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SUMMARY

Cellular plasticity associated with fluctuations in transcriptional programs allows individual cells 

in a tumor to adopt heterogeneous differentiation states and switch phenotype during their adaptive 

responses to therapies. Despite increasing knowledge of such transcriptional programs, the 

molecular basis of cellular plasticity remains poorly understood. Here, we combine multiplexed 

transcriptional and protein measurements at population and single-cell levels with multivariate 

statistical modeling to show that the state of AP-1 transcription factor network plays a unifying 

role in explaining diverse patterns of plasticity in melanoma. We find that a regulated balance 

among AP-1 factors cJUN, JUND, FRA2, FRA1, and cFOS determines the intrinsic diversity of 

differentiation states and adaptive responses to MAPK inhibitors in melanoma cells. Perturbing 

this balance through genetic depletion of specific AP-1 proteins, or by MAPK inhibitors, shifts 

cellular heterogeneity in a predictable fashion. Thus, AP-1 may serve as a critical node for 

manipulating cellular plasticity with potential therapeutic implications.

In brief

Comandante-Lou et al. show that a regulated balance between AP-1 protein levels and 

their transcriptional activities predict previously characterized heterogeneities in melanoma 
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differentiation states. Perturbing this balance, via genetic depletion of AP-1 proteins or 

pharmacological inhibition of the MAPK pathway, induces differentiation state switching and 

heterogeneity in a controllable manner.

Graphical Abstract

INTRODUCTION

Individual cells, even those derived from the same clone, respond heterogeneously 

to environmental perturbations (Mitchell and Hoffmann, 2018; Munsky et al., 2012). 

Nongenetic heterogeneity can arise because of variances associated with transcriptional 

state plasticity (Battich et al., 2015; Gupta et al., 2011; Munsky et al., 2012; Symmons 

and Raj, 2016). Although such plasticity is required for the proper development of 

complex organisms (Arias and Hayward, 2006), it limits the efficacy of therapies that 

target abnormally activated signaling pathways (Boumahdi and de Sauvage, 2020; Sharma 

et al., 2010). An example of cell-to-cell transcriptional heterogeneity with phenotypic 

consequences for therapy resistance is observed in melanomas (Emert et al., 2021; Fallahi-

Sichani et al., 2017; Shaffer et al., 2017). Numerous studies have associated fluctuations 

in the state of MAPK inhibitor sensitivity across BRAF-mutant melanoma cells to 

intrinsic variations in their differentiation state (Baron et al., 2020; Belote et al., 2021; 

Khaliq et al., 2021; Rambow et al., 2018; Tsoi et al., 2018; Wouters et al., 2020). The 

reported heterogeneity spans a range of transcriptionally distinguishable states, including 
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a melanocytic phenotype that expresses melanocyte lineage markers SOX10 and MITF 

(Lin and Fisher, 2007), to less drug-sensitive states, including neural crest-like cells that 

express NGFR (Fallahi-Sichani et al., 2017; Mica et al., 2013) and innately drug-resistant, 

undifferentiated cells characterized by the overexpression of AXL and loss of SOX10 and 

MITF (Konieczkowski et al., 2014; Müller et al., 2014). In addition to intrinsic disparities 

in differentiation state, drug-induced responses may help a fraction of cells rewire their state 

of MAPK inhibitor sensitivity, most commonly through adaptive changes in differentiation 

state (Fallahi-Sichani et al., 2017; Marin-Bejar et al., 2021; Rambow et al., 2018; Smith et 

al., 2016) or via reactivation of the MAPK pathway (Gerosa et al., 2020; Lito et al., 2012). 

Although the emergence and consequences of such intrinsic and adaptive heterogeneities are 

widely recognized, there is still more to learn about their origins and possible connection 

at a molecular level. For example, it is unclear whether these seemingly distinct forms of 

heterogeneity arise from independent mechanisms or whether the observed variability in the 

initial state of cells and adaptive changes following MAPK inhibitor treatment could both be 

traced back to a common subset of molecular players.

Transcription factor networks that regulate the expression of genes in response to signaling 

pathway perturbations play a key role in creating the biological noise that leads to 

population heterogeneity (Huang, 2009; Pedraza and van Oudenaarden, 2005). The AP-1 

protein family is one such network that serves as a major transcription node, integrating 

inputs from the upstream MAPK signaling pathway (Karin, 1995). In addition to linking 

signal transduction to transcription, AP-1 proteins have been recently identified to serve 

as pioneer factors, establishing chromatin states that predispose cells to transcriptional 

programs driven by other transcription factors or histone modifications, thereby guiding 

cells towards paths of differentiation or cell state reprogramming (Madrigal and Alasoo, 

2018; Martínez-Zamudio et al., 2020; Phanstiel et al., 2017; Vierbuchen et al., 2017). These 

roles are consistent with numerous reports on AP-1 proteins’ being involved in resistance 

to MAPK inhibitors, cell-state heterogeneity, and therapy-induced dedifferentiation in 

melanomas and other cancers (Emmons et al., 2019; Fallahi-Sichani et al., 2015, 2017; 

Haas et al., 2021; Johannessen et al., 2013; Kong et al., 2017; Maurus et al., 2017; Ramsdale 

et al., 2015; Riesenberg et al., 2015; Torre et al., 2021; Wouters et al., 2020). Despite these 

reports, we lack a clear understanding of the rules that define AP-1 behavior and its role in 

explaining the intrinsic plasticity and the diversity of adaptive responses to MAPK signaling 

perturbations. This gap in our knowledge may be addressed by a system-wide analysis 

with single-cell precision to reveal interdependencies between an array of AP-1 proteins, 

which constitute more than a dozen transcription factors, including JUN, FOS, and ATF 

subfamilies (Rodríguez-Martínez et al., 2017), their post-translational modification states, 

and their association with melanoma cell phenotypes at a single-cell level.

In this study, we test the hypothesis that the state of the AP-1 transcription factor network 

determines the intrinsic diversity of phenotypic states (i.e., differentiation states) and drug-

induced changes in MAPK signaling in BRAF-mutated melanoma cells. We define the 

AP-1 state as the combinatorial concentrations of AP-1 proteins, their phosphorylation state, 

and their transcriptional activity, which are either measurable experimentally or inferable 

by using bioinformatics tools. Our systems biology approach combines multiplexed 

measurements of the AP-1 state, MAPK signaling activity, and differentiation state, at 
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population and single-cell levels, across many genetically characterized melanoma cell lines 

before and after their exposure to BRAF/MEK inhibitors. We apply statistical learning to 

capture the predictivity of AP-1 states, and corresponding AP-1 factors, for phenotypic 

heterogeneity in melanoma cultures and patient-derived tumors. We then use RNAi-

mediated knockdown experiments to validate the causality of our statistical predictions in 

heterogeneous melanoma cell populations. We find that a tightly regulated balance between 

AP-1 transcription factors cJUN, JUND, FRA2, FRA1, and cFOS and their transcriptional 

activity determines the baseline differentiation state of melanoma cells. This balance is 

perturbed following MAPK pathway inhibition. Nevertheless, MAPK inhibitor-induced 

changes in the AP-1 state, including the abundance of cJUN and its phosphorylation, as well 

as the phosphorylation state of FRA1, remain strong predictors of drug-induced changes 

in differentiation state and the efficiency of MAPK pathway inhibition, respectively. These 

results show that the state of AP-1 network offers a critical transcriptional context, which 

controls not only the initial state of melanoma cells and their population heterogeneity but 

also their adaptive changes immediately following MAPK pathway inhibition.

RESULTS

Single-cell AP-1 protein levels predict differentiation state heterogeneity in melanoma cells

To quantify the baseline heterogeneities in differentiation state and to assess their 

covariation with AP-1 proteins across genetically diverse or isogenic melanoma cell 

populations, we used an iterative indirect immunofluorescence imaging (4i) protocol (Gut 

et al., 2018) in conjunction with high-throughput automated microscopy (Figure 1A). We 

multiplexed measurements of 21 proteins using 4i-validated antibodies in 19 BRAF-mutant 

melanoma cell lines (Figure 1B). The measurements included total levels of eleven AP-1 

transcription factors (cFOS, FRA1, FRA2, cJUN, JUNB, JUND, ATF2, ATF3, ATF4, 

ATF5, and ATF6), six AP-1 phosphorylation states (p-cFOSS32, p-FRA1S265, p-cJUNS73, 

p-ATF1S63, pATF2T71, and p-ATF4S245), and four differentiation state markers (MITF, 

SOX10, NGFR, and AXL). Importantly, these four differentiation state markers were 

previously reported to represent transcriptionally distinct melanoma differentiation states 

(Khaliq et al., 2021; Tsoi et al., 2018). The panel of 19 melanoma cell lines tested 

represented a broad spectrum of differentiation states, including populations of melanocytic 

(MITFHigh/SOX10High/NGFRLow/AXLLow), transitory (MITFHigh/SOX10High/NGFRHigh/

AXLLow),neuralcrest-like(MITFLow/SOX10High/NGFRHigh/AXLHigh), and undifferentiated 

(MITFLow/SOX10Low/NGFRLow/AXLHigh) cells (Figures 1C and S1A). We and others have 

shown that the frequency of these states in melanoma cell populations varies from one 

tumor to another and predicts their overall sensitivity to MAPK inhibitors (Khaliq et al., 

2021; Rambow et al., 2018; Tirosh et al., 2016). Here, we asked whether the observed 

heterogeneities in differentiation state could be explained by variations in patterns of AP-1 

measurements at a single-cell level.

The population-averaged and single-cell protein data revealed a high degree of variation in 

differentiation state markers and AP-1 proteins across genetically distinct cell lines (Figures 

1B, 1C, and S1A). To test whether there is a relationship between AP-1 variations and the 

differentiation state of individual cells regardless of their genetic differences, we randomly 
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sampled a total of 10,000 cells, including 2,500 from each of the four differentiation 

states, in a way that they represented all 19 cell lines and 4 distinctive differentiation 

states as equally as possible (Figure 1D). We used the multiplexed AP-1 data of 80% 

of the cells to train a random forest classification model to predict the differentiation 

state of each individual cell. We then used the remaining 20% of the cell population 

to independently validate model predictions. Model-predicted single-cell differentiation 

states matched true (measured) differentiation states with accuracy of 0.74, representing 

a remarkable performance relative to a random 4-class classifier with an expected accuracy 

of 0.25 (Figure 1E). A close look at model predictions showed that they matched true states 

for 88% of undifferentiated cells, ~72% of neural crest-like cells, and ~66% of melanocytic 

cells. In cases in which the true and predicted state of a cell did not match, the model often 

predicted a closely related neighboring state along the differentiation state trajectory. When 

we combined cells from these related states (e.g., cells in melanocytic and transitory states), 

the model was able to distinguish them from the other two states in ~93% of the cases 

(Figure 1E).

To identify those AP-1 measurements that most strongly predicted single-cell differentiation 

state, we computed the shapley additive explanations (SHAP) values for the random forest 

classifications (Lundberg et al., 2020). SHAP assigns each AP-1 factor an importance value, 

quantifying its contribution, either positively or negatively, to the predicted differentiation 

state of any given cell (Figure 1F). Among the most important AP-1 factors (ranked on 

the basis of mean absolute SHAP values) were p-cFOS, FRA2, ATF4, cFOS, p-FRA1, 

and cJUN. Single-cell measurements of these six factors made it possible to predict the 

differentiation state of a cell with accuracy of 0.67 (Figure 1G).

We then asked whether models trained on the basis of the top six AP-1 factors would be 

able to predict the differentiation state of new cells from independent cell lines not included 

in model training. To answer this question, we iteratively removed one cell line, built a 

model using randomly sampled cells from the remaining 18 cell lines, and then used the 

trained model to predict the differentiation state of randomly selected cells from the left-out 

cell line. We observed that prediction accuracy for left-out cell lines was variable, with 

an average value of 0.49 ± 0.14 across all 19 iterations (Figures S1B and S1C). We also 

noticed that although prediction accuracy for some left-out cell lines was greater than that 

of the full model (e.g., ~0.87 for LOXIMVI cells), predictions for two left-out cell lines 

(including IGR39 and SKMEL19) underperformed the random model. To test whether the 

lower performance of model predictions for a few cell lines could be attributed to any 

common patterns of misclassification, we examined the single-cell predictions for each 

left-out cell line separately (Figure S1D). We found that in most cases, misclassification 

occurred when the model failed to distinguish between closely related neighboring states 

(e.g., neural crest-like versus undifferentiated cells in IGR39 or transitory versus neural 

crest-like cells in SKMEL19). When we combined cells from such closely related states, the 

models were able to distinguish them from the other two states in >80% of the cases (Figure 

S1C).

Together, these analyses revealed that the heterogeneity in melanoma differentiation state 

was associated with distinguishable patterns of variation in the expression of a few key AP-1 
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proteins. In agreement with the SHAP analysis and model validation results, dimensionality 

reduction by uniform manifold approximation and projection (UMAP) (Becht et al., 2018) 

using only the top six AP-1 factors resulted in a cell trajectory ordered from melanocytic 

to undifferentiated states (Figures 1H and 1I). The UMAP projection also showed that 

melanocytic and transitory cells expressed substantially higher levels of p-cFOS, cFOS, and 

ATF4, whereas undifferentiated cells exhibited lower levels of all these factors and instead 

exhibited increased levels of FRA2, cJUN, and p-FRA1.

AP-1 transcript levels predict variations in differentiation state programs across melanoma 
lines

To test whether the relationships between the patterns of AP-1 expression and melanoma 

differentiation state were recapitulated at the transcriptional level, we analyzed a previously 

published dataset, including RNA sequencing of 53 melanoma cell lines (Tsoi et al., 2018). 

Each cell line was assigned a series of seven signature scores, defined as the average of Z 
scores for the expression levels of differentiation state signature genes (Tsoi et al., 2018). 

The differentiation signature scores were then related to the transcript levels of 15 AP-1 

genes for each cell line by partial least-squares regression (PLSR) (Figure 2A). The overall 

performance of the PLSR model was evaluated by computing the fraction of variance in 

signature scores explained (R2) or predicted (Q2) by changes in AP-1 gene expression 

(Figure 2B). The model revealed high performance and prediction accuracy with R2 of 

0.72 and Q2 of 0.55 (using leave-one-out cross-validation) for four PLSR components. 

To evaluate the accuracy of predictions for each differentiation state, we assessed the 

correlation between the signature scores derived from the differentiation signature genes 

and scores predicted by the PLSR model. The model showed consistent accuracy, with 

an average Pearson’s correlation coefficient of 0.74 ± 0.08 (p = 3.2 × 10−17 to 1.3 × 

10−6) between the actual and predicted signature scores (Figure 2A). To independently 

validate the model predictions, we used RNA sequencing data from a different panel of 32 

BRAF-mutant melanoma cell lines in the Cancer Cell Line Encyclopedia (CCLE) (Ghandi 

et al., 2019). The PLSR model trained against the original set of 53 cell lines was able to 

predict the differentiation signature scores in the new set of 32 melanoma cell lines, leading 

to an average Pearson’s correlation coefficient of 0.65 ± 0.13 (p = 2.3 × 10−8 to 6.8 × 10−3) 

between the actual and predicted scores (Figure 2C).

The high performance of the PLSR model shows that variations in the transcriptional 

levels of at least some AP-1 genes may explain the variability in differentiation states 

across melanoma cell lines. In agreement with this expectation, different cell lines could 

be separated by their PLSR scores on the basis of their positions along the different state 

trajectory (Figure 2D). Because the PLSR model achieved its maximum prediction accuracy 

by four components, we computed the variable importance in projection (VIP) scores across 

all these components to determine the overall contribution of each AP-1 gene to each 

differentiation state (Figure 2E). Among the most important predictors of differentiation 

state (determined by |VIP| > 1) were the expression of FOS (encoding cFOS), FOSL1 

(encoding FRA1), FOSL2 (encoding FRA2), JUN (encoding cJUN), JUNB, JUND, ATF2, 

and ATF4 (Figure 2E). Importantly, a model created using only these AP-1 genes was able 

to significantly outperform most PLSR models that were built on the basis of combinations 
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of eight randomly chosen transcription factors from the basic leucine zipper (bZIP) family 

(the family to which AP-1 factors belong) (p = 0.008) or on the basis of any eight randomly 

chosen transcription factors (p = 0.01) (Figure 2F).

Together, these analyses revealed that the predictivity of patterns of AP-1 variation for 

melanoma differentiation state could also be captured at the level of transcription of these 

factors. Except for ATF4, the statistical association of AP-1 factors with differentiation 

state was generally consistent across bulk transcript and single-cell protein measurements 

(Figure S2A). Melanocytic and transitory cells expressed substantially higher levels of FOS 

transcript and cFOS protein levels, whereas undifferentiated cells were associated with 

increased levels of FOSL1, FOSL2, and JUN transcripts and their corresponding proteins 

FRA1, FRA2, and cJUN, respectively.

Single-cell network inference reveals the role of AP-1 activity in regulation of 
differentiation programs

Next, we asked whether the statistical associations between the identified key AP-1 proteins 

and single-cell differentiation states resulted from the active regulation of differentiation 

programs by the AP-1 factors. To address this question, we applied single-cell regulatory 

network inference and clustering (SCENIC) (Aibar et al., 2017; Van de Sande et al., 2020) 

to analyze a previously published single-cell RNA sequencing dataset of 10 melanoma 

cell lines (Wouters et al., 2020). SCENIC uses single-cell gene expression data to infer 

transcription factors alongside their candidate target genes (collectively called a regulon), 

enabling the identification of regulatory interactions and transcription factor activities with 

high confidence. In line with our results from the gene and protein expression analyses, 

SCENIC analysis found the FOSL2 and JUN motif regulons to be substantially enriched 

in populations of undifferentiated cells in comparison with melanocytic, transitory, and 

neural crest-like cells (Figures 3A and 3B). The activity of the FOSL1 regulon was 

low in melanocytic cells but gradually increased among transitory, neural crest-like, and 

undifferentiated cells (Figure 3C). The FOS regulon, on the other hand, was substantially 

enriched in melanocytic and transitory cells, but its activity was low in undifferentiated and 

neural crest-like cells (Figure 3D).

To test whether the relationship between AP-1 regulon activities and melanoma 

differentiation states existed in single cells derived from tumor biopsies, we performed 

differentiation state enrichment and SCENIC analysis on single-cell RNA sequencing data 

previously collected via dissociation and profiling of patient-derived melanoma samples 

(Jerby-Arnon et al., 2018; Tirosh et al., 2016). Accounting for missing values in a 

subset of differentiation signature genes, enrichment analysis of the 11 treatment-naive 

melanoma samples distinguished single cells from melanocytic and undifferentiated states 

with high confidence. SCENIC analysis of these cells showed that FOSL2, JUN, and 

FOSL1 regulons were significantly enriched in undifferentiated cells in comparison with 

melanocytic cells (Figures 3E–3G). In contrast to a substantially higher FOS regulon 

activity observed in cultured melanocytic cells, the activity of FOS regulon was only 

slightly higher in melanocytic tumor cells in comparison with undifferentiated cells (Figure 

3H). Interestingly, however, the FOS/JUN activity ratio at a single-cell level was able to 
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distinguish melanocytic cells from undifferentiated cells more efficiently than either of 

these AP-1 factors alone (Figure 3I), suggesting that it is the balance between AP-1 factor 

activities that determines a cell’s differentiation state.

Next, we asked how the key AP-1 transcription factor activities and their activity ratios 

varied between the widely recognized two-class “proliferative” and “invasive” phenotypes 

in melanoma cells (Hoek et al., 2006). Following single-cell enrichment analysis of the 

transcriptional signatures defined for these phenotypes (Hoek et al., 2006), we compared 

their associations with the activity of key AP-1 regulons inferred by SCENIC. As expected, 

the invasive phenotype exhibited higher activities of FOSL1, FOSL2, and JUN, whereas 

proliferative cells showed a higher FOS/JUN activity ratio (Figures S2B–S2K). Together, 

these analyses revealed that melanoma cells of diverse differentiation states are associated 

with distinct regulatory network activities by AP-1 transcription factors. In particular, 

the role of FOS, FOSL1, FOSL2, and JUN regulon activities was consistent with their 

corresponding patterns of gene and protein expression across melanoma differentiation 

states at both population and single-cell levels.

MAPK inhibitor-induced changes in the AP-1 state predict changes in differentiation state

Although melanoma populations consist of stable mixtures of cells in diverse differentiation 

states at baseline, they can switch state in response to environmental perturbations. 

Specifically, treatment with MAPK inhibitors has been reported to induce changes in 

cell state that are associated with either activation of an MITFHigh program triggering 

melanocytic differentiation (Rambow et al., 2018; Smith et al., 2016) or downregulation 

of MITF activity and induction of an NGFRHigh, neural crest-like state (Fallahi-Sichani et 

al., 2017; Rambow et al., 2018). Such adaptive phenotype switching occurs with as little 

as 3 days of exposure to MAPK inhibitors and concomitantly with changes in MITF and 

NGFR protein expression (Khaliq et al., 2021). To determine common patterns of AP-1 

changes that might be associated with drug-induced changes in differentiation state in either 

direction (i.e., differentiation or dedifferentiation), we exposed 18 BRAF-mutant melanoma 

cell lines to the BRAF inhibitor vemurafenib (at 0.316 μM) either alone or in combination 

with the MEK inhibitor trametinib (at 0.0316 μM). We fixed the cells following 24 or 72 h 

of treatment and then used the 4i procedure to measure the abundance or phosphorylation 

state of AP-1 transcription factors as wells as MITF and NGFR protein levels (Figures 4A, 

S3, S4, and S5A). We also measured p-ERKT202/Y204 levels to quantify changes in MAPK 

signaling as described in the following section (Figure S5B).

To assess drug-induced changes in differentiation state for each cell line, we computed 

the relative enrichment of dedifferentiated cells by normalizing the NGFR protein 

levels to MITF protein levels at baseline (DMSO), then tracking its changes following 

MAPK inhibitor treatments. Interestingly, treatment with BRAF/MEK inhibitors induced 

dedifferentiation in some cell lines (Figure 4B, left panels) but enhanced differentiation in a 

few others (Figure 4B, right panels). To identify possible associations between AP-1 factors 

and drug-induced changes in differentiation state, we built a PLSR model to associate 

DMSO-normalized changes in the expression levels of each of the AP-1 factors to DMSO-

normalized changes in the enrichment of dedifferentiated (or abatement of differentiated) 
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cells for each of the MAPK inhibitor treatment conditions. The PLSR model achieved its 

maximum prediction accuracy by three components (Figure 5A). We thus computed the VIP 

scores using the first three PLS components to determine the overall contribution of each 

AP-1 modification to drug-induced changes in melanoma differentiation state (Figure 5B). 

VIP analysis revealed changes in multiple AP-1 factors from the JUN and ATF subfamily 

that were correlated with changes in differentiation state. Among these factors, cJUN 

and p-cJUN changes (at 24 and 72 h) were consistently the strongest predictors of both 

drug-induced dedifferentiation and differentiation among the tested cell lines (Figure 5C). 

In agreement with population-level data, single-cell analysis revealed increases in cJUN 

and p-cJUN levels in dedifferentiating melanoma cells (Figure 5D, top row) and reduction 

of cJUN and p-cJUN levels in differentiating melanoma cells following MAPK inhibitor 

treatments (Figure 5D, bottom row).

MAPK inhibitor-induced changes in the AP-1 state reveal efficiency of ERK pathway 
inhibition across melanoma cell lines

In addition to drug-induced changes in differentiation state, incomplete inhibition of the 

ERK pathway (or its reactivation following a transient period of ERK inhibition) is known 

as a common mechanism of resistance to BRAF inhibitors (Lito et al., 2012). Importantly, 

when ERK activity rebounds as early as a few hours after drug treatment, a small residual 

ERK activity (at the cell population level) may be sufficient to help cells escape the effect 

of BRAF inhibition (Gerosa et al., 2020; Khaliq et al., 2021). The combination of BRAF 

inhibitors with MEK inhibitors has been proposed as a strategy to overcome the ERK 

pathway rebound following BRAF inhibition alone (Lito et al., 2012). In agreement with 

this idea, all 18 melanoma cell lines treated with the combination of vemurafenib and 

trametinib showed significantly lower levels of residual p-ERK at 24 h in comparison with 

their responses to vemurafenib treatment for the same duration (Figures 6A and 6B). Drug 

combination also significantly reduced p-ERK rebound in comparison with vemurafenib 

treatment at 72 h. However, the extent of this effect was variable among different cell lines 

(Figures 6A and 6B). We thus asked which, if any, of the AP-1 factors might capture the 

observed differences in the efficiency of ERK pathway inhibition among different cell lines.

To answer this question, we used partial correlation analysis to assess pairwise relationships 

between p-ERK and AP-1 levels across 18 cell lines treated with either vemurafenib (for 

either 24 or 72 h) or the combination of vemurafenib and trametinib (for 72 h), while 

correcting for baseline (drug-naive) variations in the AP-1 protein levels (Figure 6C). 

This analysis identified p-FRA1 as the most consistent predictor of the efficiency of ERK 

pathway inhibition among all cell lines (Figures 6C and 6D). In agreement with population-

level correlation analysis, single-cell analysis also revealed a significant covariance between 

p-ERK and p-FRA1 levels (Figure 6E). Such strong connection between p-FRA1 and 

p-ERK in drug-treated cells is consistent with FRA1 serving as a tightly coupled sensor 

of ERK activity (Gillies et al., 2017). Interestingly, however, FRA1 or p-FRA1 levels did 

not correlate with hyperactivated p-ERK levels when we performed pairwise correlation 

analysis on drug-naive BRAF-mutant cells. Instead, we found drug-naive p-ERK levels to 

be positively correlated with cFOS, p-cFOS, and ATF4 and negatively correlated with FRA2 

and cJUN (Figure S6). All these AP-1 factors were predictors of melanoma differentiation 
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state. These observations are consistent with previous reports linking up-regulation of MITF 

to elevated ERK activity in BRAF-mutant melanoma cells (Wellbrock et al., 2008). In 

addition, they suggest that changes in ERK signaling following pharmacological inhibition 

of the pathway may lead to rewiring of AP-1 signaling.

Perturbation of AP-1 state by siRNA confirms its role in driving differentiation state 
heterogeneity

We hypothesized that if the AP-1 state drives melanoma differentiation programs, then 

inducing perturbations in the AP-1 state will shift differentiation states in predictable 

ways. To test this hypothesis, we perturbed AP-1 factors in COLO858 melanoma cells 

by using pools of previously validated small interfering RNAs (siRNAs) to knock down 

the expression of five AP-1 genes (FOS, FOSL1, FOSL2, JUN, and JUND), either 

individually or in pairwise combinations. Unfortunately, we were unable to achieve 

significant depletion of FRA1 in COLO858 cells. Hence, we focused on the analysis 

of the data following individual, or pairwise combinations of siRNAs targeting FOS, 

FOSL2, JUN, and JUND. COLO858 represents a heterogeneous population composed of 

both melanocytic (SOX10High/MITFHigh) and undifferentiated (SOX10Low/MITFLow) cells, 

thereby allowing us to track changes in the expression of differentiation state markers 

after AP-1 perturbations. Following 96 h of AP-1 gene knockdown in COLO858 cells, we 

measured (in three replicates) protein levels of differentiation markers MITF, SOX10, and 

AP-1 factors cFOS, FRA1, FRA2, cJUN, and JUND using 4i (Figures 7A, 7B, and S7).

Interestingly, siRNA-mediated knockdowns not only reduced the levels of AP-1 proteins 

targeted by their corresponding siRNAs but also, in some cases, led to changes in the 

expression of other AP-1 proteins (Figures 7A and S7). For example, FOSL2 knockdown 

substantially reduced FRA2 levels but also induced the expression of FRA1 compared with 

cells treated with non-targeting (control) siRNA. JUND knockdown reduced JUND levels 

but also led to an increase in cFOS and cJUN levels. These observations agree with previous 

findings (Lopez-Bergami et al., 2010) suggesting that the state of AP-1 network is controlled 

by interactions among different AP-1 factors. Combinations of siRNAs against pairs of 

AP-1 genes may help reveal AP-1 modifications that are phenotypically consequential. To 

identify such interactions, we quantified the levels of SOX10 and MITF proteins across 

all knockdown conditions in COLO858 cells and examined them along a two-dimensional 

plot (Figures 7A and 7B). We found that knocking down FOSL2 and JUN in combination 

significantly increased the expression of SOX10 (Figures 7A and 7B). This behavior is 

consistent with our earlier finding regarding the role of FRA2 and cJUN in regulation of 

the undifferentiated (SOX10Low) state. On the other hand, knocking down FOS and JUND 

in combination significantly reduced the expression of both MITF and SOX10 (Figures 7A 

and 7B), which is consistent with our finding regarding their role in driving the melanocytic 

lineage.

To further validate the impact of depletion of AP-1 proteins on the expression of melanoma 

differentiation state markers, we performed selected siRNA knockdown experiments in 

two additional cell lines, including C32 and LOXIMVI, which constituted relatively 

homogeneous populations of melanocytic and undifferentiated cells, respectively (Figure 
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1C). First, we exposed C32 cells to siRNAs targeting FOS and JUND, individually or 

in combination, for 96 h (Figure 7C). In agreement with results in COLO858 cells, the 

combination of FOS and JUND knockdown significantly reduced SOX10 and MITF protein 

levels in C32 cells (Figure 7C). Next, we exposed undifferentiated LOXIMVI cells to 

siRNAs targeting FOSL2 and JUN. We found that both siRNAs individually increased the 

expression levels of SOX10 (Figure 7). However, in contrast to our observation in COLO858 

cells, the impact of combined FOSL2 and JUN siRNAs (for 96 h) in highly undifferentiated 

LOXIMVI cells was not significant. Overall, despite some differences among the impact 

of individual or combined siRNA treatments, the knockdown experiments across three 

cell lines (taken with all the data presented throughout this study) confirmed our findings 

regarding a key role for a balance among FOS, JUND, JUN, and FOSL2 in driving the 

differentiation program in melanoma cells.

DISCUSSION

The hyperactivation of MAPK signaling in BRAF-mutant melanomas is linked to their 

overall sensitivity to MAPK inhibition. The differentiation state heterogeneity, however, 

leads to variability in MAPK inhibitor responses both across genetically diverse tumors and 

among genetically homogeneous populations of cells. Understanding the origins of such 

heterogeneity is key to identifying effective strategies to overcome fractional responses that 

undermine the potential of MAPK-targeted therapies. It requires a detailed knowledge of the 

mechanisms and molecular players that link cellular plasticity and transcriptional regulation 

of differentiation state to therapy-induced changes in MAPK signaling. To begin to fill 

this gap in our knowledge, we used a multidimensional approach at single-cell resolution 

to systematically investigate the AP-1 transcription factor contributions to heterogeneity 

in BRAF-mutant melanoma cells. We focus on the AP-1 factors because they serve as 

downstream targets of MAP kinases, and previous work has connected several AP-1 proteins 

to MAPK inhibitor resistance, differentiation state heterogeneity, and therapy-induced 

changes in differentiation state in melanomas.

Our data showed that a tightly regulated balance among a few key AP-1 family members 

and their activities strongly predict previously characterized heterogeneities in melanoma 

differentiation states. Specifically, cFOS and p-cFOS were associated with melanocytic and 

transitory cells, whereas FRA1, p-FRA1, FRA2, and cJUN and p-cJUN correlated with 

less differentiated cell states. The systematic nature of the study across many genetically 

different melanomas suggests that these associations are a general feature of melanomas and 

likely not unique to a particular cell line or linked to a certain genetic context. Furthermore, 

we showed that perturbing the molecular balance of AP-1 factors in melanoma cells by 

siRNAs that deplete specific AP-1 proteins, either alone or in combination, or by treatments 

with MAPK inhibitors can induce differentiation state switching and heterogeneity in a 

controllable manner. Together, these findings provide insights into AP-1 function, its role in 

cell state plasticity, and its potential dysregulation in melanoma, while opening avenues for 

interrogating the AP-1 behavior in the context of adaptive response to MAPK inhibitors. In 

theory, gaining the ability to target certain AP-1 states could force cells to remain in a more 

drug-sensitive state, thereby increasing the fractional killing of melanoma cells in response 

to MAPK inhibition.
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Future studies may leverage the findings from this study to further elucidate transcriptional 

mechanisms that contribute to MAPK-targeted therapy escape in melanomas at a single-

cell level. Furthermore, uncovering how the information encoded in the MAPK signaling 

dynamics is transduced through its downstream AP-1 network will be key for explaining the 

observed variability in tumor cell responses to MAPK inhibitors. For example, AP-1 family 

members FOS and FOSL1 are early ERK target genes whose regulation by ERK activity 

constitutes feedforward motifs that enable them to decode the dynamics of ERK signaling 

(Davies et al., 2020). Differentiation state-specific variations in the baseline expression and 

activities of these AP-1 genes, as we observed in this study, could introduce variability 

in the transduction of MAPK signals, generating heterogeneity in cell fate under MAPK 

perturbations. Future studies that link dynamic fluctuations in ERK activity and other MAP 

kinases to AP-1 behavior could offer important insights into mechanisms of heterogeneity in 

drug response and adaptive resistance to MAPK inhibitors.

Consistent with our findings regarding the role of AP-1 state changes in determining 

the differentiation state plasticity, recent studies have highlighted a key role for AP-1 

factors in chromatin organization and enhancer accessibility. AP-1 proteins have been 

reported to facilitate new cell fate transitions, such as cellular senescence or differentiation, 

by establishing the enhancer landscape and granting long-term chromatin access to 

other transcription factors, thereby allowing the timely execution of cell state-specific 

transcriptional programs (Madrigal and Alasoo, 2018; Martínez-Zamudio et al., 2020; 

Phanstiel et al., 2017; Vierbuchen et al., 2017). Understanding which AP-1 factors and 

cofactors work to keep poised enhancers accessible and which function to shift enhancers 

from a poised to active state could connect transcription to (de)differentiation and genome 

reorganization following inhibition of MAPK signaling and its adaptive reactivation. 

Furthermore, AP-1 proteins like other bZIP proteins must form dimers before they could 

bind to the AP-1 motif site. For example, while FOS family members bind DNA as obligate 

heterodimers with members of the JUN family, JUN family members can bind the AP-1 

motif site as both homodimers and heterodimers with FOS family members. Future studies, 

therefore, should also determine the extent to which the combinatorial activity of AP-1 

family members is influenced by distinct patterns of dimerization among these transcription 

factors.

Limitations of the study

Although quantitative, immunofluorescence-based measurements of protein levels and 

phenotypes and the use of siRNAs to knock down the expression of genes have proved 

immensely powerful for the study of biology, all techniques have limitations. For example, 

the quality of quantitative information retrieved from immunofluorescence images depends 

largely on the quality of segmentation of the cell features of interest. Although great effort 

was made to optimize the image segmentation procedure and to ensure that the segmentation 

captured the desired features, it is infeasible to visually inspect every cell for appropriate 

segmentation. Second, in the current study we assume that AP-1 protein levels in the nucleus 

correspond to or correlate with transcriptional activity. Although this assumption is likely 

true in many circumstances, it is impossible to definitively prove that this is the case for 

each of the many factors we measure in this study. Furthermore, when performing many 
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sequential rounds of 4i staining and images, cells are gradually lost over the course of 

sample washing and re-probing. Although we assume that cell loss occurs equivalently for 

all differentiation states of the cell, we do not explicitly test this assumption here. However, 

if this assumption were false, it would be unclear whether the conclusions reached in the 

paper would change, as our findings are validated using a variety of complementary methods 

and independent datasets.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Mohammad Fallahi-Sichani (fallahi@virginia.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Raw immunofluorescence microscopy data reported in this paper will be shared 

by the lead contact upon request. All quantified microscopy data are included in 

Data S1, S4, S5, S6. This paper analyzes existing, publicly available data. These 

accession numbers for the datasets are listed in the key resources table.

• The original codes for data analysis performed in this paper 

are publicly available at GitHub: https://github.com/fallahi-sichani-lab/AP1-

networkPlasticityMelanoma (https://doi.org/10.5281/zenodo.6741989).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

BRAF-mutant melanoma cell lines used in this study include: COLO858, RVH421, A375, 

A375(NRASQ61K), C32, A2058, WM115, SKMEL28, HS294T, WM1552C, SKMEL5, 

A101D, IGR39, LOXIMV1, MMACSF, WM902B, WM2664, UACC62 and SKMEL19. All 

cell lines have been subjected to re-confirmation by short tandem repeat (STR) profiling by 

ATCC and mycoplasma testing by MycoAlert™ PLUS Mycoplasma Detection Kit. A375, 

A375(NRASQ61K), A2058, HS294T, A101D, and IGR39 cells were grown in DMEM with 

4.5 g/L glucose supplemented with 5% fetal bovine serum (FBS). SKMEL5 and WM2664 

cells were grown in EMEM supplemented with 5% FBS. C32, MMACSF, SKMEL28, and 

WM115 cells were grown in DMEM/F12 supplemented with 1% sodium pyruvate and 5% 

FBS. COLO858, LOXIMVI, RVH421, SKMEL19, UACC62, WM1552C, and WM902B 

cells were grown in RPMI 1640 supplemented with 1% sodium pyruvate and 5% FBS. 

Cells were grown at 37°C with 5% CO2 in a humidified chamber. 100 U/mL Penicillin-

Streptomycin (10,000 U/mL), and 0.5 mg/mL Plasmocin Prophylactic were present in all 

cell cultures.
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METHOD DETAILS

Drug treatments—Cells were seeded in 200 μL/well in Corning 96-well plates. 

Vemurafenib, Trametinib or vehicle (DMSO) was added at indicated concentrations using 

the Tecan D300e Digital Dispenser 24 h after cell seeding. Cells were fixed at the indicated 

timepoints with 4% paraformaldehyde in phosphate-buffered saline (PBS) for 30 min at 

room temperature. All time course experiments with drug treatment were initiated at the 

same time and then stopped sequentially at the indicated timepoints (24 h and 72 h). The 

DMSO experiments were stopped at 24 h to avoid artifacts in signaling measurements that 

may arise due to cell confluency and the exhaustion of growth media.

AP-1 gene knockdown by siRNA—COLO858 cells were seeded in 100 μL of 

antibiotic-free growth media (RPMI supplemented with 5% FBS and 1 mM Sodium 

Pyruvate) in 96-well plates at a density of 2000 cells/well. After 24 h of incubation, 

cells were transfected using 0.05 μL of DharmaFECT 2 reagent per well with indicated 

Dharmacon ON-TARGETplus AP-1 siRNAs (at 25 nM) individually or in pairwise 

combinations. Knock-downs targeting a single AP-1 gene were supplemented with non-

targeting siRNA to normalize the final siRNA concentration (to 50 nM siRNA) across 

all siRNA conditions. All siRNAs were tested for knockdown efficiency and specificity 

by measuring protein levels of each factor and members of the factor subfamily (e.g., 

measuring single-cell protein levels of cFOS, FRA1, and FRA2, 24 h following FOS 

knockdown). Only siRNA species that showed knockdown of the protein target with 

minimal off-target knockdown effects were used. Cells were fixed 96 h after transfection 

with 4% paraformaldehyde in PBS for 30 min at room temperature. The siRNA sequences 

used for each condition are included in Table S1.

Iterative indirect immunofluorescence imaging (4i)—4i images were obtained using 

a previously described protocol (Gut et al., 2018) with minor modifications. After media 

aspiration, cells in 96-well plates were fixed with 4% paraformaldehyde in PBS for 30 

min at room temperature. All washes were performed using a BioTek EL406 Washer 

Dispenser and consisted of 4 wash cycles of 200 μL with the indicated buffer while retaining 

approximately 20 μL liquid in each well during the aspiration step to limit cell loss. Cells 

were washed with PBS then permeabilized for 15 min at room temperature with 100 μL 

0.5% Triton X-100 in PBS. Cells were washed with PBS followed by Milli-Q deionized 

water. Cells were next treated 3 times total for 12 min each instance with 40 μL elution 

buffer which consists of 0.5M L-Glycine, 3M Urea, 3 M Guanidinium chloride, and 70 mM 

TCEP-HCl at pH of 2.5. Cells were washed with PBS as above. Samples were then blocked 

for 1 h at room temperature with 50 μL blocking buffer which consists of PBS-based 

Intercept buffer supplemented with 150 mM maleimide. Blocking buffer was prepared 

immediately prior to adding to the samples for each round. Following a PBS wash, samples 

were incubated overnight at 4°C with 40 μL primary antibody diluted in Intercept buffer. 

After overnight incubation, cells were washed with PBS then incubated for 1 h at room 

temperature in 40 μL secondary antibody solution consisting of the appropriate species-

specific Alexa Fluor-conjugated antibodies diluted 1:2000 in Intercept buffer. Cells were 

then washed with PBS and incubated with 50 μL Hoechst 33342 diluted 1:20,000 in PBS. 

For the first round of imaging, cells were stained with a mixture of Hoechst and CellMask 
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Green for 30 min at room temperature according to the manufacturer’s instructions. Next, 

cells were washed with Milli-Q water and 80 μL imaging buffer consisting of 700 mM 

N-Acetyl-Cysteine at pH of 7.4. Images were obtained using Operetta CLS high content 

imaging system (Perkin Elmer) using a 10× air objective lens. Following imaging, samples 

were washed with Milli-Q water after which antibodies were eluted with 3 successive 

12-min incubations at room temperature with elution buffer. Cells were washed with PBS 

followed by Milli-Q water. Next, 50 μL imaging buffer was added to each well and samples 

were imaged as above to assess removal of fluorescent signal. Cells were then washed 

with PBS and all steps were repeated starting at the blocking step for each round of 4i. In 

instances where the time between 4i rounds exceeded 3 days, following elution, the plates 

were fixed for 10 min at room temperature with 4% paraformaldehyde in PBS. In these 

cases, to resume staining, cells were then washed with PBS followed by Milli-Q water 

and treated with elution buffer lacking TCEP-HCl three times for 10 min, totaling 30 min. 

Afterwards, cells were washed with PBS and the next round of 4i commenced.

Image analysis—Images were background subtracted using the rolling ball subtraction 

algorithm in ImageJ (2.3.0). Background-subtracted images from each round of 4i were 

aligned using Hoechst nuclei staining with CellProfiler (3.1.9) (McQuin et al., 2018) using 

the normalized cross correlation method within the Align module. Nuclei were segmented 

from the aligned images using the Minimum Cross Entropy thresholding method within 

the IdentifyPrimaryObjects module in CellProfiler. The Threshold smoothing scale and 

correction factor were 2.4 and 1, respectively with lower and upper threshold bounds 

of 0 and 1. Cell segmentation was then performed using CellMask Green staining to 

propagate objects from the nuclei. This was done using the Propagation method within 

the IdentifySecondaryObjects module. The Minimum cross entropy thresholding method 

was used with a smoothing scale of 0 and correction factor of 1, the lower and upper 

threshold bound values set to 0 and 1, and a regularization factor of 0.05. The TrackObjects 

module was used to multiplex data from individual rounds of 4i. Within TrackObjects, the 

Follow Neighbors method was used with the maximum pixel distance of 50 and average cell 

diameter of 15. Comma-separated text files containing quantitative single-cell measurements 

of tracked objects from CellProfiler were organized using Matlab. Only objects present 

in every round of imaging were included in the analysis. Additional data analysis was 

performed using Matlab, R, and Python.

Classifying melanoma differentiation states—To classify the differentiation state of 

cells based on image-based protein measurements, we generated histograms of single-cell 

data on each of the previously validated melanoma differentiation state markers (MITF, 

SOX10, NGFR and AXL) (Khaliq et al., 2021; Tsoi et al., 2018). For each protein 

(X), we identified an appropriate binary gate, based on which individual melanoma 

cells were divided into two groups of XHigh and XLow cells. The gating thresholds 

used on background-subtracted image data for each protein included: log(MITF) = 7.37, 

log(SOX10) = 6.82, log(NGFR) = 4.61, and log(AXL) = 5.60. We then used these 

classifications to determine the differentiation subtype of each individual melanoma 

cell as follows: melanocytic (M): MITFHigh/SOX10High/NGFRLow/AXLLow; transitory 

(T): MITFHigh/SOX10High/NGFRHigh/AXLLow; neural crest-like (N): MITFLow/SOX10High/
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NGFRHigh/AXLHigh; and undifferentiated (U): MITFLow/SOX10Low/NGFRLow/AXLHigh; 

the single-cell analysis and baseline differentiation state classification were performed 

across 19 different melanoma cell lines representing a wide spectrum of differentiation 

states. To classify the differentiation state of cells in gene knockdown perturbation assays, 

we used a similar approach to distinguish melanocytic/transitory (MITFHigh/SOX10High) 

cells from undifferentiated (MITFLow/SOX10Low) cells.

To classify melanoma differentiation states using bulk transcriptomic data, each melanoma 

cell line was assigned a series of seven differentiation signature scores, defined as the 

average of z-scores for the expression levels of differentiation state signature genes 

identified previously by Tsoi et al. (Tsoi et al., 2018). These differentiation signatures 

included the four main differentiation signatures, i.e., melanocytic (M), transitory (T), neural 

crest-like (N) and undifferentiated (U), as well as mixtures of neighboring signatures, 

including melanocytic-transitory (MT), transitory-neural crest-like (TN) and neural crest-

like-undifferentiated states (NU).

To determine the differentiation state of individual cells for each of the 10 melanoma 

cell lines profiled by single-cell RNA sequencing (Wouters et al., 2020), we used the R 

package AUCell (1.16.0) to quantify the enrichment of differentiation signature genes (as 

defined by Tsoi et al. (Tsoi et al., 2018)) in individual cells. To minimize the impact of 

noise from single-cell data, we combined two or three closely related signature gene sets 

as follows: M-MT gene set (combination of M and MT signature genes), MT-T-TN gene 

set (combination of MT, T and TN signature genes), TN-N-NU gene set (combination 

of TN, N and NU signature genes) and NU-U set (combination of NU and U genes). 

We then selected cells that represented individual differentiation states based on their 

gated AUCell scores as follows: melanocytic cells: M-MTHigh/TN-N-NULow/NU-ULow; 

transitory cells: M-MTLow/MT-T-TNHigh/TN-N-NULow/NU-ULow; neural crest-like cells: 

M-MTLow/MT-T-TNLow/TN-N-NUHigh/NU-ULow; undifferentiated cells: M-MTLow/MT-T-

TNLow/NU-UHigh. The differentiation state of individual melanoma cells derived from 

treatment-naı¨ve patient tumors profiled by Tirosh et al. (Tirosh et al., 2016) and Jerby-

Arnon et al. (Jerby-Arnon et al., 2018) were determined in the same way, except that 

only melanocytic and undifferentiated cells were identified and analyzed. To determine 

the two-class “proliferative” and “invasive” phenotypes of individual cells from the 10 

cell lines and patient tumors, we used AUCell to quantify the enrichment of the two 

gene sets defined by Hoek et al. (Hoek et al., 2006) for these two phenotypes at the 

single-cell level. We then selected cells that represent each phenotype based on their gated 

AUCell, including proliferative cells as proliferativeHigh/invasiveLow and invasive cells as 

proliferativeLow/invasiveHigh.

Random forest classification—We used random forest classification to test the 

predictivity of AP-1 variations for melanoma differentiation state using single-cell protein 

data collected by immunofluorescence imaging of 19 melanoma cell lines. We randomly 

sampled a total of 10,000 cells, including 2,500 from each of the four differentiation 

states, in a way that they represented all 19 cell lines and 4 distinctive differentiation 

states (melanocytic, transitory, neural crest-like and undifferentiated) as equally as possible. 

By random sampling, we aimed to minimize potential biases associated with genotype 
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differences among cell lines. We used the data from 80% of the sampled cells to train a 

random forest classification model to predict the differentiation state of each individual cell. 

We then used the remaining 20% of cells to independently validate model predictions. We 

also evaluated the performance of random forest models in predicting differentiation states 

of independent cell lines using “leave-one-line-out” cross-validation. For this purpose, at 

each iteration, we excluded cells from one cell line, trained a model using the remaining 18 

cell lines, and then used the trained model to predict the differentiation state of cells from 

the left-out cell line.

Model training, cross-validation and independent validation were all performed in Python 

(3.9.2) using the scikit-learn library (0.24.1) (Pedregosa et al., 2018). To standardize the 

model input, protein levels of each AP-1 measurement were normalized across cells to zero 

mean and unit variance (z-score scaled) using the StandardScaler() function. The random 

forest model was trained using the RandomForestClassifier() function. In training the full 

model with all 17 AP-1 factors, all parameters were as defined in the default settings, 

except the number of trees in the forest (n_estimators = 100) and maximum tree depth 

(max_depth = 14), which were separately optimized through 5-fold Stratified Shuffle Split 

cross-validation on the training set, using the StratifiedShuffleSplit() function with 10 times 

splitting iterations (n_splits = 10). In leave-one-line-out cross-validation, models built based 

on the top six AP-1 factors were trained using n_estimators = 500, while other parameters 

were the same as in the full model.

The random forest model performance was evaluated based on accuracy and Area Under 

the Receiver Operating Characteristic Curve (ROC AUC). Accuracy reports the fraction of 

correctly classified samples, i.e., true positives and true negatives, and it was calculated 

using the accuracy_score() function. The ROC AUC scores were calculated using the 

roc_auc_score() function with the One-vs-rest option (multi_class = ‘ovr’), which computes 

the AUC of each class against the rest. The ROC AUC scores consider both the sensitivity 

(true positive rate) and specificity (true negative rate) of the model predictions.

To assess the importance of each AP-1 factor in explaining the predictions made by the 

random forest model for each individual cell in the independent validation set, we used the 

SHapley Additive exPlanations (SHAP) package (Lundberg and Lee, 2017). SHAP provides 

a model agnostic measure of feature importance based on Shapley values, which assign 

importance of input features based on their contribution to the model output prediction. 

Mathematically, given a specific prediction output by model f with input x, Shapley value 

for feature i, φi(f,x), is the average of feature i’s marginal contributions across all possible 

orders of features being included (Lundberg and Lee, 2017; Lundberg et al., 2018):

φi(f, x) = ∑
S ⊆ Sa/ ∧ i

S !(M − S − 1)!
M ! fx(S ∪ i ) − fx(S)

where M is the total number of features, |S| denotes number of entries in set S and the ∪term 

fx(S∪{i}) – FX(S) is the marginal contribution of feature i. In SHAP, the marginal impact of 

a feature is defined as the change in the expected value of the model output f(x) when that 

feature is observed versus unknown:
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fx(S ∪ i ) − fx(S) = E f(x) ∣ xs ∪ i − E f(x) ∣ xs ,

where xs is a subset of features with only set S is observed.

Partial least squares regression (PLSR) modeling—We used PLSR analysis to test 

whether the relationships between the patterns of AP-1 gene expression and melanoma 

differentiation state were recapitulated at the transcriptional level. Bulk RNA sequencing 

data of 53 melanoma cell lines used for PLSR analysis were obtained from Tsoi et al. 

(Tsoi et al., 2018). We first log2-transformed the gene expression data (reported as FPKM) 

with an offset of 1. Input vectors for PLSR analysis were then created by combining the 

z-scored expression data for fifteen AP-1 transcription factor family genes, including FOS, 

FOSL1, FOSL2, FOSB, JUN, JUNB, JUND, ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, 

ATF6B and ATF7, across 53 cell lines. The response variables for each cell line were then 

assembled as a series of seven signature scores, defined as the average of z-scores for the 

expression levels of differentiation state signature genes (Tsoi et al., 2018). The PLSR model 

was trained in python using the scikit-learn library and the PLSRegression() function. To 

evaluate the predictability of the linear relationship between the input and output variables 

using the same dataset, we used leave-one-out cross-validation by LeaveOneOut() function. 

To independently validate the model, we used RNA sequencing data from an independent 

panel of 32 melanoma cell lines in the Cancer Cell Line Encyclopedia (CCLE) (Ghandi et 

al., 2019). As with the training dataset, we first log2-transformed the CCLE gene expression 

data (reported as RPKM) with an offset of 1. We then created input vectors by combining 

the z-scored expression data for fifteen AP-1 transcription factor family genes and used them 

in the optimized PLSR model (using the first four PLS components) trained against the 

original set of 53 cell lines to predict the differentiation signature scores in the new set of 32 

cell lines.

The PLSR model performance was evaluated in terms of fraction of variance explained (R2) 

or predicted (Q2) using the explained_variance_score() function. We assessed the relative 

importance of each AP-1 factor in the PLSR model based on the variable importance in 

projection (VIP) scores, computed for the first four PLS components, at which the PLSR 

model achieves its optimal performance (Wold, 1994). To help interpret the directionality of 

the contribution, we multiplied the VIP score for each AP-1 factor by the sign of Pearson 

correlation coefficient between its expression levels and differentiation signature z-scores.

We compared the performance (based on 10-fold cross validation) of optimized PLSR 

model, built based on the top eight AP-1 genes (FOS, FOSL1, FOSL2, JUN, JUNB, JUND, 

ATF2 and ATF4) with optimized models built using combinations of eight randomly chosen 

basic leucine zipper (bZIP) transcription factors (Vinson et al., 2002) or eight randomly 

chosen transcription factors (Van de Sande et al., 2020) (excluding those that were explicitly 

involved in the differentiation signature genes) by computing empirical p values using 

100,000 and 500,000 iterations, respectively.

To identify dynamic patterns of AP-1 changes that are associated with drug-induced changes 

in differentiation state, we constructed a PLSR model to relate DMSO-normalized changes 
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in AP-1 proteins to DMSO-normalized changes in differentiation state. The input vector 

consists of DMSO-normalized population measurements of the seventeen AP-1 proteins, 

including cFOS, p-cFOS, FRA1, p-FRA1, FRA2, cJUN, p-cJUN, JUNB, JUND, p-ATF1, 

ATF2, p-ATF2, ATF3, ATF4, p-ATF4, ATF5 and ATF6, at 24 h and 72 h, z-scored across 

two MAPK inhibitor treatment conditions and eighteen cell lines. DMSO-normalized AP-1 

measurements were calculated as the log ratios of drug-treated AP-1 levels relative to 

the DMSO control. The response vector is composed of the DMSO-normalized changes 

in differentiation state, which is calculated as log
(NGFR/MITF )Drug

(NGFR/MITF )DMSO
. Model training, 

cross-validation and performance evaluation were performed the same way as in the gene-

expression PLSR model. VIP scores were computed for the first three PLS components.

Uniform manifold approximation and projection (UMAP)—UMAP was performed 

in R using the umap package (0.2.7.0). For single-cell protein data, we first performed 

principal component analysis (PCA) using the prcomp() function on the z-scored log-

transformed data and selected the PCA scores from the first four principal component 

for UMAP analysis. The parameters used in generating the UMAP for single-cell protein 

data include nearest neighbor (n_neighbors) = 90, minimum distance (min_dist) = 0.7 and 

distance metric (metric) = Euclidean.

Hierarchical clustering—Unsupervised hierarchical clustering of population-averaged 

AP-1 protein measurements was carried out in R using the stats (4.1.2) package. Clustering 

was performed using the hclust() function with the average algorithm as the agglomeration 

method. The distance matrix used for clustering was evaluated using the dist() function, with 

Pearson’s correlation as the distance metric.

Single-cell regulatory network inference and clustering (SCENIC)—For the 

SCENIC analysis of melanoma cell lines, the baseline regulon activities inferred by the 

SCENIC workflow (Aibar et al., 2017; Van de Sande et al., 2020) were obtained from 

the .loom file published by Wouters et al. (Wouters et al., 2020). The.loom file was imported 

to R for downstream analysis using the SCopeLoomR package (0.13.0).

Single-cell RNA sequencing data for patient-derived melanoma tumors were obtained from 

previous studies published by Tirosh et al. (Tirosh et al., 2016) and Jerby-Arnon et al. 

(Jerby-Arnon et al., 2018). Single-cell gene expression analysis and SCENIC was focused 

on 2072 malignant melanoma cells, which were distinguished (by the authors) from non-

malignant cells based on gene copy number variations. For quality control, we first selected 

14,689 genes which were detected in more than 1% of the cells (i.e., 20 cells) with at least 

103 logged TPM counts, using the single-cell analysis toolkit Scanpy (1.7.1) (Wolf et al., 

2018) in Python. Using this dataset, we then inferred regulons using pySCENIC (0.11.0) 

in a Nextflow pipeline adapted from Wouters et al. (Wouters et al., 2020), performing 100 

SCENIC runs on the data. As in Wouters et al.’s regulon filtering criteria, only regulons that 

had more than 10 target genes and recurred in at least 80/100 runs were retained. Target 

genes (used in AUCell calculation) that appear in at least 80% of the runs in regulons 

that recurred 100 times, and all target genes for regulons that recurred 80–100 times were 

retained. This analysis pipeline resulted in 373 motif regulons.
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Partial correlation analysis—Partial correlation analysis is used for the evaluation of 

correlations between pairs of variables while controlling for the variance explained by a 

third variable. We used pairwise partial correlation analysis to evaluate correlations between 

changes induced by MAPK inhibitors in each of the AP-1 protein levels and p-ERK levels 

across different cell lines, while controlling for the baseline (drug-naïve) variance of AP-1 

levels across the same cell lines. AP-1 and p-ERK data were averaged across two replicates 

and log-transformed. To assess if any of the AP-1 factors would capture drug-specific 

changes in ERK signaling, we then used the Matlab function partialcorr() to evaluate the 

Pearson’s partial correlation coefficients (and the associated p values) between p-ERK and 

AP-1 levels across cell lines for each MAPK inhibitor treatment condition, while correcting 

for differences in their baseline (DMSO condition) AP-1 levels.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell protein abundance was quantified from microscopy images using CellProfiler 

(3.1.9). No statistical method was used to predetermine sample size. Sample sizes were 

chosen based on similar studies in the relevant literature. The experiments were not 

randomized. The investigators were not blinded to allocation during experiments and 

outcome assessment. All boxplots and violin plots highlight the median, lower and upper 

quartiles. Whiskers in boxplots indicate 1.5 times interquartile ranges. Sample size (i.e., 

number of cells or replicates) are indicated in the figure legend. The significance of pairwise 

correlations were evaluated based on p values associated with the corresponding two-sided 

Pearson’s correlation analysis. Statistical significance of changes in population-averaged 

protein abundance across different drugs and/or timepoints were determined based on one-

way or two-way analysis of variance (ANOVA), as indicated in the figure legends. To 

identify the statistical significance of differences between mean of measurements of two 

different groups, p values were determined using paired or unpaired two-sided t test, as 

indicated in the figure legends. Statistical analyses were performed using MATLAB (2020b) 

and R (4.0.4).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• AP-1 protein levels in a melanoma cell can predict its differentiation state

• Higher cFOS levels associate with differentiated and transitory cells

• FRA1, FRA2, and cJUN correlate with less differentiated states

• Perturbing AP-1 molecular balance induces cell-state switching
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Figure 1. Single-cell AP-1 protein levels predict differentiation state heterogeneity in melanoma 
cells
(A) Schematic representation of the iterative indirect immunofluorescence imaging (4i) 

procedure used in this study to generate multiplexed single-cell data on 17 AP-1 proteins 

and 4 differentiation state markers. Representative images of selected AP-1 transcription 

factors and differentiation state markers are shown for LOXIMVI cells. Scale bars represent 

20 μm. Hoechst staining of nuclei is shown in blue, while staining of the indicated protein is 

shown in red.
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(B) Population-averaged measurements of 17 AP-1 proteins and 4 differentiation state 

markers acquired across 19 BRAF-mutant melanoma cell lines. Protein data shown for 

each condition represent the log-transformed mean values for two replicates, followed by Z 

scoring across all cell lines. Data are organized only on the basis of hierarchical clustering 

of AP-1 protein measurements with Pearson correlation distance metric and the average 

algorithm for computing distances between clusters.

(C) Natural frequency of cells in each differentiation state (defined on the basis of MITF, 

SOX10, NGFR, and AXL levels) across 19 BRAF-mutant melanoma cell lines.

(D) The percentage of cells sampled from each of the 19 cell lines and their corresponding 

differentiation states used in the random forest model.

(E) Confusion matrix showing the independent validation performance of the random forest 

classifier in predicting the differentiation state of cells on the basis of single-cell AP-1 

measurements. The model was trained using a group of 8,000 cells and validated using 

an independent group of 2,000 cells. The prediction accuracy and area under the receiver 

operating characteristic curve (ROC AUC) are shown as an overall measure of the classifier 

performance.

(F) Distributions of shapley additive explanations (SHAP) scores for each AP-1 factor across 

individual cells from the independent validation set. The color indicates the Z score-scaled, 

log-transformed level of each AP-1 protein at a single-cell level. For each differentiation 

state, AP-1 factors are ordered on the basis of the mean absolute values of their SHAP 

scores.

(G) Classification performance of the random forest model on the basis of varying numbers 

of top AP-1 factors (on the basis of their SHAP values) used as pre-dictors.

(H) UMAP analysis of the sampled melanoma cells (as shown in D) on the basis of their 

multiplexed levels of top 6 predictive AP-1 measurements (FRA2, p-cFOS, ATF4, cFOS, 

p-FRA1, and cJUN). Cells are colored on the basis of their differentiation states.

(I) Single-cell levels of the top six AP-1 proteins overlaid on UMAP plots for representative 

cell lines.
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Figure 2. AP-1 transcript levels predict variations in differentiation state across melanoma lines
(A) Comparison between differentiation signature scores computed on the basis of RNA 

sequencing data for 53 cell lines reported by Tsoi et al. (left) and PLSR-predicted scores 

(following leave-one-out cross-validation) for each cell line on the basis of their transcript 

levels of 15 AP-1 genes (right). M, melanocytic; MT, melanocytic-transitory; T, transitory; 

TN, transitory-neural crest-like; N, neural crest-like; NU, neural crest-like-undifferentiated; 

U, undifferentiated.

(B) Performance of the PLSR model evaluated by computing the fraction of variance in 

differentiation signature scores explained (R2) or predicted on the basis of leave-one-out 

cross validation (Q2) with increasing number of PLS components.

(C) Comparison between differentiation signature scores computed on the basis of RNA 

sequencing data of 32 CCLE cell lines (left) and predicted scores on the basis of the PLSR 

model built for the original set of 53 cell lines (right).

(D) PLSR scores (of the first two PLS components) for each cell line colored according 

to their differentiation signature scores for melanocytic, transitory, neural crest-like, and 

undifferentiated states.

(E) PLSR-derived variable importance in projection (VIP) scores, highlighting combinations 

of AP-1 transcripts that are predictive of differentiation signature scores for melanocytic, 

transitory, neural crest-like, and undifferentiated states. The sign of the VIP score shows 

whether the indicated variable (AP-1 transcript level) positively or negatively contributes to 

a given differentiation signature. Significant VIP scores (of greater than 1 or smaller than 

−1) are highlighted.
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(F) Comparison of performance (with respect to differentiation state prediction) between the 

PLSR model based on transcript levels of the top 8 AP-1 transcription factors with models 

based on transcript levels of combinations of 8 randomly chosen bZIP family transcription 

factors (n = 1 × 105 iterations; left panel) or built on the basis of 8 randomly chosen 

transcription factors (n = 5 × 105 iterations; right panel). Empirical p values were reported 

for the comparison of predicted variances on the basis of ten-fold cross-validation.
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Figure 3. Single-cell network inference reveals the role of AP-1 activity in regulation of 
differentiation state programs
(A–D) Single-cell distributions of the activity of SCENIC regulons for FOSL2 (A), JUN 

(B), FOSL1 (C), and FOS (D) motifs, measured using AUCell in individual cells (from 10 

melanoma cell lines profiled by Wouters et al.) across distinct differentiation states. The 

differentiation state of individual cells was determined on the basis of their gated levels of 

enrichment (quantified by AUCell) for the differentiation gene signatures as defined by Tsoi 

et al.

(E–I) Single-cell distributions of the AUCell activity of SCENIC regulons for FOSL2 (E), 

JUN (F), FOSL1 (G), and FOS (H) motifs, as well as the ratio of FOS and JUN regulon 

activities (I), quantified in individual cells from 11 treatment-naive melanoma tumors as 

profiled by Tirosh et al. and Jerby-Arnon et al. Statistical comparisons were performed using 

two-sided unpaired t tests. Boxplot hinges correspond to the lower and upper quartiles, with 

a band at the median. Whiskers indicate 1.5 times interquartile ranges.
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Figure 4. MAPK inhibitor-induced changes in AP-1 protein levels, p-ERK and differentiation 
state markers
(A) Population-averaged measurements of 17 AP-1 proteins, differentiation state markers 

MITF and NGFR, and p-ERKT202/Y204 levels acquired across 18 BRAF-mutant melanoma 

cell lines. Protein data shown for each condition represent the log-transformed mean values 

for two replicates, followed by Z scoring across all cell lines and treatment conditions, 

including DMSO, vemurafenib alone (at 0.316 μM), or the combination of vemurafenib (at 

0.316 μM) and trametinib (at 0.0316 mM) for 24 or 72 h.

(B) MAPK inhibitor-induced changes in differentiation state, as evaluated by log-

transformed ratio of NGFR to MITF protein levels across cell lines at 72 h. Central marks 

on the data points indicate the mean between two replicates. p values represent one-way 

ANOVA test for differences across treatment conditions in each cell line.
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Figure 5. MAPK inhibitor-induced changes in cJUN and p-cJUN levels correlate with drug-
induced changes in differentiation states
(A) Performance of the PLSR model in predicting drug-induced changes in differentiation 

states on the basis of drug-induced AP-1 modifications. Model performance was evaluated 

by computing the fraction of variance in DMSO-normalized differentiation state changes at 

72 h explained (R2) or predicted on the basis of leave-one-out cross validation (Q2) with 

increasing number of PLS components.

(B) PLSR-derived variable importance in projection (VIP) scores, highlighting combinations 

of DMSO-normalized AP-1 modifications at 24 and 72 h, and their importance for 

predicting the DMSO-normalized differentiation state changes at 72 h. The sign of the VIP 

score shows whether the indicated variable (DMSO-normalized AP-1 protein levels at 24 

or 72 h) positively or negatively contributes to the response (DMSO-normalized change in 

differentiation state).

(C) Pearson’s correlation between DMSO-normalized changes in differentiation state and 

DMSO-normalized cJUN or p-cJUN levels at indicated time points and drug treatment 

conditions. Each data point represents population-averaged measurements across two 

replicates for each cell line.

(D) Analysis of covariance between the levels of p-cJUN or c-JUN and drug-induced 

changes in differentiation state (as evaluated by NGFR-MITF ratio) at the single-cell level 

across indicated treatment conditions. For each cell line, Pearson’s correlation coefficient 

was calculated on the basis of 300 randomly sampled cells (100 cells from each treatment 

condition).
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Figure 6. MAPK inhibitor-induced changes in p-FRA1 levels correlate with efficiency of ERK 
pathway inhibition across cell lines
(A) Population-averaged measurements of p-ERKT202/Y204 levels in 18 cell lines following 

indicated MAPK inhibitor treatments for 24 or 72 h. Bar height indicates mean values 

between two replicates shown as black dots. p values show the statistical significance of the 

impact of MAPK inhibitor treatment (blue) or time (red) on p-ERK levels on the basis of 

two-way ANOVA.

(B) Statistical comparison (using two-sided paired t test) of p-ERK levels across 18 cell lines 

following indicated MAPK inhibitor treatments for 24 or 72 h. Each data point represents 

population mean of p-ERK levels between two replicates for each cell line.
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(C) Pairwise partial correlations (evaluated across 18 cell lines) between each of the 17 AP-1 

measurements and p-ERK levels following 24 or 72 h of treatment with MAPK inhibitors, 

while correcting for the corresponding baseline (drug-naive) AP-1 levels in the same cell 

lines.

(D) Pearson’s correlation (top row) and partial correlation (bottom row) between p-ERK 

and p-FRA1 levels following MAPK inhibitor treatments at indicated time points. Each data 

point represents population mean of p-ERK levels between two replicates for each cell line.

(E) Analysis of covariance between p-FRA1 and p-ERK levels across indicated MAPK 

inhibitor treatment conditions at the single-cell level. For each cell line, Pearson’s 

correlation coefficient was calculated on the basis of 400 randomly sampled cells (100 cells 

from each treatment condition).
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Figure 7. Perturbation of AP-1 state by siRNA confirms its role in driving differentiation state 
heterogeneity
(A) The effect of siRNA-mediated depletion (for 96 h) of AP-1 proteins cFOS, FRA2, 

cJUN, and JUND, either individually or in pairwise combinations, on protein levels of 

cFOS, FRA1, FRA2, cJUN, and JUND and differentiation state markers MITF and SOX10 

in COLO858 cells. Protein data shown for each condition represent the log-transformed 

mean values for three and six replicates across AP-1 knockdown conditions and the control, 

respectively. The central mark on the plots indicates the median across replicates. Statistical 

comparisons were performed using two-sided unpaired t tests.

(B) Two-dimensional projection of MITF and SOX10 levels (in log scale) following 96 h of 

siRNA knockdown in COLO858 cells.

(C and D) Statistical comparison (using two-sided unpaired t test) of selected AP-1 proteins 

and SOX10 levels across indicated siRNA knockdown conditions in C32 (C) and LOXIMVI 

(D) cells. Protein data shown for each condition represent the log-transformed mean values 

for three and six replicates across AP-1 knock-down conditions and the control, respectively. 

The central mark on the plots indicates the median across replicates.
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