in melanoma cell populations varies from one
tumor to another and predicts their overall sensitivity to MAPK inhibitors (Khaliq et al.,
2021; Rambow et al., 2018; Tirosh et al., 2016). Here, we asked whether the observed
heterogeneities in differentiation state could be explained by variations in patterns of AP-1
measurements at a single-cell level.

The population-averaged and single-cell protein data revealed a high degree of variation in
differentiation state markers and AP-1 proteins across genetically distinct cell lines (Figures
1B, 1C, and S1A). To test whether there is a relationship between AP-1 variations and the
differentiation state of individual cells regardless of their genetic differences, we randomly
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sampled a total of 10,000 cells, including 2,500 from each of the four differentiation

states, in a way that they represented all 19 cell lines and 4 distinctive differentiation

states as equally as possible (Figure 1D). We used the multiplexed AP-1 data of 80%

of the cells to train a random forest classification model to predict the differentiation

state of each individual cell. We then used the remaining 20% of the cell population

to independently validate model predictions. Model-predicted single-cell differentiation
states matched true (measured) differentiation states with accuracy of 0.74, representing

a remarkable performance relative to a random 4-class classifier with an expected accuracy
of 0.25 (Figure 1E). A close look at model predictions showed that they matched true states
for 88% of undifferentiated cells, ~72% of neural crest-like cells, and ~66% of melanocytic
cells. In cases in which the true and predicted state of a cell did not match, the model often
predicted a closely related neighboring state along the differentiation state trajectory. When
we combined cells from these related states (e.g., cells in melanocytic and transitory states),
the model was able to distinguish them from the other two states in ~93% of the cases
(Figure 1E).

To identify those AP-1 measurements that most strongly predicted single-cell differentiation
state, we computed the shapley additive explanations (SHAP) values for the random forest
classifications (Lundberg et al., 2020). SHAP assigns each AP-1 factor an importance value,
quantifying its contribution, either positively or negatively, to the predicted differentiation
state of any given cell (Figure 1F). Among the most important AP-1 factors (ranked on

the basis of mean absolute SHAP values) were p-cFOS, FRA2, ATF4, cFOS, p-FRAL,

and cJUN. Single-cell measurements of these six factors made it possible to predict the
differentiation state of a cell with accuracy of 0.67 (Figure 1G).

We then asked whether models trained on the basis of the top six AP-1 factors would be
able to predict the differentiation state of new cells from independent cell lines not included
in model training. To answer this question, we iteratively removed one cell line, built a
model using randomly sampled cells from the remaining 18 cell lines, and then used the
trained model to predict the differentiation state of randomly selected cells from the left-out
cell line. We observed that prediction accuracy for left-out cell lines was variable, with

an average value of 0.49 + 0.14 across all 19 iterations (Figures S1B and S1C). We also
noticed that although prediction accuracy for some left-out cell lines was greater than that
of the full model (e.g., ~0.87 for LOXIMVI cells), predictions for two left-out cell lines
(including IGR39 and SKMEL19) underperformed the random model. To test whether the
lower performance of model predictions for a few cell lines could be attributed to any
common patterns of misclassification, we examined the single-cell predictions for each
left-out cell line separately (Figure S1D). We found that in most cases, misclassification
occurred when the model failed to distinguish between closely related neighboring states
(e.g., neural crest-like versus undifferentiated cells in IGR39 or transitory versus neural
crest-like cells in SKMEL19). When we combined cells from such closely related states, the
models were able to distinguish them from the other two states in >80% of the cases (Figure
S1C).

Together, these analyses revealed that the heterogeneity in melanoma differentiation state
was associated with distinguishable patterns of variation in the expression of a few key AP-1
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proteins. In agreement with the SHAP analysis and model validation results, dimensionality
reduction by uniform manifold approximation and projection (UMAP) (Becht et al., 2018)
using only the top six AP-1 factors resulted in a cell trajectory ordered from melanocytic

to undifferentiated states (Figures 1H and 11). The UMAP projection also showed that
melanocytic and transitory cells expressed substantially higher levels of p-cFOS, cFOS, and
ATF4, whereas undifferentiated cells exhibited lower levels of all these factors and instead
exhibited increased levels of FRA2, cJUN, and p-FRAL.

AP-1 transcript levels predict variations in differentiation state programs across melanoma

lines

To test whether the relationships between the patterns of AP-1 expression and melanoma
differentiation state were recapitulated at the transcriptional level, we analyzed a previously
published dataset, including RNA sequencing of 53 melanoma cell lines (Tsoi et al., 2018).
Each cell line was assigned a series of seven signature scores, defined as the average of 2
scores for the expression levels of differentiation state signature genes (Tsoi et al., 2018).
The differentiation signature scores were then related to the transcript levels of 15 AP-1
genes for each cell line by partial least-squares regression (PLSR) (Figure 2A). The overall
performance of the PLSR model was evaluated by computing the fraction of variance in
signature scores explained (R2) or predicted (Q2) by changes in AP-1 gene expression
(Figure 2B). The model revealed high performance and prediction accuracy with R? of
0.72 and Q? of 0.55 (using leave-one-out cross-validation) for four PLSR components.

To evaluate the accuracy of predictions for each differentiation state, we assessed the
correlation between the signature scores derived from the differentiation signature genes
and scores predicted by the PLSR model. The model showed consistent accuracy, with

an average Pearson’s correlation coefficient of 0.74 + 0.08 (p = 3.2 x 10717 to 1.3 x

1076) between the actual and predicted signature scores (Figure 2A). To independently
validate the model predictions, we used RNA sequencing data from a different panel of 32
BRAF-mutant melanoma cell lines in the Cancer Cell Line Encyclopedia (CCLE) (Ghandi
et al., 2019). The PLSR model trained against the original set of 53 cell lines was able to
predict the differentiation signature scores in the new set of 32 melanoma cell lines, leading
to an average Pearson’s correlation coefficient of 0.65 + 0.13 (p = 2.3 x 1078 t0 6.8 x 1073)
between the actual and predicted scores (Figure 2C).

The high performance of the PLSR model shows that variations in the transcriptional

levels of at least some AP-1 genes may explain the variability in differentiation states

across melanoma cell lines. In agreement with this expectation, different cell lines could

be separated by their PLSR scores on the basis of their positions along the different state
trajectory (Figure 2D). Because the PLSR model achieved its maximum prediction accuracy
by four components, we computed the variable importance in projection (VIP) scores across
all these components to determine the overall contribution of each AP-1 gene to each
differentiation state (Figure 2E). Among the most important predictors of differentiation
state (determined by [VIP| > 1) were the expression of FOS (encoding cFOS), FOSL1
(encoding FRA1), FOSL2 (encoding FRA2), JUN (encoding cJUN), JUNB, JUND, ATF2,
and ATF4 (Figure 2E). Importantly, a model created using only these AP-1 genes was able
to significantly outperform most PLSR models that were built on the basis of combinations
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of eight randomly chosen transcription factors from the basic leucine zipper (bZIP) family
(the family to which AP-1 factors belong) (p = 0.008) or on the basis of any eight randomly
chosen transcription factors (p = 0.01) (Figure 2F).

Together, these analyses revealed that the predictivity of patterns of AP-1 variation for
melanoma differentiation state could also be captured at the level of transcription of these
factors. Except for ATF4, the statistical association of AP-1 factors with differentiation
state was generally consistent across bulk transcript and single-cell protein measurements
(Figure S2A). Melanocytic and transitory cells expressed substantially higher levels of FOS
transcript and cFOS protein levels, whereas undifferentiated cells were associated with
increased levels of FOSL1, FOSL2, and JUN transcripts and their corresponding proteins
FRA1, FRA2, and cJUN, respectively.

Single-cell network inference reveals the role of AP-1 activity in regulation of
differentiation programs

Next, we asked whether the statistical associations between the identified key AP-1 proteins
and single-cell differentiation states resulted from the active regulation of differentiation
programs by the AP-1 factors. To address this question, we applied single-cell regulatory
network inference and clustering (SCENIC) (Aibar et al., 2017; Van de Sande et al., 2020)
to analyze a previously published single-cell RNA sequencing dataset of 10 melanoma

cell lines (Wouters et al., 2020). SCENIC uses single-cell gene expression data to infer
transcription factors alongside their candidate target genes (collectively called a regulon),
enabling the identification of regulatory interactions and transcription factor activities with
high confidence. In line with our results from the gene and protein expression analyses,
SCENIC analysis found the FOSL2 and JUN motif regulons to be substantially enriched

in populations of undifferentiated cells in comparison with melanocytic, transitory, and
neural crest-like cells (Figures 3A and 3B). The activity of the FOSL1 regulon was

low in melanocytic cells but gradually increased among transitory, neural crest-like, and
undifferentiated cells (Figure 3C). The FOS regulon, on the other hand, was substantially
enriched in melanocytic and transitory cells, but its activity was low in undifferentiated and
neural crest-like cells (Figure 3D).

To test whether the relationship between AP-1 regulon activities and melanoma
differentiation states existed in single cells derived from tumor biopsies, we performed
differentiation state enrichment and SCENIC analysis on single-cell RNA sequencing data
previously collected via dissociation and profiling of patient-derived melanoma samples
(Jerby-Arnon et al., 2018; Tirosh et al., 2016). Accounting for missing values in a

subset of differentiation signature genes, enrichment analysis of the 11 treatment-naive
melanoma samples distinguished single cells from melanocytic and undifferentiated states
with high confidence. SCENIC analysis of these cells showed that FOSL2, JUN, and
FOSL1 regulons were significantly enriched in undifferentiated cells in comparison with
melanocytic cells (Figures 3E-3G). In contrast to a substantially higher FOS regulon
activity observed in cultured melanocytic cells, the activity of FOS regulon was only
slightly higher in melanocytic tumor cells in comparison with undifferentiated cells (Figure
3H). Interestingly, however, the FOS/JUN activity ratio at a single-cell level was able to
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distinguish melanocytic cells from undifferentiated cells more efficiently than either of
these AP-1 factors alone (Figure 31), suggesting that it is the balance between AP-1 factor
activities that determines a cell’s differentiation state.

Next, we asked how the key AP-1 transcription factor activities and their activity ratios
varied between the widely recognized two-class “proliferative” and “invasive” phenotypes
in melanoma cells (Hoek et al., 2006). Following single-cell enrichment analysis of the
transcriptional signatures defined for these phenotypes (Hoek et al., 2006), we compared
their associations with the activity of key AP-1 regulons inferred by SCENIC. As expected,
the invasive phenotype exhibited higher activities of FOSL1, FOSL2, and JUN, whereas
proliferative cells showed a higher FOS/JUN activity ratio (Figures S2B-S2K). Together,
these analyses revealed that melanoma cells of diverse differentiation states are associated
with distinct regulatory network activities by AP-1 transcription factors. In particular,

the role of FOS, FOSL1, FOSL2, and JUN regulon activities was consistent with their
corresponding patterns of gene and protein expression across melanoma differentiation
states at both population and single-cell levels.

MAPK inhibitor-induced changes in the AP-1 state predict changes in differentiation state

Although melanoma populations consist of stable mixtures of cells in diverse differentiation
states at baseline, they can switch state in response to environmental perturbations.
Specifically, treatment with MAPK inhibitors has been reported to induce changes in

cell state that are associated with either activation of an MITFHI9" program triggering
melanocytic differentiation (Rambow et al., 2018; Smith et al., 2016) or downregulation

of MITF activity and induction of an NGFRH19N neural crest-like state (Fallahi-Sichani et
al., 2017; Rambow et al., 2018). Such adaptive phenotype switching occurs with as little

as 3 days of exposure to MAPK inhibitors and concomitantly with changes in MITF and
NGFR protein expression (Khaliq et al., 2021). To determine common patterns of AP-1
changes that might be associated with drug-induced changes in differentiation state in either
direction (i.e., differentiation or dedifferentiation), we exposed 18 BRAF-mutant melanoma
cell lines to the BRAF inhibitor vemurafenib (at 0.316 uM) either alone or in combination
with the MEK inhibitor trametinib (at 0.0316 pM). We fixed the cells following 24 or 72 h
of treatment and then used the 4i procedure to measure the abundance or phosphorylation
state of AP-1 transcription factors as wells as MITF and NGFR protein levels (Figures 4A,
S3, S4, and S5A). We also measured p-ERKT202/Y204 Jevels to quantify changes in MAPK
signaling as described in the following section (Figure S5B).

To assess drug-induced changes in differentiation state for each cell line, we computed

the relative enrichment of dedifferentiated cells by normalizing the NGFR protein

levels to MITF protein levels at baseline (DMSO), then tracking its changes following
MAPK inhibitor treatments. Interestingly, treatment with BRAF/MEK inhibitors induced
dedifferentiation in some cell lines (Figure 4B, left panels) but enhanced differentiation in a
few others (Figure 4B, right panels). To identify possible associations between AP-1 factors
and drug-induced changes in differentiation state, we built a PLSR model to associate
DMSO-normalized changes in the expression levels of each of the AP-1 factors to DMSO-
normalized changes in the enrichment of dedifferentiated (or abatement of differentiated)

Cell Rep. Author manuscript; available in PMC 2022 August 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Comandante-Lou et al. Page 9

cells for each of the MAPK inhibitor treatment conditions. The PLSR model achieved its
maximum prediction accuracy by three components (Figure 5A). We thus computed the VIP
scores using the first three PLS components to determine the overall contribution of each
AP-1 madification to drug-induced changes in melanoma differentiation state (Figure 5B).
VIP analysis revealed changes in multiple AP-1 factors from the JUN and ATF subfamily
that were correlated with changes in differentiation state. Among these factors, cJUN

and p-cJUN changes (at 24 and 72 h) were consistently the strongest predictors of both
drug-induced dedifferentiation and differentiation among the tested cell lines (Figure 5C).
In agreement with population-level data, single-cell analysis revealed increases in cJUN
and p-cJUN levels in dedifferentiating melanoma cells (Figure 5D, top row) and reduction
of cJUN and p-cJUN levels in differentiating melanoma cells following MAPK inhibitor
treatments (Figure 5D, bottom row).

MAPK inhibitor-induced changes in the AP-1 state reveal efficiency of ERK pathway
inhibition across melanoma cell lines

In addition to drug-induced changes in differentiation state, incomplete inhibition of the
ERK pathway (or its reactivation following a transient period of ERK inhibition) is known
as a common mechanism of resistance to BRAF inhibitors (Lito et al., 2012). Importantly,
when ERK activity rebounds as early as a few hours after drug treatment, a small residual
ERK activity (at the cell population level) may be sufficient to help cells escape the effect
of BRAF inhibition (Gerosa et al., 2020; Khaliq et al., 2021). The combination of BRAF
inhibitors with MEK inhibitors has been proposed as a strategy to overcome the ERK
pathway rebound following BRAF inhibition alone (Lito et al., 2012). In agreement with
this idea, all 18 melanoma cell lines treated with the combination of vemurafenib and
trametinib showed significantly lower levels of residual p-ERK at 24 h in comparison with
their responses to vemurafenib treatment for the same duration (Figures 6A and 6B). Drug
combination also significantly reduced p-ERK rebound in comparison with vemurafenib
treatment at 72 h. However, the extent of this effect was variable among different cell lines
(Figures 6A and 6B). We thus asked which, if any, of the AP-1 factors might capture the
observed differences in the efficiency of ERK pathway inhibition among different cell lines.

To answer this question, we used partial correlation analysis to assess pairwise relationships
between p-ERK and AP-1 levels across 18 cell lines treated with either vemurafenib (for
either 24 or 72 h) or the combination of vemurafenib and trametinib (for 72 h), while
correcting for baseline (drug-naive) variations in the AP-1 protein levels (Figure 6C).

This analysis identified p-FRAL as the most consistent predictor of the efficiency of ERK
pathway inhibition among all cell lines (Figures 6C and 6D). In agreement with population-
level correlation analysis, single-cell analysis also revealed a significant covariance between
p-ERK and p-FRA1 levels (Figure 6E). Such strong connection between p-FRA1 and
p-ERK in drug-treated cells is consistent with FRAL serving as a tightly coupled sensor

of ERK activity (Gillies et al., 2017). Interestingly, however, FRA1 or p-FRA1 levels did
not correlate with hyperactivated p-ERK levels when we performed pairwise correlation
analysis on drug-naive BRAF-mutant cells. Instead, we found drug-naive p-ERK levels to
be positively correlated with cFOS, p-cFOS, and ATF4 and negatively correlated with FRA2
and cJUN (Figure S6). All these AP-1 factors were predictors of melanoma differentiation
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state. These observations are consistent with previous reports linking up-regulation of MITF
to elevated ERK activity in BRAF-mutant melanoma cells (Wellbrock et al., 2008). In
addition, they suggest that changes in ERK signaling following pharmacological inhibition
of the pathway may lead to rewiring of AP-1 signaling.

Perturbation of AP-1 state by siRNA confirms its role in driving differentiation state
heterogeneity

We hypothesized that if the AP-1 state drives melanoma differentiation programs, then
inducing perturbations in the AP-1 state will shift differentiation states in predictable
ways. To test this hypothesis, we perturbed AP-1 factors in COLO858 melanoma cells

by using pools of previously validated small interfering RNAs (SiRNAs) to knock down
the expression of five AP-1 genes (FOS, FOSL1, FOSL2, JUN, and JUND), either
individually or in pairwise combinations. Unfortunately, we were unable to achieve
significant depletion of FRA1 in COLO858 cells. Hence, we focused on the analysis

of the data following individual, or pairwise combinations of siRNAs targeting FOS,
FOSL2, JUN, and JUND. COLO858 represents a heterogeneous population composed of
both melanocytic (SOX10H19"MITFHION) and undifferentiated (SOX10-0W/MITFLOW) cells,
thereby allowing us to track changes in the expression of differentiation state markers
after AP-1 perturbations. Following 96 h of AP-1 gene knockdown in COLO858 cells, we
measured (in three replicates) protein levels of differentiation markers MITF, SOX10, and
AP-1 factors cFOS, FRAL, FRA2, cJUN, and JUND using 4i (Figures 7A, 7B, and S7).

Interestingly, siRNA-mediated knockdowns not only reduced the levels of AP-1 proteins
targeted by their corresponding siRNAs but also, in some cases, led to changes in the
expression of other AP-1 proteins (Figures 7A and S7). For example, FOSL2 knockdown
substantially reduced FRA2 levels but also induced the expression of FRA1 compared with
cells treated with non-targeting (control) siRNA. JUND knockdown reduced JUND levels
but also led to an increase in cFOS and cJUN levels. These observations agree with previous
findings (Lopez-Bergami et al., 2010) suggesting that the state of AP-1 network is controlled
by interactions among different AP-1 factors. Combinations of siRNAs against pairs of
AP-1 genes may help reveal AP-1 modifications that are phenotypically consequential. To
identify such interactions, we quantified the levels of SOX10 and MITF proteins across

all knockdown conditions in COLO858 cells and examined them along a two-dimensional
plot (Figures 7A and 7B). We found that knocking down FOSL2 and JUN in combination
significantly increased the expression of SOX10 (Figures 7A and 7B). This behavior is
consistent with our earlier finding regarding the role of FRA2 and cJUN in regulation of

the undifferentiated (SOX10L9%) state. On the other hand, knocking down FOS and JUND
in combination significantly reduced the expression of both MITF and SOX10 (Figures 7A
and 7B), which is consistent with our finding regarding their role in driving the melanocytic
lineage.

To further validate the impact of depletion of AP-1 proteins on the expression of melanoma
differentiation state markers, we performed selected siRNA knockdown experiments in
two additional cell lines, including C32 and LOXIMVI, which constituted relatively
homogeneous populations of melanocytic and undifferentiated cells, respectively (Figure
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1C). First, we exposed C32 cells to siRNAs targeting FOS and JUND, individually or

in combination, for 96 h (Figure 7C). In agreement with results in COLO858 cells, the
combination of FOS and JUND knockdown significantly reduced SOX10 and MITF protein
levels in C32 cells (Figure 7C). Next, we exposed undifferentiated LOXIMVI cells to
siRNAs targeting FOSL2 and JUN. We found that both siRNAs individually increased the
expression levels of SOX10 (Figure 7). However, in contrast to our observation in COLO858
cells, the impact of combined FOSL2 and JUN siRNAs (for 96 h) in highly undifferentiated
LOXIMVI cells was not significant. Overall, despite some differences among the impact

of individual or combined siRNA treatments, the knockdown experiments across three

cell lines (taken with all the data presented throughout this study) confirmed our findings
regarding a key role for a balance among FOS, JUND, JUN, and FOSL2 in driving the
differentiation program in melanoma cells.

DISCUSSION

The hyperactivation of MAPK signaling in BRAF-mutant melanomas is linked to their
overall sensitivity to MAPK inhibition. The differentiation state heterogeneity, however,
leads to variability in MAPK inhibitor responses both across genetically diverse tumors and
among genetically homogeneous populations of cells. Understanding the origins of such
heterogeneity is key to identifying effective strategies to overcome fractional responses that
undermine the potential of MAPK-targeted therapies. It requires a detailed knowledge of the
mechanisms and molecular players that link cellular plasticity and transcriptional regulation
of differentiation state to therapy-induced changes in MAPK signaling. To begin to fill

this gap in our knowledge, we used a multidimensional approach at single-cell resolution

to systematically investigate the AP-1 transcription factor contributions to heterogeneity

in BRAF-mutant melanoma cells. We focus on the AP-1 factors because they serve as
downstream targets of MAP kinases, and previous work has connected several AP-1 proteins
to MAPK inhibitor resistance, differentiation state heterogeneity, and therapy-induced
changes in differentiation state in melanomas.

Our data showed that a tightly regulated balance among a few key AP-1 family members
and their activities strongly predict previously characterized heterogeneities in melanoma
differentiation states. Specifically, cFOS and p-cFOS were associated with melanocytic and
transitory cells, whereas FRAL, p-FRAL, FRA2, and cJUN and p-cJUN correlated with

less differentiated cell states. The systematic nature of the study across many genetically
different melanomas suggests that these associations are a general feature of melanomas and
likely not unique to a particular cell line or linked to a certain genetic context. Furthermore,
we showed that perturbing the molecular balance of AP-1 factors in melanoma cells by
siRNAs that deplete specific AP-1 proteins, either alone or in combination, or by treatments
with MAPK inhibitors can induce differentiation state switching and heterogeneity in a
controllable manner. Together, these findings provide insights into AP-1 function, its role in
cell state plasticity, and its potential dysregulation in melanoma, while opening avenues for
interrogating the AP-1 behavior in the context of adaptive response to MAPK inhibitors. In
theory, gaining the ability to target certain AP-1 states could force cells to remain in a more
drug-sensitive state, thereby increasing the fractional killing of melanoma cells in response
to MAPK inhibition.
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Future studies may leverage the findings from this study to further elucidate transcriptional
mechanisms that contribute to MAPK-targeted therapy escape in melanomas at a single-
cell level. Furthermore, uncovering how the information encoded in the MAPK signaling
dynamics is transduced through its downstream AP-1 network will be key for explaining the
observed variability in tumor cell responses to MAPK inhibitors. For example, AP-1 family
members FOS and FOSL1 are early ERK target genes whose regulation by ERK activity
constitutes feedforward motifs that enable them to decode the dynamics of ERK signaling
(Davies et al., 2020). Differentiation state-specific variations in the baseline expression and
activities of these AP-1 genes, as we observed in this study, could introduce variability

in the transduction of MAPK signals, generating heterogeneity in cell fate under MAPK
perturbations. Future studies that link dynamic fluctuations in ERK activity and other MAP
kinases to AP-1 behavior could offer important insights into mechanisms of heterogeneity in
drug response and adaptive resistance to MAPK inhibitors.

Consistent with our findings regarding the role of AP-1 state changes in determining

the differentiation state plasticity, recent studies have highlighted a key role for AP-1
factors in chromatin organization and enhancer accessibility. AP-1 proteins have been
reported to facilitate new cell fate transitions, such as cellular senescence or differentiation,
by establishing the enhancer landscape and granting long-term chromatin access to

other transcription factors, thereby allowing the timely execution of cell state-specific
transcriptional programs (Madrigal and Alasoo, 2018; Martinez-Zamudio et al., 2020;
Phanstiel et al., 2017; Vierbuchen et al., 2017). Understanding which AP-1 factors and
cofactors work to keep poised enhancers accessible and which function to shift enhancers
from a poised to active state could connect transcription to (de)differentiation and genome
reorganization following inhibition of MAPK signaling and its adaptive reactivation.
Furthermore, AP-1 proteins like other bZIP proteins must form dimers before they could
bind to the AP-1 motif site. For example, while FOS family members bind DNA as obligate
heterodimers with members of the JUN family, JUN family members can bind the AP-1
motif site as both homodimers and heterodimers with FOS family members. Future studies,
therefore, should also determine the extent to which the combinatorial activity of AP-1
family members is influenced by distinct patterns of dimerization among these transcription
factors.

Limitations of the study

Although quantitative, immunofluorescence-based measurements of protein levels and
phenotypes and the use of siRNAs to knock down the expression of genes have proved
immensely powerful for the study of biology, all techniques have limitations. For example,
the quality of quantitative information retrieved from immunofluorescence images depends
largely on the quality of segmentation of the cell features of interest. Although great effort
was made to optimize the image segmentation procedure and to ensure that the segmentation
captured the desired features, it is infeasible to visually inspect every cell for appropriate
segmentation. Second, in the current study we assume that AP-1 protein levels in the nucleus
correspond to or correlate with transcriptional activity. Although this assumption is likely
true in many circumstances, it is impossible to definitively prove that this is the case for
each of the many factors we measure in this study. Furthermore, when performing many
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sequential rounds of 4i staining and images, cells are gradually lost over the course of
sample washing and re-probing. Although we assume that cell loss occurs equivalently for
all differentiation states of the cell, we do not explicitly test this assumption here. However,
if this assumption were false, it would be unclear whether the conclusions reached in the
paper would change, as our findings are validated using a variety of complementary methods
and independent datasets.

STARXMETHODS
RESOURCE AVAILABILITY

Lead contact—*Further information and requests for resources should be directed to and
will be fulfilled by the lead contact, Mohammad Fallahi-Sichani (fallahi@virginia.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

. Raw immunofluorescence microscopy data reported in this paper will be shared
by the lead contact upon request. All quantified microscopy data are included in
Data S1, S4, S5, S6. This paper analyzes existing, publicly available data. These
accession numbers for the datasets are listed in the key resources table.

. The original codes for data analysis performed in this paper
are publicly available at GitHub: https://github.com/fallahi-sichani-lab/AP1-
networkPlasticityMelanoma (https://doi.org/10.5281/zenodo.6741989).

. Any additional information required to reanalyze the data reported in this paper
is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

BRAF-mutant melanoma cell lines used in this study include: COLO858, RVH421, A375,
A375(NRASQEIK) 'C32, A2058, WM115, SKMEL28, HS294T, WM1552C, SKMELS5,
A101D, IGR39, LOXIMV1, MMACSF, WM902B, WM2664, UACC62 and SKMEL19. All
cell lines have been subjected to re-confirmation by short tandem repeat (STR) profiling by
ATCC and mycoplasma testing by MycoAlert™ PLUS Mycoplasma Detection Kit. A375,
A375(NRASQEIK)  A2058, HS294T, A101D, and IGR39 cells were grown in DMEM with
4.5 g/L glucose supplemented with 5% fetal bovine serum (FBS). SKMELS5 and WM2664
cells were grown in EMEM supplemented with 5% FBS. C32, MMACSF, SKMEL28, and
WM115 cells were grown in DMEM/F12 supplemented with 1% sodium pyruvate and 5%
FBS. COLO858, LOXIMVI, RVH421, SKMEL19, UACC62, WM1552C, and WM902B
cells were grown in RPMI 1640 supplemented with 1% sodium pyruvate and 5% FBS.
Cells were grown at 37°C with 5% CO» in a humidified chamber. 100 U/mL Penicillin-
Streptomycin (10,000 U/mL), and 0.5 mg/mL Plasmocin Prophylactic were present in all
cell cultures.
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METHOD DETAILS

Drug treatments—Cells were seeded in 200 pL/well in Corning 96-well plates.
Vemurafenib, Trametinib or vehicle (DMSQ) was added at indicated concentrations using
the Tecan D300e Digital Dispenser 24 h after cell seeding. Cells were fixed at the indicated
timepoints with 4% paraformaldehyde in phosphate-buffered saline (PBS) for 30 min at
room temperature. All time course experiments with drug treatment were initiated at the
same time and then stopped sequentially at the indicated timepoints (24 h and 72 h). The
DMSO experiments were stopped at 24 h to avoid artifacts in signaling measurements that
may arise due to cell confluency and the exhaustion of growth media.

AP-1 gene knockdown by siRNA—COLO858 cells were seeded in 100 pL of
antibiotic-free growth media (RPMI supplemented with 5% FBS and 1 mM Sodium
Pyruvate) in 96-well plates at a density of 2000 cells/well. After 24 h of incubation,

cells were transfected using 0.05 pL of DharmaFECT 2 reagent per well with indicated
Dharmacon ON-TARGETplus AP-1 siRNAs (at 25 nM) individually or in pairwise
combinations. Knock-downs targeting a single AP-1 gene were supplemented with non-
targeting siRNA to normalize the final SiIRNA concentration (to 50 nM siRNA) across
all siRNA conditions. All siRNAs were tested for knockdown efficiency and specificity
by measuring protein levels of each factor and members of the factor subfamily (e.g.,
measuring single-cell protein levels of cFOS, FRAL, and FRA2, 24 h following FOS
knockdown). Only siRNA species that showed knockdown of the protein target with
minimal off-target knockdown effects were used. Cells were fixed 96 h after transfection
with 4% paraformaldehyde in PBS for 30 min at room temperature. The siRNA sequences
used for each condition are included in Table S1.

Iterative indirect immunofluorescence imaging (4i)—4i images were obtained using
a previously described protocol (Gut et al., 2018) with minor modifications. After media
aspiration, cells in 96-well plates were fixed with 4% paraformaldehyde in PBS for 30

min at room temperature. All washes were performed using a BioTek EL406 Washer
Dispenser and consisted of 4 wash cycles of 200 pL with the indicated buffer while retaining
approximately 20 uL liquid in each well during the aspiration step to limit cell loss. Cells
were washed with PBS then permeabilized for 15 min at room temperature with 100 pL
0.5% Triton X-100 in PBS. Cells were washed with PBS followed by Milli-Q deionized
water. Cells were next treated 3 times total for 12 min each instance with 40 pL elution
buffer which consists of 0.5M L-Glycine, 3M Urea, 3 M Guanidinium chloride, and 70 mM
TCEP-HCI at pH of 2.5. Cells were washed with PBS as above. Samples were then blocked
for 1 h at room temperature with 50 uL blocking buffer which consists of PBS-based
Intercept buffer supplemented with 150 mM maleimide. Blocking buffer was prepared
immediately prior to adding to the samples for each round. Following a PBS wash, samples
were incubated overnight at 4°C with 40 pL primary antibody diluted in Intercept buffer.
After overnight incubation, cells were washed with PBS then incubated for 1 h at room
temperature in 40 uL secondary antibody solution consisting of the appropriate species-
specific Alexa Fluor-conjugated antibodies diluted 1:2000 in Intercept buffer. Cells were
then washed with PBS and incubated with 50 pL. Hoechst 33342 diluted 1:20,000 in PBS.
For the first round of imaging, cells were stained with a mixture of Hoechst and CellMask
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Green for 30 min at room temperature according to the manufacturer’s instructions. Next,
cells were washed with Milli-Q water and 80 uL imaging buffer consisting of 700 mM
N-Acetyl-Cysteine at pH of 7.4. Images were obtained using Operetta CLS high content
imaging system (Perkin Elmer) using a 10x air objective lens. Following imaging, samples
were washed with Milli-Q water after which antibodies were eluted with 3 successive
12-min incubations at room temperature with elution buffer. Cells were washed with PBS
followed by Milli-Q water. Next, 50 uL imaging buffer was added to each well and samples
were imaged as above to assess removal of fluorescent signal. Cells were then washed
with PBS and all steps were repeated starting at the blocking step for each round of 4i. In
instances where the time between 4i rounds exceeded 3 days, following elution, the plates
were fixed for 10 min at room temperature with 4% paraformaldehyde in PBS. In these
cases, to resume staining, cells were then washed with PBS followed by Milli-Q water

and treated with elution buffer lacking TCEP-HCI three times for 10 min, totaling 30 min.
Afterwards, cells were washed with PBS and the next round of 4i commenced.

Image analysis—Images were background subtracted using the rolling ball subtraction
algorithm in ImageJ (2.3.0). Background-subtracted images from each round of 4i were
aligned using Hoechst nuclei staining with CellProfiler (3.1.9) (McQuin et al., 2018) using
the normalized cross correlation method within the Align module. Nuclei were segmented
from the aligned images using the Minimum Cross Entropy thresholding method within

the IdentifyPrimaryObjects module in CellProfiler. The Threshold smoothing scale and
correction factor were 2.4 and 1, respectively with lower and upper threshold bounds

of 0 and 1. Cell segmentation was then performed using CellMask Green staining to
propagate objects from the nuclei. This was done using the Propagation method within

the ldentifySecondaryObjects module. The Minimum cross entropy thresholding method
was used with a smoothing scale of 0 and correction factor of 1, the lower and upper
threshold bound values set to 0 and 1, and a regularization factor of 0.05. The TrackObjects
module was used to multiplex data from individual rounds of 4i. Within TrackObjects, the
Follow Neighbors method was used with the maximum pixel distance of 50 and average cell
diameter of 15. Comma-separated text files containing quantitative single-cell measurements
of tracked objects from CellProfiler were organized using Matlab. Only objects present

in every round of imaging were included in the analysis. Additional data analysis was
performed using Matlab, R, and Python.

Classifying melanoma differentiation states—To classify the differentiation state of
cells based on image-based protein measurements, we generated histograms of single-cell
data on each of the previously validated melanoma differentiation state markers (MITF,
SOX10, NGFR and AXL) (Khalig et al., 2021; Tsoi et al., 2018). For each protein

(X), we identified an appropriate binary gate, based on which individual melanoma

cells were divided into two groups of XHi9" and XLoW cells. The gating thresholds

used on background-subtracted image data for each protein included: log(MITF) = 7.37,
log(SOX10) = 6.82, log(NGFR) = 4.61, and log(AXL) = 5.60. We then used these
classifications to determine the differentiation subtype of each individual melanoma

cell as follows: melanocytic (M): MITFHI9/SOX10HI9/NGFRLOW/AXLLOW; transitory
(T): MITFHigh/SOX 1019 NGFRHIZh/AXLLOW; neural crest-like (N): MITFLOW/SOX10High;
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NGFRHig/AXLHig": and undifferentiated (U): MITFLO%/SOX10-0W/NGFRM-OW/AX L High,
the single-cell analysis and baseline differentiation state classification were performed
across 19 different melanoma cell lines representing a wide spectrum of differentiation
states. To classify the differentiation state of cells in gene knockdown perturbation assays,
we used a similar approach to distinguish melanocytic/transitory (MITFHigN/SOX10High)
cells from undifferentiated (MITFLO%/SOX10L9W) cells.

To classify melanoma differentiation states using bulk transcriptomic data, each melanoma
cell line was assigned a series of seven differentiation signature scores, defined as the
average of z-scores for the expression levels of differentiation state signature genes
identified previously by Tsoi et al. (Tsoi et al., 2018). These differentiation signatures
included the four main differentiation signatures, i.e., melanocytic (M), transitory (T), neural
crest-like (N) and undifferentiated (U), as well as mixtures of neighboring signatures,
including melanocytic-transitory (MT), transitory-neural crest-like (TN) and neural crest-
like-undifferentiated states (NU).

To determine the differentiation state of individual cells for each of the 10 melanoma

cell lines profiled by single-cell RNA sequencing (Wouters et al., 2020), we used the R
package AUCell (1.16.0) to quantify the enrichment of differentiation signature genes (as
defined by Tsoi et al. (Tsoi et al., 2018)) in individual cells. To minimize the impact of
noise from single-cell data, we combined two or three closely related signature gene sets
as follows: M-MT gene set (combination of M and MT signature genes), MT-T-TN gene
set (combination of MT, T and TN signature genes), TN-N-NU gene set (combination

of TN, N and NU signature genes) and NU-U set (combination of NU and U genes).

We then selected cells that represented individual differentiation states based on their
gated AUCell scores as follows: melanocytic cells: M-MTHIg/TN-N-NULOW/NU-ULow:
transitory cells: M-MTLOW/MT-T-TNHIOVTN-N-NULOW/NU-ULW: neural crest-like cells:
M-MTLOW/MT-T-TNLOW/TN-N-NUHIGNU-ULOW; undifferentiated cells: M-MTLOW/MT-T-
TNLOW/NU-UHIgh, The differentiation state of individual melanoma cells derived from
treatment-nai“ve patient tumors profiled by Tirosh et al. (Tirosh et al., 2016) and Jerby-
Arnon et al. (Jerby-Arnon et al., 2018) were determined in the same way, except that
only melanocytic and undifferentiated cells were identified and analyzed. To determine
the two-class “proliferative” and “invasive” phenotypes of individual cells from the 10
cell lines and patient tumors, we used AUCell to quantify the enrichment of the two

gene sets defined by Hoek et al. (Hoek et al., 2006) for these two phenotypes at the
single-cell level. We then selected cells that represent each phenotype based on their gated
AUCell, including proliferative cells as proliferativeH9/invasive-2" and invasive cells as
proliferative-o"/invasiveHign,

Random forest classification—We used random forest classification to test the
predictivity of AP-1 variations for melanoma differentiation state using single-cell protein
data collected by immunofluorescence imaging of 19 melanoma cell lines. We randomly
sampled a total of 10,000 cells, including 2,500 from each of the four differentiation

states, in a way that they represented all 19 cell lines and 4 distinctive differentiation

states (melanocytic, transitory, neural crest-like and undifferentiated) as equally as possible.
By random sampling, we aimed to minimize potential biases associated with genotype
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differences among cell lines. We used the data from 80% of the sampled cells to train a
random forest classification model to predict the differentiation state of each individual cell.
We then used the remaining 20% of cells to independently validate model predictions. We
also evaluated the performance of random forest models in predicting differentiation states
of independent cell lines using “leave-one-line-out” cross-validation. For this purpose, at
each iteration, we excluded cells from one cell line, trained a model using the remaining 18
cell lines, and then used the trained model to predict the differentiation state of cells from
the left-out cell line.

Model training, cross-validation and independent validation were all performed in Python
(3.9.2) using the scikit-learn library (0.24.1) (Pedregosa et al., 2018). To standardize the
model input, protein levels of each AP-1 measurement were normalized across cells to zero
mean and unit variance (z-score scaled) using the StandardScaler() function. The random
forest model was trained using the RandomForestClassifier() function. In training the full
model with all 17 AP-1 factors, all parameters were as defined in the default settings,
except the number of trees in the forest (n_estimators = 100) and maximum tree depth
(max_depth = 14), which were separately optimized through 5-fold Stratified Shuffle Split
cross-validation on the training set, using the StratifiedShuffleSplit() function with 10 times
splitting iterations (n_splits = 10). In leave-one-line-out cross-validation, models built based
on the top six AP-1 factors were trained using n_estimators = 500, while other parameters
were the same as in the full model.

The random forest model performance was evaluated based on accuracy and Area Under
the Receiver Operating Characteristic Curve (ROC AUC). Accuracy reports the fraction of
correctly classified samples, i.e., true positives and true negatives, and it was calculated
using the accuracy_score() function. The ROC AUC scores were calculated using the
roc_auc_score() function with the One-vs-rest option (multi_class = “ovr’), which computes
the AUC of each class against the rest. The ROC AUC scores consider both the sensitivity
(true positive rate) and specificity (true negative rate) of the model predictions.

To assess the importance of each AP-1 factor in explaining the predictions made by the
random forest model for each individual cell in the independent validation set, we used the
SHapley Additive exPlanations (SHAP) package (Lundberg and Lee, 2017). SHAP provides
a model agnostic measure of feature importance based on Shapley values, which assign
importance of input features based on their contribution to the model output prediction.
Mathematically, given a specific prediction output by model fwith input x, Shapley value
for feature /, ¢;(f x), is the average of feature /'s marginal contributions across all possible
orders of features being included (Lundberg and Lee, 2017; Lundberg et al., 2018):

IS[\(M = |S] = D!

!

of )= ) 7
S§C Sa/ i)

[fx(SU{i}) = /x(S)]

where M is the total number of features, |5 denotes number of entries in set Sand the Uterm
f(SU{7}) — Fx(S) is the marginal contribution of feature 7 In SHAP, the marginal impact of
a feature is defined as the change in the expected value of the model output f{x) when that
feature is observed versus unknown:
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FxSU{iD) = fx(8) = E[f0) | x5y (i}] - ELF() | xs],

where x; is a subset of features with only set S'is observed.

Partial least squares regression (PLSR) modeling—We used PLSR analysis to test
whether the relationships between the patterns of AP-1 gene expression and melanoma
differentiation state were recapitulated at the transcriptional level. Bulk RNA sequencing
data of 53 melanoma cell lines used for PLSR analysis were obtained from Tsoi et al.

(Tsoi et al., 2018). We first logp-transformed the gene expression data (reported as FPKM)
with an offset of 1. Input vectors for PLSR analysis were then created by combining the
z-scored expression data for fifteen AP-1 transcription factor family genes, including FOS,
FOSL1, FOSL2, FOSB, JUN, JUNB, JUND, ATF1, ATF2, ATF3, ATF4, ATF5, ATF6,
ATF6B and ATF7, across 53 cell lines. The response variables for each cell line were then
assembled as a series of seven signature scores, defined as the average of z-scores for the
expression levels of differentiation state signature genes (Tsoi et al., 2018). The PLSR model
was trained in python using the scikit-learn library and the PLSRegression() function. To
evaluate the predictability of the linear relationship between the input and output variables
using the same dataset, we used leave-one-out cross-validation by LeaveOneOut() function.
To independently validate the model, we used RNA sequencing data from an independent
panel of 32 melanoma cell lines in the Cancer Cell Line Encyclopedia (CCLE) (Ghandi et
al., 2019). As with the training dataset, we first log,-transformed the CCLE gene expression
data (reported as RPKM) with an offset of 1. We then created input vectors by combining
the z-scored expression data for fifteen AP-1 transcription factor family genes and used them
in the optimized PLSR model (using the first four PLS components) trained against the
original set of 53 cell lines to predict the differentiation signature scores in the new set of 32
cell lines.

The PLSR model performance was evaluated in terms of fraction of variance explained (R?)
or predicted (Q?) using the explained_variance_score() function. We assessed the relative
importance of each AP-1 factor in the PLSR model based on the variable importance in
projection (VIP) scores, computed for the first four PLS components, at which the PLSR
model achieves its optimal performance (Wold, 1994). To help interpret the directionality of
the contribution, we multiplied the VIP score for each AP-1 factor by the sign of Pearson
correlation coefficient between its expression levels and differentiation signature z-scores.

We compared the performance (based on 10-fold cross validation) of optimized PLSR
model, built based on the top eight AP-1 genes (FOS, FOSL1, FOSL2, JUN, JUNB, JUND,
ATF2 and ATF4) with optimized models built using combinations of eight randomly chosen
basic leucine zipper (bZIP) transcription factors (Vinson et al., 2002) or eight randomly
chosen transcription factors (Van de Sande et al., 2020) (excluding those that were explicitly
involved in the differentiation signature genes) by computing empirical p values using
100,000 and 500,000 iterations, respectively.

To identify dynamic patterns of AP-1 changes that are associated with drug-induced changes
in differentiation state, we constructed a PLSR model to relate DMSO-normalized changes
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in AP-1 proteins to DMSO-normalized changes in differentiation state. The input vector
consists of DMSO-normalized population measurements of the seventeen AP-1 proteins,
including cFOS, p-cFOS, FRAL, p-FRAL, FRA2, cJUN, p-cJUN, JUNB, JUND, p-ATF1,
ATF2, p-ATF2, ATF3, ATF4, p-ATF4, ATF5 and ATF6, at 24 h and 72 h, z-scored across
two MAPK inhibitor treatment conditions and eighteen cell lines. DMSO-normalized AP-1
measurements were calculated as the log ratios of drug-treated AP-1 levels relative to

the DMSO control. The response vector is composed of the DMSO-normalized changes
(NGFR/MITF)pyyg

in differentiation state, which is calculated as log (NGFRIMTTF prsso

. Model training,

cross-validation and performance evaluation were performed the same way as in the gene-
expression PLSR model. VIP scores were computed for the first three PLS components.

Uniform manifold approximation and projection (UMAP)—UMAP was performed
in R using the umap package (0.2.7.0). For single-cell protein data, we first performed
principal component analysis (PCA) using the prcomp() function on the z-scored log-
transformed data and selected the PCA scores from the first four principal component

for UMAP analysis. The parameters used in generating the UMAP for single-cell protein
data include nearest neighbor (n_neighbors) = 90, minimum distance (min_dist) = 0.7 and
distance metric (metric) = Euclidean.

Hierarchical clustering—Unsupervised hierarchical clustering of population-averaged
AP-1 protein measurements was carried out in R using the stats (4.1.2) package. Clustering
was performed using the hclust() function with the average algorithm as the agglomeration
method. The distance matrix used for clustering was evaluated using the dist() function, with
Pearson’s correlation as the distance metric.

Single-cell regulatory network inference and clustering (SCENIC)—For the
SCENIC analysis of melanoma cell lines, the baseline regulon activities inferred by the
SCENIC workflow (Aibar et al., 2017; Van de Sande et al., 2020) were obtained from

the .loom file published by Wouters et al. (Wouters et al., 2020). The.loom file was imported
to R for downstream analysis using the SCopeLoomR package (0.13.0).

Single-cell RNA sequencing data for patient-derived melanoma tumors were obtained from
previous studies published by Tirosh et al. (Tirosh et al., 2016) and Jerby-Arnon et al.
(Jerby-Arnon et al., 2018). Single-cell gene expression analysis and SCENIC was focused
on 2072 malignant melanoma cells, which were distinguished (by the authors) from non-
malignant cells based on gene copy number variations. For quality control, we first selected
14,689 genes which were detected in more than 1% of the cells (i.e., 20 cells) with at least
103 logged TPM counts, using the single-cell analysis toolkit Scanpy (1.7.1) (Wolf et al.,
2018) in Python. Using this dataset, we then inferred regulons using pySCENIC (0.11.0)

in a Nextflow pipeline adapted from Wouters et al. (Wouters et al., 2020), performing 100
SCENIC runs on the data. As in Wouters et al.’s regulon filtering criteria, only regulons that
had more than 10 target genes and recurred in at least 80/100 runs were retained. Target
genes (used in AUCell calculation) that appear in at least 80% of the runs in regulons

that recurred 100 times, and all target genes for regulons that recurred 80-100 times were
retained. This analysis pipeline resulted in 373 motif regulons.

Cell Rep. Author manuscript; available in PMC 2022 August 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Comandante-Lou et al. Page 20

Partial correlation analysis—Partial correlation analysis is used for the evaluation of
correlations between pairs of variables while controlling for the variance explained by a
third variable. We used pairwise partial correlation analysis to evaluate correlations between
changes induced by MAPK inhibitors in each of the AP-1 protein levels and p-ERK levels
across different cell lines, while controlling for the baseline (drug-naive) variance of AP-1
levels across the same cell lines. AP-1 and p-ERK data were averaged across two replicates
and log-transformed. To assess if any of the AP-1 factors would capture drug-specific
changes in ERK signaling, we then used the Matlab function partialcorr() to evaluate the
Pearson’s partial correlation coefficients (and the associated p values) between p-ERK and
AP-1 levels across cell lines for each MAPK inhibitor treatment condition, while correcting
for differences in their baseline (DMSO condition) AP-1 levels.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell protein abundance was quantified from microscopy images using CellProfiler
(3.1.9). No statistical method was used to predetermine sample size. Sample sizes were
chosen based on similar studies in the relevant literature. The experiments were not
randomized. The investigators were not blinded to allocation during experiments and
outcome assessment. All boxplots and violin plots highlight the median, lower and upper
quartiles. Whiskers in boxplots indicate 1.5 times interquartile ranges. Sample size (i.e.,
number of cells or replicates) are indicated in the figure legend. The significance of pairwise
correlations were evaluated based on p values associated with the corresponding two-sided
Pearson’s correlation analysis. Statistical significance of changes in population-averaged
protein abundance across different drugs and/or timepoints were determined based on one-
way or two-way analysis of variance (ANOVA), as indicated in the figure legends. To
identify the statistical significance of differences between mean of measurements of two
different groups, p values were determined using paired or unpaired two-sided #test, as
indicated in the figure legends. Statistical analyses were performed using MATLAB (2020b)
and R (4.0.4).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights
AP-1 protein levels in a melanoma cell can predict its differentiation state
Higher cFOS levels associate with differentiated and transitory cells
FRA1, FRA2, and cJUN correlate with less differentiated states

Perturbing AP-1 molecular balance induces cell-state switching
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Figure 1. Single-cell AP-1 protein levels predict differentiation state heterogeneity in melanoma

cells

(A) Schematic representation of the iterative indirect immunofluorescence imaging (4i)
procedure used in this study to generate multiplexed single-cell data on 17 AP-1 proteins
and 4 differentiation state markers. Representative images of selected AP-1 transcription
factors and differentiation state markers are shown for LOXIMVI cells. Scale bars represent
20 um. Hoechst staining of nuclei is shown in blue, while staining of the indicated protein is

shown in red.
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(B) Population-averaged measurements of 17 AP-1 proteins and 4 differentiation state
markers acquired across 19 BRAF-mutant melanoma cell lines. Protein data shown for
each condition represent the log-transformed mean values for two replicates, followed by Z
scoring across all cell lines. Data are organized only on the basis of hierarchical clustering
of AP-1 protein measurements with Pearson correlation distance metric and the average
algorithm for computing distances between clusters.

(C) Natural frequency of cells in each differentiation state (defined on the basis of MITF,
SOX10, NGFR, and AXL levels) across 19 BRAF-mutant melanoma cell lines.

(D) The percentage of cells sampled from each of the 19 cell lines and their corresponding
differentiation states used in the random forest model.

(E) Confusion matrix showing the independent validation performance of the random forest
classifier in predicting the differentiation state of cells on the basis of single-cell AP-1
measurements. The model was trained using a group of 8,000 cells and validated using

an independent group of 2,000 cells. The prediction accuracy and area under the receiver
operating characteristic curve (ROC AUC) are shown as an overall measure of the classifier
performance.

(F) Distributions of shapley additive explanations (SHAP) scores for each AP-1 factor across
individual cells from the independent validation set. The color indicates the Zscore-scaled,
log-transformed level of each AP-1 protein at a single-cell level. For each differentiation
state, AP-1 factors are ordered on the basis of the mean absolute values of their SHAP
scores.

(G) Classification performance of the random forest model on the basis of varying numbers
of top AP-1 factors (on the basis of their SHAP values) used as pre-dictors.

(H) UMAP analysis of the sampled melanoma cells (as shown in D) on the basis of their
multiplexed levels of top 6 predictive AP-1 measurements (FRA2, p-cFOS, ATF4, cFOS,
p-FRA1L, and cJUN). Cells are colored on the basis of their differentiation states.

(1) Single-cell levels of the top six AP-1 proteins overlaid on UMAP plots for representative
cell lines.
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Figure 2. AP-1 transcript levels predict variations in differentiation state across melanoma lines
(A) Comparison between differentiation signature scores computed on the basis of RNA

sequencing data for 53 cell lines reported by Tsoi et al. (left) and PLSR-predicted scores
(following leave-one-out cross-validation) for each cell line on the basis of their transcript
levels of 15 AP-1 genes (right). M, melanocytic; MT, melanocytic-transitory; T, transitory;
TN, transitory-neural crest-like; N, neural crest-like; NU, neural crest-like-undifferentiated;
U, undifferentiated.

(B) Performance of the PLSR model evaluated by computing the fraction of variance in
differentiation signature scores explained (R?) or predicted on the basis of leave-one-out
cross validation (Q?) with increasing number of PLS components.

(C) Comparison between differentiation signature scores computed on the basis of RNA
sequencing data of 32 CCLE cell lines (left) and predicted scores on the basis of the PLSR
model built for the original set of 53 cell lines (right).

(D) PLSR scores (of the first two PLS components) for each cell line colored according

to their differentiation signature scores for melanocytic, transitory, neural crest-like, and
undifferentiated states.

(E) PLSR-derived variable importance in projection (VIP) scores, highlighting combinations
of AP-1 transcripts that are predictive of differentiation signature scores for melanocytic,
transitory, neural crest-like, and undifferentiated states. The sign of the VIP score shows
whether the indicated variable (AP-1 transcript level) positively or negatively contributes to
a given differentiation signature. Significant VIP scores (of greater than 1 or smaller than
-1) are highlighted.
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(F) Comparison of performance (with respect to differentiation state prediction) between the
PLSR model based on transcript levels of the top 8 AP-1 transcription factors with models
based on transcript levels of combinations of 8 randomly chosen bZIP family transcription
factors (n = 1 x 10° iterations; left panel) or built on the basis of 8 randomly chosen
transcription factors (n = 5 x 10° iterations; right panel). Empirical p values were reported
for the comparison of predicted variances on the basis of ten-fold cross-validation.
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Figure 3. Single-cell network inference reveals the role of AP-1 activity in regulation of
differentiation state programs

(A-D) Single-cell distributions of the activity of SCENIC regulons for FOSL2 (A), JUN
(B), FOSL1 (C), and FOS (D) motifs, measured using AUCell in individual cells (from 10
melanoma cell lines profiled by Wouters et al.) across distinct differentiation states. The
differentiation state of individual cells was determined on the basis of their gated levels of
enrichment (quantified by AUCell) for the differentiation gene signatures as defined by Tsoi
etal.

(E-1) Single-cell distributions of the AUCell activity of SCENIC regulons for FOSL2 (E),
JUN (F), FOSL1 (G), and FOS (H) motifs, as well as the ratio of FOS and JUN regulon
activities (1), quantified in individual cells from 11 treatment-naive melanoma tumors as
profiled by Tirosh et al. and Jerby-Arnon et al. Statistical comparisons were performed using
two-sided unpaired t tests. Boxplot hinges correspond to the lower and upper quartiles, with
a band at the median. Whiskers indicate 1.5 times interquartile ranges.
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Figure 4. MAPK inhibitor-induced changes in AP-1 protein levels, p-ERK and differentiation
state markers

(A) Population-averaged measurements of 17 AP-1 proteins, differentiation state markers
MITF and NGFR, and p-ERKT202/Y204 |evels acquired across 18 BRAF-mutant melanoma
cell lines. Protein data shown for each condition represent the log-transformed mean values
for two replicates, followed by Zscoring across all cell lines and treatment conditions,
including DMSO, vemurafenib alone (at 0.316 uM), or the combination of vemurafenib (at
0.316 pM) and trametinib (at 0.0316 mM) for 24 or 72 h.

(B) MAPK inhibitor-induced changes in differentiation state, as evaluated by log-
transformed ratio of NGFR to MITF protein levels across cell lines at 72 h. Central marks
on the data points indicate the mean between two replicates. p values represent one-way
ANOVA test for differences across treatment conditions in each cell line.
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Figure 5. MAPK inhibitor-induced changes in cJUN and p-cJUN levels correlate with drug-
induced changes in differentiation states

(A) Performance of the PLSR model in predicting drug-induced changes in differentiation
states on the basis of drug-induced AP-1 modifications. Model performance was evaluated
by computing the fraction of variance in DMSO-normalized differentiation state changes at
72 h explained (R?) or predicted on the basis of leave-one-out cross validation (Q2) with
increasing number of PLS components.
(B) PLSR-derived variable importance in projection (VIP) scores, highlighting combinations
of DMSO-normalized AP-1 modifications at 24 and 72 h, and their importance for
predicting the DMSO-normalized differentiation state changes at 72 h. The sign of the VIP
score shows whether the indicated variable (DMSO-normalized AP-1 protein levels at 24
or 72 h) positively or negatively contributes to the response (DMSO-normalized change in
differentiation state).
(C) Pearson’s correlation between DMSO-normalized changes in differentiation state and
DMSO-normalized cJUN or p-cJUN levels at indicated time points and drug treatment
conditions. Each data point represents population-averaged measurements across two
replicates for each cell line.
(D) Analysis of covariance between the levels of p-cJUN or c-JUN and drug-induced
changes in differentiation state (as evaluated by NGFR-MITF ratio) at the single-cell level
across indicated treatment conditions. For each cell line, Pearson’s correlation coefficient
was calculated on the basis of 300 randomly sampled cells (100 cells from each treatment
condition).
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Figure 6. MAPK inhibitor-induced changes in p-FRAL1 levels correlate with efficiency of ERK
pathway inhibition across cell lines

(A) Population-averaged measurements of p-ERKT202/Y204 |evels in 18 cell lines following
indicated MAPK inhibitor treatments for 24 or 72 h. Bar height indicates mean values
between two replicates shown as black dots. p values show the statistical significance of the
impact of MAPK inhibitor treatment (blue) or time (red) on p-ERK levels on the basis of
two-way ANOVA.

(B) Statistical comparison (using two-sided paired t test) of p-ERK levels across 18 cell lines
following indicated MAPK inhibitor treatments for 24 or 72 h. Each data point represents
population mean of p-ERK levels between two replicates for each cell line.
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(C) Pairwise partial correlations (evaluated across 18 cell lines) between each of the 17 AP-1
measurements and p-ERK levels following 24 or 72 h of treatment with MAPK inhibitors,
while correcting for the corresponding baseline (drug-naive) AP-1 levels in the same cell
lines.

(D) Pearson’s correlation (top row) and partial correlation (bottom row) between p-ERK
and p-FRAL levels following MAPK inhibitor treatments at indicated time points. Each data
point represents population mean of p-ERK levels between two replicates for each cell line.
(E) Analysis of covariance between p-FRA1 and p-ERK levels across indicated MAPK
inhibitor treatment conditions at the single-cell level. For each cell line, Pearson’s
correlation coefficient was calculated on the basis of 400 randomly sampled cells (100 cells
from each treatment condition).
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Summary of AP-1 knock-down effects on
differentiation state markers (COLO858)

Figure 7. Perturbation of AP-1 state by siRNA confirms its role in driving differentiation state

heterogeneity

(A) The effect of sSiRNA-mediated depletion (for 96 h) of AP-1 proteins cFOS, FRA2,
cJUN, and JUND, either individually or in pairwise combinations, on protein levels of
cFOS, FRA1L, FRA2, cJUN, and JUND and differentiation state markers MITF and SOX10
in COL 0858 cells. Protein data shown for each condition represent the log-transformed
mean values for three and six replicates across AP-1 knockdown conditions and the control,
respectively. The central mark on the plots indicates the median across replicates. Statistical
comparisons were performed using two-sided unpaired t tests.
(B) Two-dimensional projection of MITF and SOX10 levels (in log scale) following 96 h of
siRNA knockdown in COLOB858 cells.
(C and D) Statistical comparison (using two-sided unpaired t test) of selected AP-1 proteins

and SOX10 levels across indicated siRNA knockdown conditions in C32 (C) and LOXIMVI
(D) cells. Protein data shown for each condition represent the log-transformed mean values

for three and six replicates across AP-1 knock-down conditions and the control, respectively.
The central mark on the plots indicates the median across replicates.
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