Table 4.
Model | F1 Score | Specificity | Sensitivity | AUC |
---|---|---|---|---|
Logistic | 0.64 ± 0.13 | 0.65 ± 0.14 | 0.48 ± 0.25 | 0.55 ± 0.17 |
BiLSTM | 0.70 ± 0.10 | 0.71 ± 0.20 | 0.57 ± 0.30 | 0.70 ± 0.14 |
TCN | 0.73 ± 0.11 | 0.72 ± 0.14 | 0.74 ± 0.18 | 0.74 ± 0.11 |
CNN-LSTM | 0.72 ± 0.11 | 0.65 ± 0.17 | 0.82 ± 0.12 | 0.76 ± 0.12 |
LSTM-FCN | 0.70 ± 0.08 | 0.71 ± 0.16 | 0.69 ± 0.14 | 0.72 ± 0.15 |
CTA-TCNa | 0.80 ± 0.10 | 0.77 ± 0.14 | 0.80 ± 0.17 | 0.77 ± 0.10 |
AUC Area under the curve, BiLSTM Bidirectional Long Short-Term Memory, TCN Temporal Convolutional Network, CNN-LSTM Convolutional Neural Network Long Short-Term Memory, LSTM-FCN Long Short-Term Memory with Fully Convolutional Network, TCA-CTN Channel-Temporal Attention-Temporal Convolutional Network.
aDenotes best performing model.