Skip to main content
. 2022 Aug 22;5:123. doi: 10.1038/s41746-022-00664-z

Table 4.

Performance metrics for all machine learning models.

Model F1 Score Specificity Sensitivity AUC
Logistic 0.64 ± 0.13 0.65 ± 0.14 0.48 ± 0.25 0.55 ± 0.17
BiLSTM 0.70 ± 0.10 0.71 ± 0.20 0.57 ± 0.30 0.70 ± 0.14
TCN 0.73 ± 0.11 0.72 ± 0.14 0.74 ± 0.18 0.74 ± 0.11
CNN-LSTM 0.72 ± 0.11 0.65 ± 0.17 0.82 ± 0.12 0.76 ± 0.12
LSTM-FCN 0.70 ± 0.08 0.71 ± 0.16 0.69 ± 0.14 0.72 ± 0.15
CTA-TCNa 0.80 ± 0.10 0.77 ± 0.14 0.80 ± 0.17 0.77 ± 0.10

AUC Area under the curve, BiLSTM Bidirectional Long Short-Term Memory, TCN Temporal Convolutional Network, CNN-LSTM Convolutional Neural Network Long Short-Term Memory, LSTM-FCN Long Short-Term Memory with Fully Convolutional Network, TCA-CTN Channel-Temporal Attention-Temporal Convolutional Network.

aDenotes best performing model.