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Impact of individual and treatment characteristics on wearable
sensor-based digital biomarkers of opioid use
Brittany P. Chapman 1, Bhanu Teja Gullapalli2, Tauhidur Rahman2, David Smelson3, Edward W. Boyer4 and Stephanie Carreiro 1✉

Opioid use disorder is one of the most pressing public health problems of our time. Mobile health tools, including wearable sensors,
have great potential in this space, but have been underutilized. Of specific interest are digital biomarkers, or end-user generated
physiologic or behavioral measurements that correlate with health or pathology. The current manuscript describes a longitudinal,
observational study of adult patients receiving opioid analgesics for acute painful conditions. Participants in the study are
monitored with a wrist-worn E4 sensor, during which time physiologic parameters (heart rate/variability, electrodermal activity, skin
temperature, and accelerometry) are collected continuously. Opioid use events are recorded via electronic medical record and self-
report. Three-hundred thirty-nine discreet dose opioid events from 36 participant are analyzed among 2070 h of sensor data. Fifty-
one features are extracted from the data and initially compared pre- and post-opioid administration, and subsequently are used to
generate machine learning models. Model performance is compared based on individual and treatment characteristics. The best
performing machine learning model to detect opioid administration is a Channel-Temporal Attention-Temporal Convolutional
Network (CTA-TCN) model using raw data from the wearable sensor. History of intravenous drug use is associated with better
model performance, while middle age, and co-administration of non-narcotic analgesia or sedative drugs are associated with worse
model performance. These characteristics may be candidate input features for future opioid detection model iterations. Once
mature, this technology could provide clinicians with actionable data on opioid use patterns in real-world settings, and predictive
analytics for early identification of opioid use disorder risk.
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INTRODUCTION
Opioid use disorder (OUD) is one of the most pressing public
health problems of our time, with staggering morbidity, mortality,
social impact, and economic costs. In 2021, roughly twelve lives
were lost in the United States every 60min to an overdose death,
and more than half of these deaths were linked to opioids1.
Overdose-related death however, is only one of the many
devastating consequences of OUD; the associated morbidity also
has significant physical, social, and financial tolls2–5. Prescription
opioids play a critical role in the opioid crisis as they increase
exposure and availability in the general population. Increased
opioid prescribing has been clearly linked to problematic opioid
use, and prescription opioids are often the first source of exposure
for individuals who go on to develop OUD. This makes
prescription opioids a compelling target for prevention and risk
mitigation strategies.
The rapidly expanding field of mobile health (mHealth) could

provide unique advantages to prescription opioid monitoring. Of
specific interest are digital biomarkers, or end-user generated
physiologic or behavioral measurements that correlate with
events of interest, health, or pathology6–8. Potential benefits of
mHealth devices include portability, low cost, and ease of use that
make them particularly attractive solutions. With regards to clinical
applications within the opioid use space, a robust mHealth
ecosystem could provide support for healthcare providers across
the spectrum of care. Automated, objective detection of opioid
ingestion could give providers valuable data on the the quantity
and patterns of opioid use, and model how the individuals’
physiologic response to opioids changes over time. These models

could be correlated with clinical outcomes, and used to predict
risk of OUD using individualized adaptive learning strategies.
Beyond monitoring, digital biomarkers of opioid use could be
used to trigger just-in-time (and just-in-space) adaptive interven-
tions to mitigate the risk of opioid misuse or OUD. In individuals
with OUD, opioid use detection could be leveraged as a harm
reduction strategy by adapting models for opioid overdose
detection. And finally for those in recovery, mHealth tools could
be leveraged to augment treatment with the partial opioid agonist
buprenorphine. However, first an accurate empirical model for the
detection of opioid use events must be established, and the
baseline algorithm needs to be optimized to understand what
patient and treatment level factors impact digital biomarkers of
opioid use.
Preliminary work has demonstrated that physiologic changes

are evident in wearable sensor data surrounding opioid use and
that there are qualitative differences on those sensor-based
biomarkers depending on opioid exposure history (i.e., previously
opioid-naive individuals versus those with a history of chronic
use). Individuals with chronic opioid use display physiologic
changes consistent with withdrawal symptoms immediately prior
to an opioid administration9,10, which is intuitive given our
knowledge of opioid dependence over time. However, other
factors are expected to play an important role in an individual’s
response to opioids, and therefore in our ability to detect them.
For example, sex-based differences in overall kinematics11,12 and
heart rate variability13 are expected to impact accelerometry and
photoplethysmography (PPG) measurements, respectively. Speci-
fic to opioid effect, we expect to see sex-based differences on
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sedation, locomotion, and analgesia14–16. Age is an individual
attribute expected to impact parameters such as heart rate
variability (HRV)17 and locomotion18. Concomitantly administered
medications and medical interventions also create potential
confounders in our ability to continuously measure opioid
physiology. Sympatholytics (i.e., beta-adrenergic antagonists)
and sedatives are expected to blunt increases in heart rate and
electrodermal activity (EDA), while stimulants (i.e., amphetamines,
nicotine) are expected to exaggerate changes in these parameters.
Similarly, understanding the contribution and importance of

each sensor feature in our ability to detect digital biomarkers of
opioid use is crucial to optimizing a sensor array. Each sensor
consumes energy, creates computational cost through its data
processing needs, and increases the expense of the device.
Identifying the optimal data streams needed (and perhaps more
importantly, identifying those that are not needed) will ultimately
lower cost, minimize computational complexity, save battery life,
and allow for the use of more compact and aesthetically appealing
sensors.
To address these knowledge gaps, we collected a longitudinal

dataset from hospitalized patients receiving repeated doses of
opioid analgesics to achieve the following aims: (a) Characterize
wearable sensor-based feature changes that occur with repeated
opioid administration; (b) Train and optimize an updated machine
learning model on these data to detect opioid use events; and, (c)
Explore which individual and treatment factors are associated with
model performance including sex, substance use history, medical
history, and concomitantly administered medications.

RESULTS
Sample participant characteristics and opioid administration
patterns
Thirty-six participants were enrolled in this study. The sample was
42% female and 83% Caucasian. Additional participant character-
istics are outlined in Table 1. Forty-two percent of participants
were classified as individuals who use opioids chronically, 47%
had received at least one opioid prescription in the last year, and

81% reported using at least one substance at baseline (inclusive of
tobacco and/or alcohol (Table 2). Mean duration of study
participation (hospitalization) was 3.8 days (±3.3, range 1–14).
Five of the participants had no recorded opioids administered

during the study period, despite having been prescribed them. A
total of 2070 h of sensor data were obtained, and 339 discreet
dose intravenous opioid administrations were captured. One
hundred thirty-four hours (6.5%) of sensor data were removed due
to non-physiologic values, as described in the Methods section
(Machine Learning Model Development). The most common
opioid administered was morphine (69% of administrations)
followed by hydromorphone (31%). The mean morphine milligram
equivalents (MME) per day was 64.2 (±57.0, range 0.0–240.0), and
mean MME over the course of the study was 213.8 (±316.0, range
18.0–1,577.0).

Performance of individual sensor features
Of the sensor-derived features listed in Table 3, statistically
significant differences were found from pre- to post-
administration in multiple domains including: a increase in
accelerometer (ACC) mean frequency, increase in maximum skin
temperature, increase in EDA standard deviation (SD), decrease in
mean heart rate (HR), and increase in low frequency (LF) HRV
(Fig. 1). A complete list of significant features and corresponding F
scores are listed in the Supplementary Material (Supplementary
Table 1).

Machine learning model to detect opioid administration
After developing all of the models described in the Methods
Section (Machine Learning Model Development) using both raw
sensor data and the 51 calculated features described in there
Methods Section (Feature Performance Analysis, a Channel-
Temporal Attention-Temporal Convolutional Network (CTA-TCN)
model using only raw sensor data demonstrated the best overall
performance to predict opioid administration events (Table 4). A
CTA-TCN model incorporates both temporal and spatial data in
outcome prediction decisions. In the case of the present dataset, it
allows for sequential prediction of our two outcomes of interest:

Table 1. Participant demographics.

Overall

(N= 36)

Age (in years)

Mean (SD) 50.6 (14.8)

Median [Min, Max] 48.5 [22.0, 79.0]

Sex

Male 21 (58.3%)

Female 15 (41.7%)

Race

American Indian or Alaska Native 2 (5.6%)

Black or African American 2 (5.6%)

White 30 (83.3%)

Hispanic/Latinx 2 (5.6%)

Dominant Hand

Left 4 (11.1%)

Right 30 (83.3%)

Body Mass Index

Mean (SD) 28.5 (6.55)

Median [Min, Max] 28.0 [16.6, 42.6]

Chronic Pain History 16 (44.4%)

Psychaitric History 24 (66.7%)

Table 2. Participant substance use history.

Overall

(N= 36)

Opioid Use Class

Naive 14 (38.9%)

Occasional 7 (19.4%)

Chronic 15 (41.7%)

Substance Use, Current 29 (80.6%)

Substance Use Type, Current

Tobacco 4 (11.1%)

EtOH 7 (19.4%)

Cannabis 3 (8.3%)

Heroin 0 (0%)

Other Opioids 2 (5.6%)

Substance Use Disorder Diagnosis, Lifetime 24 (66.7%)

Tobacco Use, Lifetime 29 (80.6%)

Alcohol Use, Lifetime

Social 12 (33.3%)

Moderate/binge 6 (16.7%)

Heavy 11 (30.6%)

IVDU, Lifetime 4 (11.1%)
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first, it will predict whether or not an opioid administration has
occurred (positive class), and if the positive class is predicted, then
it will predict when in the data window it occurred. Model
performance was optimized with a window size of 100 min, a
sliding window of 20 min, and an opioid administration in the
center of the window (at 50min). The best performing model had
the following metrics: model’s F1 score of 0.80 ± 0.10, specificity of
0.77 ± 0.14, sensitivity of 0.80 ± 0.17, area under the curve (AUC) of
0.77 ± 0.10, mean-absolute error (MAE) of 8.6 min ±2.4, and R2

coefficient 0.85. The receiver operating characteristic (ROC) curve
for this model is presented in Fig. 2. Details and development of
the CTA-TCN model architecture are out of the scope of this paper,
and are described elsewhere19).

Model performance stratified by individual characteristics
Performance by select subgroups are displayed graphically in Figs.
3, 4. Graphical results for the remaining subgroups tested are

presented in the Supplementary Material (Supplementary Figs.
1–3).
With respect to age, the model was most accurate and specific

in the oldest and youngest groups of participants (those over 60
and under 40 years of age, respectively) compared to the middle
age groups (40–60 years of age), and these differences were
statistically significant (Fig. 3). In the small subset of participants
with a history of intravenous drug use (IVDU), the model was more
accurate compared to those without a history of IVDU (95% vs.
75%, respectively, p= 0.04, Fig. 4). With regard to opioid use
classification, the negative predictive value of the model was
significantly better in participants categorized as naive or those
with occasional opioid use (compared to those with chronic use).
Accuracy was also slightly higher in these groups, although not
significantly (Fig. 4). No significant differences in model perfor-
mance were found based on sex, body mass index (BMI), parity
(for female participants), history of chronic pain, psychiatric
history, lifetime history of tobacco use, lifetime history of alcohol
use, or current substance use type. Due to lack of racial diversity in
the sample, racial subgroups could not be evaluated.

Model performance stratified by treatment characteristics
Treatment characteristics explored included predominant type of
opioid administered, total MME administered over the study
course, and duration of hospitalization. The impact of concomi-
tantly administered medications from classes of particular interest
(beta-adrenergic antagonists (or beta-blockers), calcium channel
blockers (CCB), sedatives, stimulants, and non-narcotic analgesics)
were also evaluated.
Model metrics were negatively correlated with both total MME

administered (Fig. 5) and total duration of hospitalization (Fig. 6).
Specificity and accuracy showed a significant downward trend as
total MME increased. Similarly, sensitivity, specificity, and accuracy
all decreased significantly as length of hospitalization increased.
No significant differences were noted based on predominant
opioid type administered.
The impact of concomitantly administered medications from

other classes was evaluated by considering opioid detection
model metrics for each participant-day, stratified by whether a
given class of medication was co-administered on that day. Model
metrics by daily co-administered medication administration status
are shown in Fig. 7. Accuracy and specificity were significantly
decreased on study days where a non-narcotic analgesic was co-
administered (74% vs. 66%, and 72% vs. 62%, respectively).
Sensitivity decreased significantly on days when a sedative was
co-administered (75.5% vs. 61.0%). Model metrics (sensitivity and
accuracy) decreased on days where participants received a
calcium channel blocker or stimulant in addition to opioid
analgesics compared to those that did not; however, these
differences in model performance were not statistically significant.
There was no change in model performance based on beta-
blocker co-administration.

DISCUSSION
In a sample of 36 hospitalized patients receiving repeated doses of
intravenous opioids, as hypothesized, opioid administrations were
detectable using a machine leaning model on physiologic
wearable sensor data—an important innovation for the field.
Several statistical features derived from the wearable sensor data
changed notably from pre- to post-administration; specifically,
accelerometry-based features decreased overall, while skin
temperature, EDA, and HRV-based features increased overall.
The final best performing model did not utilize these statistical
features, however, but used raw sensor data in a format that
considered both temporal and spatial data relationships to make
decisions. It performed best in data windows with ample data

Table 3. List of features extracted from E4 physiological sensor
signals.

Domain Sensor data stream Feature

Time-Domain Accelerometry Minimum

Electrodermal Activity Maximum

Skin temperature Mean

Heart rate Median

SD

Skewness

Kurtosis

Interquartile range

Interbeat interval MeanNN

SDNN

RMSSD

SDSD

NN50

pNN50

Frequency-Domain Accelerometry Dominant frequency

Spectral entropy

Spectral energy

Minimum

Maximum

Mean

SD

Interbeat interval VLF

LF

HF

LF/HF ratio

LF (nu)

HF (nu)

SD Standard deviation, SDNN Standard deviation of NN intervals obtained
from the time-window, RMSSD Root mean square of successive differences
between heartbeats in the time-window, SDSD Standard deviation of
differences between consecutive NN intervals, NN50 The number of
successive NN interval that differ by more than 50ms in the time-window,
pNN50 The percentage of successive NN interval that differ by more than
50ms in the time-window, VLF Logarithmic of absolute power of very low
frequency band (0–0.04 hz), LF Logarithmic of absolute power of low
frequency band, LF(nu) Normalized absolute power of low frequency band,
HF(nu) Normalized absolute power of High frequency band.
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(100min) where the opioid administration occurred in the center
of the window (i.e., the model had at least 30 min of data before
and after the moment of administration to analyze). Overall,
model performance was fair to good; but there is room for
improvement prior to clinical deployment. Older (greater than 60
years) and younger (less than 40 years) age categories, and a
history of IVDU were associated with significantly better model
performance. Co-administration of non-narcotic analgesics, higher
total MME administered, and longer duration of hospital stay were
associated with significantly poorer model performance. Admin-
istration of cardioactive and sedative medications during the
hospital stay were associated with a small decrease in model
performance, although importantly, these decreases were not
statistically significant in this sample.
Even though the temporal convolutional neural networks-based

deep learning model performed better with raw data than with
calculated statistical features, the calculated features do provide
some insight about the physiologic phenomenon being captured
in the sensor data surrounding opioid use. Significant changes in

data were generally consistent with known opioid physiology and
prior work9, which provides reassurance that the phenomenon
being capturing is in fact opioid physiology. Decreases seen with
accelerometry are expected due to general sedation and
psychomotor slowing seen with opioids; in cases with mild opioid
effect, individuals’ movements are slow and impaired, in more
extreme cases (such as opioid toxicity), individuals are comatose
and thus exhibit minimal limb movement. Increases in EDA and
skin temperature shortly after opioid administration initially may
seem counter-intuitive for a drug class whose effects are overall
more sympatholytic in nature. But the relationship of opioids with
the autonomic nervous system is complex, with evidence for
opioid activation of both the parasympathetic and sympathetic
nervous systems20–23. However, we expect that these changes are
due to the well-established association between opioid use,
histamine release, and concomitant vasodilation24,25, resulting in a
brief period of warming/increase in conductance at the surface of
the skin, as opposed to an increase in sympathetic nervous system
activity. Increases in HRV parameters may be related to increased
parasympathetic tone in a more relaxed physical state: this is
consistent with, but not specific to, opioid effect.
These physiologic changes are expected to be sensitive but not

specific for opioid use. So when relying on physiologic parameters
as a measure of opioid detection, consideration must be given to
alternative agents that impact the same physiology. Common
agents expected to do this include sympatholytics (i.e., beta-
blockers, calcium channel blockers), sedatives (i.e., benzodiaze-
pines, barbiturates), and stimulants (i.e., amphetamines). Also, as
analgesia may play some role in the observed physiology, other
non-opioid analgesics (i.e., acetaminophen, non-steroidal anti-
inflammatory drugs) may also impact changes. Exploring these
variables in our dataset demonstrated that there seems to be a
consistent decrease in model performance in individuals who
receive concomitant medications (specifically on the days when
these medications are co-administered), but these were largely
not statistically significant decreases. Interestingly, the exception
were non-narcotic analgesics, which were associated with a
significant decrease in model performance. Although this needs to
be explored in a larger dataset, these data provide confidence that
our model can be expected to perform similarly in patients taking

Fig. 1 Significant features pre- to post-opioid administration. a HR Features, b IBI Features, c Skin Temperature Features, and d EDA and
ACC Features. Dark blue Pre-Opioid Mean, Light Blue Post-Opioid Mean. Max Maximum, SD Standard deviation, IBI Interbeat interval, SDNN SD
of NN intervals, VLF Logarithmic of absolute power of very low frequency band, LF Logarithmic of absolute power of low frequency band,
LF(nu) Normalized absolute power of LF band, IQR Interquartile range, EDA Electrodermal Activity, ACC Accelerometry, Min Minimum, Freq
Frequency.

Table 4. Performance metrics for all machine learning models.

Model F1 Score Specificity Sensitivity AUC

Logistic 0.64 ± 0.13 0.65 ± 0.14 0.48 ± 0.25 0.55 ± 0.17

BiLSTM 0.70 ± 0.10 0.71 ± 0.20 0.57 ± 0.30 0.70 ± 0.14

TCN 0.73 ± 0.11 0.72 ± 0.14 0.74 ± 0.18 0.74 ± 0.11

CNN-LSTM 0.72 ± 0.11 0.65 ± 0.17 0.82 ± 0.12 0.76 ± 0.12

LSTM-FCN 0.70 ± 0.08 0.71 ± 0.16 0.69 ± 0.14 0.72 ± 0.15

CTA-TCNa 0.80 ± 0.10 0.77 ± 0.14 0.80 ± 0.17 0.77 ± 0.10

AUC Area under the curve, BiLSTM Bidirectional Long Short-Term Memory,
TCN Temporal Convolutional Network, CNN-LSTM Convolutional Neural
Network Long Short-Term Memory, LSTM-FCN Long Short-Term Memory
with Fully Convolutional Network, TCA-CTN Channel-Temporal Attention-
Temporal Convolutional Network.
aDenotes best performing model.
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Fig. 2 ROC curve for CTA-TCN model. CTA-TCN Channel-Temporal Attention-Temporal Convolutional Network. AUC Area Under the Curve.
ROC Receiver Operator Characteristic.
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concomitant medications which act on the sympathetic nervous
system, and that the contribution of pain (and analgesia) to our
signal should be explored more carefully.
The negative correlation between model performance and both

length of hospitalization and total MME administered was
unexpected. In both cases, this may be related to a few outliers
that had extreme values compared to the rest of the sample. An
alternative hypothesis is that the participants who received more
opioids were overall sicker, or had more pain. Consistent with
previous work, there were differences based on opioid use history
which we hypothesize are related to differences in physiologic
adaptations (i.e., tolerance and dependence); however, using the
present model, these were not as strong as previously noted. This
will be further explored in future work.
One of the core challenges of mobile sensing in the space of

OUD is that labeled data is generally limited. Any complex
machine learning model trained on a small labeled dataset is
susceptible to model bias. This paper aims to investigate the
potential biases that our model might have across different
demographic, historical and comorbidity related factors. The first
step for potentially removing these biases from our model is to
identify and recognize the biases which is the main objective of
the paper. In the present dataset, our model performed slightly
better for certain groups based on individual and treatment
characteristics. From a computational standpoint, there are several
steps that can be taken to compensate for these biases. If the

training data is imbalanced with respect to a particular group/
factor and consequently the model has seen significantly more
data from a specific group/factor, the resulting model can be
biased. One way to avoid the bias is to ensure uniform data
collection across different groups and factors. Another approach
to compensate for model bias is to augment the training data with
synthetic data. Using prior knowledge about how different groups
and factors behave with respect to the wearable signals, synthetic
augmented datasets can be created that will emulate data
collection from diverse groups and factors. A model that is
trained with such a large synthetic augmented data can achieve a
higher generalizability across different factors and groups. This is
also a way to inject domain knowledge in the machine learning
pipeline.
Our approach has several strengths and limitations, largely

related to the generalizability of the findings to a more broad
population. Although participants were hospitalized, this was not
a completely controlled lab setting; they had some degree of
freedom to conduct activities of daily living (e.g., walking in-
patient rooms/halls, eating, drinking, etc.). We view this as a
strength which supports the capability of the model to detect
opioid administrations despite background noise of everyday life.
However, multiple limitations also impact generalizability specifi-
cally, inclusion of patients with a single painful diagnosis
(pancreatitis), and low racial and ethnic diversity. The inability to
evaluate performance based on racial subgroups due to low N
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compounded this problem. Given recent insights into differences
in wearable sensor data collection across skin tones8,26–28, the
possibility that models may perform differently in non-Caucasian
individuals should be explored. Another important limitation is the
inability to account for the contribution of change in pain to the
overall clinical picture. We attempted the collect electronic
medical record (EMR)-reported pain scores pre- and post-opioid
administration to include in the models; however, these were very
poorly documented and there was not enough data to be usable.
This will be an important parameter to collect prospectively for
future work. Our relatively small sample size is a limitation, both
from the diversity standpoint described above and from a
computational standpoint. Larger datasets would allow more
robust model evaluation on completely unseen test data, and will
be necessary for future work. Finally, the current algorithm only
considered intravenous opioid administration which is the least
common route of administration in the outpatient setting (when
considering therapeutic use). Pharmacokinetic differences (i.e.,
decreased bioavailability and delays due to absorption time) are
expected to make changes associated with oral opioid ingestions
more gradual in onset, and thus less physiologically pronounced.
This may pose a challenge for the models, and will be addressed
in future work.
Despite these limitations, this work advances the field towards

the goal of creating an automated opioid detection system in
several ways. First, it provides evidence that repeated opioid
exposures can be detected in longitudinal data streams. The

model is also able to detect not only if an opioid administration
occurred in a 1 h window, but also when. Second, it provides
insight into the physiologic changes being captured by the sensor
data, providing some level of interpretability and explainability to
the model. Notably, the physiologic signal changes are consistent
with known opioid effect, adding confidence to this strategy.
Finally, understanding the impact of participant-level and situa-
tional factors on the model accuracy provides insight on the
expected limitations of the system in practice: i.e., which
concomitantly administered drugs are expected to impact
accuracy and in which patients the system will work best. It also
provides information on which features should be included in
future models and which are inconsequential. Future work in this
space should be aimed at validating this model in- and out-of-
hospital settings, with other routes of administration (particularly
oral), and in diverse populations. Consideration should also be
given to incorporating personal (i.e., age) and situational (i.e., co-
administered medications) characteristics into a broadly applied
model, or prospectively stratifying individuals based on categories
of interest (i.e., drug use history, sex) and building unique models
for subgroups to improve performance.

METHODS
General study overview
All study-related procedures were reviewed and approved by the UMass
Chan Medical School (UMass Chan) Institutional Review Board (IRB). This
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was an observational study of adult patients receiving opioid analgesics for
an acute painful condition. Participants were asked to continuously wear a
wrist-mounted sensor and record all opioid doses received while in the in-
patient care setting (Fig. 8). Potential participants were identified through
screening of the electronic Emergency Department (ED) tracking board at
a large tertiary care academic medical center during normal business hours
(9 a.m.–5 p.m.). Individuals who screened in were approached while in the
ED, eligibility criteria were confirmed, and written informed consent was
obtained. Enrollment, device training, and initial interviews were
conducted in the participant’s hospital-based treatment room.

Inclusion and exclusion criteria
To be included in the study, patients needed to: (1) be 18 years of age or
older; (2) be admitted to the hospital for acute or chronic pancreatitis; (3)
have a treatment plan which included pain management with opioid
analgesics; (4) be fluent in English; and, (5) be capable of providing
informed consent. Patients with pancreatitis were selected because this
condition is generally managed in the in-patient setting with intravenous
opioid analgesics due to its characteristic severe pain. Patients were
excluded from the study if they were: (1) pregnant; (2) currently under
police custody; or, (3) had an amputation or other significant limitation of
motion (i.e., acute orthopedic injury) of the non-dominant arm that would
preclude sensor wear.

Wearable sensor data collection
A commercially available, noninvasive sensor (E4, Empatica Inc., Boston,
MA, USA, Fig. 9) was used to collect physiologic study data. The research-
grade device is water-resistant and has a battery life capable of recording
continuously for 48 h on a single charge. Empatica employs a 128-bit data

encryption strategy and does not record any direct identifiers on the
device. The E4 continuously detects and records skin temperature (in
degrees Celsius (C) at a rate of 4 Hz), triaxial accelerometry (in units g at a
rate of 32 Hz), electrodermal activity (in microsiemens at a rate of 4 Hz),
and heart rate/heart rate variability (measured via a photoplethysmogra-
phy sensor at a rate of 64 Hz). All sensor data were stored in the device’s
on-board integrated memory until downloaded to Empatica’s Health
Insurance Portability and Accountability Act (HIPAA)-compliant cloud-
based server (Empatica Connect) by research staff.
Participants wore the E4 on their non-dominant wrist from the time of

study enrollment until hospital discharge and were instructed to press the
event marker button on the device to indicate any opioid administration.
Daily check-ins were conducted by research staff to exchange sensors with
fully charged ones to ensure continuity of data acquisition and device
functionality.

Non-biometric data collection
Demographic and historical data. All non-biometric data was recorded
and stored in the Research Electronic Data Capture (REDCap) data
management platform29. Baseline information was collected on all
participants including demographics, medical/psychiatric history, surgical
history, and medication history (including home medications at the time of
hospital admission). A detailed substance use history was also obtained,
including an assessment of past and current opioid use (both licit and
illicit). All baseline data was verified to the extent possible in participant’s
electronic medical records, and any discrepancies between EMR data and
self-report were reconciled during follow-up interviews. Throughout the
study period, clinical data was abstracted from the EMR including route,
dose, type, and timing of all medications administered, and prescriptions
given at discharge. All opioid administrations were converted to morphine

r = −0.43
p = 0.03

0.6

0.8

1.0

0 5 10
Length of Hospitalization 

S
en

si
tiv

ity

r = −0.29
p = 0.03

0.4

0.6

0.8

1.0

0 5 10
Length of Hospitalization

S
pe

ci
fic

ity

r = −0.50

p = 0.00

0.6

0.7

0.8

0.9

1.0

0 5 10
Length of Hospitalization

A
cc

ur
ac

y

Fig. 6 Model metrics vs. duration of hospitalization. R and P values based on Pearson correlation.

B.P. Chapman et al.

8

npj Digital Medicine (2022)   123 Published in partnership with Seoul National University Bundang Hospital



milligram equivalents30. Pre- and post-opioid administration pain scores
were also abstracted from the EMR; however, the documentation of these
data was notably inconsistent, and the degree of missingness precluded
use in the final analysis.

Defining opioid use history classification. A spectrum of opioid use history
types were considered that ranged from individuals who are opioid-naive,
to those who use opioids chronically. Such distinctions are important to
consider in the context of the physiologic adaptations (i.e., opioid
tolerance and dependence). No standard definition exists to classify
individuals on this spectrum, and existing ones used in the literature vary
widely31–33. The classification definitions used were informed by prior
literature and content expert consensus, and focused on identification of
extreme outliers (i.e., those that most clearly fit into either extreme end of
the spectrum) with many participants falling into the middle category
(occasional opioid use). The opioid use history of each participant was
classified independently by two study team members after review of all
available self-report and EMR data related to past opioid use, using the
following definitions:

Opioid-naive: No provider-prescribed opioids within the past 6 months,
and no lifetime history of opioid misuse.

Chronic opioid use: Maintained on provider-prescribed opioids (i.e., for
chronic pain) at the time of study enrollment, ongoing opioid misuse/
Opioid Use Disorder (OUD), or a history of OUD with <5 years of
abstinence.

Occasional opioid use: Not meeting criteria above for naive or chronic
opioid use.
Any discrepancies that arose in classification were discussed by both

reviewers until consensus was reached.

Defining opioid administration events. For all opioid administrations
during the study period, there were two opportunities to capture the
ground truth data; participant report (annotation of data via sensor event
marker button press), and/or by clinical documentation in the EMR. For
administrations where there was a participant-generated annotation and
an EMR-documented administration time within 10min (i.e., opioid use is
simultaneously indicated between both sources of information), the
participant annotation time was used as the ground truth opioid
administration time. For instances where there was documentation of an
opioid administration in the EMR without an associated annotation from
the participant (assuming the participant forgot to annotate the event), the
EMR recorded time was used as the ground truth opioid administration
time. Only intravenous, discreet dose opioid administrations were used in
this analysis; administrations via the oral, transdermal, and continuous
infusion routes were excluded, as administrations with such significant
pharmacokinetic differences (particularly in absorption and elimination)
will require alternative modeling strategies.

Sensor feature performance analysis
To understand how sensor-measured features behave surrounding an
opioid administration (and to provide insight into the phenomena we are
aiming to model), sensor data was compared 15min pre-opioid
administration and 30min post-opioid administration. Both time and
frequency-domain features were extracted from the available sensor data
streams (Table 3), for a total of 51 features. Time-domain features indicate
signal change over time. Frequency-domain features are complementary
to time-domain features; they indicate how much a signal lies within each
given frequency over a range of frequencies, and allow for observation of
unique signal characteristics that cannot simply be observed in the time
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domain. Respective feature values were compared via students t-test to
determine which demonstrated significant changes.

Machine learning model development
Raw sensor data files were downloade from Empatica Connect in comma-
separated values (CSV) format, and uploaded to Python34 for analysis. Data
pre-processing included screening for invalid data (which may have
resulted form improper device wear, poor connection with skin, etc.) and
removing data points that were outside physiologic ranges (i.e., skin
temperature < 20 degrees C, brief HR spikes > 200 beats per minute (bpm),
and EDA values of zero).

The data was then split into 100min segments with a sliding window
length of 20min, and characterized as either having an opioid adminis-
tration occur within the window (positive class) or not (negative class).
Machine learning models of varying complexity were used including
logistic regression, Bidirectional Long Short-Term Memory (BiLSTM)35,
Temporal Convolutional Network (TCN)36, Convolutional Neural Network
Long Short-Term Memory (CNN-LSTM)37, Long Short-Term Memory with
Fully Convolutional Network (LSTM-FCN)38, and CTA-TCN39,40. Models were
trained using both raw sensor data and the calculated statistical features
described above. The outcome was framed as both a classification problem
(i.e., binary decision of whether or not an opioid administration occurred in
the window of data tested) and as a regression problem (i.e., when in the
data segment the opioid administration occurred). Leave one subject out
cross validation (LOSOXV) was used for model testing. Briefly, in LOSOXV,
data from one participant is withheld and all remaining data is used for
training; then the model is subsequently tested on the withheld
participant. This process is repeated N times (with N= number of
participants) and the results are averaged. Classification models (for binary
detection) were compared on sensitivity, specificity, weighted F-1 score,
and area under the receive operator characteristic curve (AUC), and
regression models (for opioid timing detection) were compared using
mean-absolute error. The best performing model was selected based on
these parameters.

Statistical analysis of individual and treatment characteristics
and impact on model performance
After selecting the best performing model, we sought to understand the
relationship of individual and treatment characteristics to overall model
performance (i.e., whether our model performed better in certain
individuals or under certain treatment conditions). Overall model
performance metrics (specificity, sensitivity, positive predictive value
(PPV), and negative predictive value (NPV)) were calculated for each
participant. To explore which factors impacted our model, we stratified
participants into subgroups based on demographics: age, sex, race, BMI,
historical data (opioid and other substance use history, psychiatric history,
and chronic pain history), and treatment characteristics (type and amount
of opioids received, duration of hospitalization, and co-administered
medications). Model performance was then compared across subgroups.
Descriptive statistics for baseline characteristics were calculated for the
sample. Hypothesis testing was performed to compare model performance
across categories: for normally distributed variables, students t-test (binary

Fig. 8 Flow diagram of study participation. BMI Body Mass Index, EMR Electronic Medical Record, EDA Electrodermal Activity, HR Heart Rate,
HRV Heart Tare Variability.

Fig. 9 Empatica E4. Photo by author, device purchased by author.
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variables) and ANOVA (greater than two groups) were used, and for non-
normally distributed variables, Wilcoxon rank sum (binary variables) and
Kruskal–Wallis H (greater than two groups) were used. Simple correlations
(Pearson’s r or Spearman’s r) were used to evaluate continuous variables.
All statistical analyses was performed in R41.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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