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Lower-density Electroencephalography (EEG) recordings (from 1 to approximately 32 electrodes) are widely-used
in research and clinical practice and enable scalable brain function measurement across a variety of settings and
populations. Though a number of automated pipelines have recently been proposed to standardize and optimize
EEG pre-processing for high-density systems with state-of-the-art methods, few solutions have emerged that are
compatible with lower-density systems. However, lower-density data often include long recording times and/or
large sample sizes that would benefit from similar standardization and automation with contemporary methods.
To address this need, we propose the HAPPE In Low Electrode Electroencephalography (HAPPILEE) pipeline
as a standardized, automated pipeline optimized for EEG recordings with lower density channel layouts of any
size. HAPPILEE processes task-free (e.g., resting-state) and task-related EEG (including event-related potential
data by interfacing with the HAPPE+ER pipeline), from raw files through a series of processing steps including
filtering, line noise reduction, bad channel detection, artifact correction from continuous data, segmentation,
and bad segment rejection that have all been optimized for lower density data. HAPPILEE also includes post-
processing reports of data and pipeline quality metrics to facilitate the evaluation and reporting of data quality and
processing-related changes to the data in a standardized manner. Here the HAPPILEE steps and their optimization
with both recorded and simulated EEG data are described. HAPPILEE’s performance is then compared relative to
other artifact correction and rejection strategies. The HAPPILEE pipeline is freely available as part of HAPPE 2.0
software under the terms of the GNU General Public License at: https://github.com/PINE-Lab/HAPPE.

1. Introduction strumental in future research, given the current momentum towards

large-scale neuroscience studies that achieve community implementa-

Electroencephalography (EEG) recordings are a useful and nonin-
vasive tool for interrogating human brain function across the lifespan.
Advancements in neuroimaging technology and computer science have
allowed for rich data collection in laboratories through the use of high-
density channel layouts, but it is not always feasible or optimal to rely
on these dense layouts. Low-density channel layouts (fewer than ap-
proximately 32 channels) continue to be heavily used, particularly with
clinical populations, both in clinical research (Brito et al., 2019, 2016;
Gu et al., 2018; Pellinen et al., 2020; van den Munckhof et al., 2018)
and diagnostic testing (Aeby et al., 2021; Cassani et al., 2017; Paul et al.,
2019; Tiwari et al., 2017), as well as in low-resource areas (Kariuki et al.,
2016; Siddiqi et al., 2015; Sokolov et al., 2020; Williams et al., 2019).
A low-density EEG approach also provides the flexibility for researchers
to travel to participants for testing in natural contexts (e.g. school-based
or home-based studies, Troller-Renfree et al., 2021) or in the event that
participants cannot come to the lab. Low-density EEG will also be in-
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tion and the focus on precision medicine through brain-based biomark-
ers (e.g., potential EEG-based screening for Autism Spectrum Disorder at
well-child doctor’s visits), where high-density recordings may be neither
practical nor necessary. Indeed, a number of wearable, ultra-low-cost,
low-density EEG hardware solutions are emerging in industry to facil-
itate such measurement. A key impediment to the use of low-density
EEG in these contexts is the fact that the raw EEG signal is contaminated
by both environmental and physiological artifacts. Up to this point, re-
searcher selection of uncontaminated EEG data has been standard prac-
tice, but even with low-density data, this method is time-consuming,
subjective, and does not allow for the efficient processing of a large
number of data sets. Low-density EEG collected in clinical contexts that
can span hours may also preclude manual inspection due to recording
length. As a result, there remains a current and growing need for soft-
ware that standardizes and automates the processing and removal of
artifacts in low-density EEG data.
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There is now an extensive collection of automated EEG process-
ing pipelines (e.g., Andersen 2018; APP, da Cruz et al. 2018; MADE,
Debnath et al. 2020; EEG-IP-L, Desjardins et al. 2021; HAPPE, Gabard-
Durnam et al. 2018; Hatz et al. 2015; FASTER, Nolan et al. 2010; Au-
tomagic, Pedroni et al. 2019; EPOS, Rodrigues et al. 2020). However,
their reliance on independent component analysis (ICA) to segregate
and correct artifacts makes them unsustainable for low-density data,
as the limited number of channels provides insufficient independent
components for robust artifact isolation. Many of these pipelines also
use standard deviation-dependent approaches to identify outlier data
or channels as artifact-contaminated. These approaches may require
modification to scale down to low-density setups with few channels.
Other software tools built into these fully-automated pipelines to aid
in different stages of artifact detection are most effective when used
with high-density data or have not been validated in low-density data
(PREP, Bigdely-Shamlo et al. 2015a; SASICA, Chaumon et al. 2015;
Adjusted-ADJUST, Leach et al. 2020; ADJUST, Mognon et al. 2011; ASR,
Mullen et al. 2013; MARA, Winkler et al. 2014). A recent automated
mega-analysis by Bigdely-Shamlo et al. (2020) introduced a pipeline
that supports both high-density and low-density data, but only at the
upper bound of low-density channel layouts. Specifically, they tested
their pipeline using data sets ranging from a Neuroscan 30-channel
headset (Compumedics Neuroscan) to a Biosemi 256-channel headset
(Biosemi B.V.), but found that the density of the headset accounted
for variability in the channel amplitudes across datasets after process-
ing. Several pipelines automate the processing of strictly low-density
data. Of these options, some are made specifically for a particular pop-
ulation (Cassani et al., 2017) or acquisition systems (e.g., James Long
EEG Analysis System software, Whedon et al. 2020). Others use inde-
pendent component analysis to correct artifacts (Hajra et al., 2020),
which cannot support many low-density setups. Still others offer only
artifact-rejection approaches (e.g., channel and/or segment rejection),
some of which target only specific classes of artifact (e.g., eye-blink
artifacts), and these artifact-rejection methods can cause significant
data loss without artifact-correction in continuous data first (e.g., EEG
Analysis System software (James Long Company), MINIMADE, Troller-
Renfree et al. 2021). Thus, there remains a need for standardized pro-
cessing solutions to serve the range of low-density EEG configurations
in use and the range of artifacts that occur in EEG data.

To address this need, we propose a novel pipeline for low-density
EEG data (fewer than 32 channels) called HAPPILEE (Harvard Auto-
mated Pre-processing Pipeline Including Low-Electrode Encephalogra-
phy). We apply contemporary approaches to optimize line noise reduc-
tion, bad channel detection, artifact correction from continuous data,
segmentation, and bad segment rejection methods to suit low density
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Fig. 1. Schematic illustrating the various pipelines within
the HAPPE software package.
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datasets. HAPPILEE is embedded in the HAPPE software package, which
facilitates pre-processing for a variety of analyses and data types (Fig. 1).
To facilitate ERP analyses on low density data, HAPPILEE interfaces with
the HAPPE+ER pipeline within HAPPE (Monachino et al., 2021). Be-
cause modifications for ERP analyses are not density-dependent (with
the exception of the optional bad channel detection step, which uses
HAPPILEE optimization criteria for low density ERP analyses), spe-
cific details on the optimization of this software for ERP analyses can
be found in Monachino et al. (2021). The following sections of this
manuscript describe HAPPILEE’s processing steps and outputs, assess
optimization of these steps for low-density EEG, and demonstrate HAP-
PILEE’s effectiveness with a low-density developmental EEG dataset and
simulated EEG signals relative to other pre-processing approaches (see
Fig. 2 for full pipeline schematic).

1.1. Optimization dataset

The various steps of the HAPPILEE automated pipeline were
optimized using a subset of developmental EEG files from the
Bucharest Early Intervention Project (BEIP) (for full study design,
see Zeanah et al. 2003). The EEG files contributing to this example
dataset may be freely assessed at: https://zenodo.org/record/5,088,346
(Lopez et al., 2021). We selected the BEIP dataset as its study de-
sign facilitated testing HAPPILEE on EEG data from children across
a range of caregiving conditions, behavioral/clinical phenotypes, and
ages (Zeanah et al., 2009). The optimization dataset includes resting-
state EEG from three groups of children living in Romania starting in
2001. The first group, referred to as the Care as Usual Group (CAUG),
is composed of children living across six institutionalized care facilities
throughout Bucharest, Romania. The second group is the Foster Care
Group (FCG), which is composed of children who were removed from
these institutions through random assignment and placed in a foster care
intervention. The final group is the Never Institutionalized Group (NIG),
made up of a community sample of children living with their biological
families who have never been placed in institutionalized care or fos-
ter care. We selected a subset of thirty EEG files across the three groups
from the greater dataset (CAUG, n = 8; FCG, n = 8, NIG, n = 14). The av-
erage age at the start of the baseline assessment across the three groups
was 17.40 months, with a range of 6.28-29.98 months (averages per
group: CAUG=18.30; FCG=16.21; NIG=17.58). The resting-state EEG
for all children was recorded with the James Long system from twelve
scalp sites (F3, F4, Fz, C3, C4, P3, P4, Pz, O1, 02, T7 and T8) using a
lycra Electro-Cap (Electro-Cap International Inc., Eaton, OH) with sewn-
in tin electrodes (the two mastoid sites, M1 and M2, were removed due
to poor recording quality across the dataset).
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Fig. 2. Schematic illustrating the HAPPILEE pipeline’s processing steps. The intermediate output EEG files are indicated by the suffix added after that specific
processing step in the light blue boxes. The user options for resampling, segmentation, bad data interpolation, segment rejection, and re-referencing steps and
visualizing several steps in HAPPILEE with the semi-automated setting are also indicated.

1.2. HAPPILEE data inputs

HAPPILEE accommodates multiple types of EEG files with different
acquisition layouts as inputs. A single run will support only a single file
type across files, specified by the user. For .set formated files, the cor-
rect channel locations should be pre-set and embedded in the file (e.g.
by loading it into EEGLAB and confirming the correct locations) prior
to running through HAPPILEE. When running .mat formated files, you
must have a file with channel locations specified in your folder in order
to run all steps in the HAPPILEE pipeline. If channel locations are not
provided, you will not be able to do the following: filter to channels of
interest, detect and reject bad channels, interpolate bad channels, or re-
reference your data. Each batch run of HAPPILEE must include files col-
lected with the same channel layout (company, net type, and electrode
number) and paradigm (resting-state or event-related), each of which
users must specify for a given run. HAPPILEE processes data collected
with any sampling rate, and files within a single run may differ in their
individual sampling rates (if this is the case, we strongly recommend
selecting the option to resample data to the same frequency to ensure
subsequent steps perform comparably across files regardless of original
sampling rate).

1.3. Line noise processing
HAPPILEE addresses electrical noise (e.g., 60 or 50 Hz artifact signal)

through the multi-taper regression approach implemented by the Clean-
LineNoise program (Mullen, 2012). Multi-taper regression can detect

and subtract regular sinusoidal signal at a given frequency (e.g. electri-
cal noise) without sacrificing or distorting the underlying EEG signal at
that frequency or nearby frequencies, drawbacks of the notch-filtering
approach to line-noise processing (Mitra and Pesaran, 1999). Specifi-
cally, HAPPILEE applies the updated version of CleanLine’s multi-taper
regression (called CleanLineNoise, implemented in the PREP pipeline;
Bigdely-Shamlo et al. 2015b) which is more effective in addressing line
noise than the original CleanLine version present in HAPPE 1.0 (Gabard-
Durnam et al., 2018a) software (purportedly a bug fix in the CleanLine
code, see Makoto’s pipeline page for unpublished evidence: https://
scen.ucsd.edu/wiki/Makoto%27s_preprocessing_pipeline#Why_does_IC_
rejection_increase_gamma_power.2C_or_why_is_an_IC_not_broadband-
independent). The legacy CleanLine version from HAPPE 1.0 (Gabard-
Durnam et al., 2018) is available as an option to the user, however
the updated version is registered as the default. CleanLineNoise’s
multi-taper regression scans for line-noise signal near the user-specified
frequency + 2 Hz, a 4-s window with a 1-s step size and a smoothing tau
of 100 during the fast Fourier transform, and a significance threshold
of p = 0.01 for sinusoid regression coefficients. This process is highly
specific to the frequency of electrical noise, which the user can specify
to be 60 Hz or 50 Hz. The user may also specify line-noise harmonic
frequencies to be similarly cleaned (e.g. 30, 15 Hz, etc.) or neighboring
frequencies to be cleaned (e.g. 59 and 61 Hz for a 60 Hz electrical
signal). Quality control metrics for the degree of regular sinusoidal
signal removal at line noise frequency/frequencies are automatically
generated in HAPPILEE and discussed in detail as part of the subse-
quent “HAPPILEE Pipeline Quality Assessment Report” section of this
manuscript.
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1.4. Filtering

Filtering the EEG signal is important for isolating frequencies of in-
terest and improving signal-to-noise (e.g., for ERP analyses or isolat-
ing frequencies within the range produced by EEG’s electrophysiologi-
cal sources) but can also distort the data in undesirable ways if atten-
tion is not paid to filtering settings both alone and in combination with
other pre-processing steps (e.g., baseline correction, line-noise reduc-
tion steps; see Widmann et al. 2015 and Tanner et al. 2015 for thor-
ough discussion of issues related to filtering EEG signals). For example,
HAPPILEE uses CleanLine for line-noise removal rather than band-stop
filtering (aka notch filtering) to avoid signal distortion (e.g., Luck 2005).

HAPPILEE uses the EEGLab filter pop_eegfiltnew (a zero-phase
Hamming-windowed sinc FIR filter) to apply preliminary filtering prior
to detecting bad channels (if user-selected) and employing artifact cor-
rection methods for all files. If processing resting-state EEG or task-based
data for time-frequency analyses, the filtering at this stage is a band-pass
filter from 1 to 100 Hz. Filtering at this stage of pre-processing allows
the bad channel and artifact correction steps to assess the relevant fre-
quencies for these types of analyses and optimizes performance in the
higher frequency range. If the user selects the ERP option when enter-
ing user-inputs at the start of HAPPE 2.0, HAPPILEE applies a low-pass
100 Hz filter to aid the artifact correction steps that follow but does
not apply any low-pass filtering at this stage. The liberal 100 Hz low-
pass filter optimizes bad channel detection and artifact-correction per-
formance with respect to EMG and other high-frequency artifact con-
tamination in the data that occurs within but also beyond the higher
frequencies typically-included in filtered ERPs. HAPPILEE then auto-
matically interfaces with the HAPPE+ER pipeline for further filtering
specific to ERPs after artifact correction (e.g., high-pass and low-pass
filtering at user-specified values like 0.1 to 30 Hz, with options for filter
type. See Monachino et al. 2021) for specifics on ERP filtering. Users
may assess or explore the effects of different filter settings, i.e., filter
type and frequency boundaries, on artifact-corrected data to optimize
their ERP filtering using HAPPE’s rerun functionality).

1.5. Bad channel detection (Optional)

HAPPILEE includes an option to detect channels that do not con-
tribute usable brain data due to high impedances, damage to the elec-
trodes, insufficient scalp contact, and excessive movement or elec-
tromyographic (EMG) artifact throughout the recording. Users have the
option to run bad channel detection or not (in which case all chan-
nels are subjected to subsequent processing steps). Various methods
are currently used to detect and remove bad channels across automated
pipelines. However, some common automated detection methods used
for high-density EEG may not be optimal for low-density EEG without
modification, especially those relying heavily on standard deviation-
related metrics of activity to detect outlier channels. For example, in
HAPPE 1.0 (Gabard-Durnam et al., 2018), bad channel detection is
achieved by evaluating the normed joint probability of the average log
power from 1 to 125 Hz across the user-specified subset of included
channels. Channels whose probability falls more than 3 standard devi-
ations from the mean are removed as bad channels in two iterations
of this bad channel detection step. However, removing channels that
are three or more standard deviations from the mean activity assumes a
normal distribution of channel activities (via the Central Limit Theorem)
that we cannot assume with low-density channel numbers (Altman and
Bland, 1995). Similarly, the FASTER algorithm (Nolan et al., 2010) used
in the MADE pipeline (Debnath et al., 2020) flags channels by measur-
ing each channel’s Hurst exponent, correlation with other channels, and
channel variance and standardizing the three values with an absolute Z-
score (subject to the same constraints as standard deviations with very
small samples). Thus, these algorithms require validation before imple-
mentation in low-density EEG data.
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Other methods like EEGLab’s Clean Rawdata algorithm (Kothe and
Makeig 2013, additional code developed by Makoto Miyakoshi, Arnaud
Delorme with Scott Makeig) may more readily translate to low-density
EEG data. Specifically, Clean Rawdata’s ‘Flatline Criterion,” can detect
channels with flat recording lengths longer than a user-specified thresh-
old of seconds (indicating no data collected at that location). If the chan-
nel contains a flatline that lasts longer than the threshold, the channel
is marked bad. Similarly, ‘Channel Correlation Criterion’ sets the mini-
mally acceptable correlation value between the channel in question and
all other channels. If a channel is correlated at less than the preset value
to an estimate based on other channels, it is considered abnormal and
marked bad. But features like the Line Noise Ratio Criterion, which iden-
tifies whether a channel has more line noise relative to neural signal
than a predetermined value, in standard deviations based on the total
channel population, should be assessed in the low-density EEG context.

To test the efficacy of FASTER (Nolan et al.,, 2010), HAPPE 1.0
(Gabard-Durnam et al., 2018), and Clean Raw data functions and de-
termine the optimal criterion values for the detection of bad channels
in low density data, we compared a series of thirty-three automated op-
tions to a set of manually identified bad channels for nineteen files in
the BEIP dataset. For manual identification of bad channels, we took
the ratings of three field experts and only selected files where agree-
ment across reviewers was reached, ensuring that we were using clear-
cut cases of good and bad channels within the optimization dataset.
These files included channels that were bad for a variety of reasons and
had variability in how many bad channels existed per file. For auto-
mated bad channel rejection, the files were run through the HAPPE 1.0
(Gabard-Durnam et al., 2018) legacy detection method for bad channels
and the FASTER (Nolan et al., 2010) detection method used in the MADE
pipeline (Debnath et al., 2020), as well as a number of iterations of the
Clean Rawdata function and combinations of Clean Rawdata with spec-
trum evaluation to optimize channel classification (shown in Table 1).
Note that for iterations of Clean Rawdata with Flatline Criterion in-
cluded, the Flatline default of 5 s was determined to be sufficient for
detecting flat channels and was not manipulated further. We evaluated
the outputs from each criterion for bad channel detection relative to the
manually selected channels by summing the number of false negatives
and false positives for each file and calculating the overall accuracy rate
across files for that set of automated parameters. False negatives refer
to channels that were manually marked as bad but not flagged as bad
by the pipeline. False positives refer to channels that were manually
marked ‘good’ but were marked bad by the pipeline. An extra emphasis
was placed on finding the settings with high accuracy that produced the
lowest number of false positives in order to avoid getting rid of usable
channels in the low-density dataset. HAPPILEE’s optimal settings pro-
duced 12 false negative and 5 false positive channels across all 19 files
(228 total channels), with an overall accuracy rate of 95.5%.

HAPPILEE combines EEGLab’s Clean Rawdata functions with power
spectral evaluation steps as follows. HAPPILEE first runs the Clean
Rawdata ‘Flatline Criterion,” to detect bad channels with flat recording
lengths longer than 5 s (indicating no data collected at that location).
After flat channels have been removed, HAPPILEE uses Clean Rawdata’s
‘Line Noise Ratio Criterion’ with a threshold of 2.5 standard deviations
(channels with line noise: neural data ratios greater than 2.5 standard
deviations are marked as bad) and ‘Channel Correlation Criterion’ with
a minimal acceptable correlation of 0.7 to detect additional bad chan-
nel cases. Finally, HAPPILEE includes a spectrum-based bad channel de-
tection step following the Clean Rawdata functions. While the HAPPE
1.0 (Gabard-Durnam et al., 2018) method of legacy detection proved
to be insufficient for our low-density dataset (see Table 1), evaluating
the joint probability of average log power from 1 to 100 Hz was useful
for optimizing bad channel detection alongside Clean Rawdata. A spec-
trum evaluation step with thresholds of —2.75 and 2.75 was included
to optimize bad channel detection accuracy. Thus, HAPPILEE achieves
bad channel detection that is suitable for low density data and expands
the classes of bad channels that can be detected relative to HAPPE 1.0
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Table 1

Performance of bad channel detection parameters tested on nineteen files from the example dataset. Pre-wav denotes that spectrum evaluation was run prior to wavelet thresholding and post-wav

denotes that spectrum evaluation was run following wavelet thresholding.

False Negatives
(35 Total Bad Channels)

12
10

11

12
11
34
35

False Positives

(193 Total Good Channels)

11

11

10

Accuracy

(228 Total Channels)

95.5%
92.1%
91.7%
91.7%
91.7%
91.2%
90.8%
85.1%
83.8%

Bad Channel Parameters

Flatline 5; Channel Corr .7; Line Noise Ratio 2.5; Spectrum -2.75, 2.75 (pre-wav)
Flatline 5; Channel Corr .7; Line Noise Ratio 2; Spectrum -2.75, 2.75 (pre-wav)

Flatline 5; Channel Corr .7; Line Noise Ratio 2; Spectrum -2.75, 2.75 (pre-wav); Spectrum -2.5, 2.5 (post-wav)
Flatline 5; Channel Corr .7; Line Noise Ratio 2.5; Spectrum -2.75, 2.75 (pre-wav); Spectrum -2.5, 2.5 (post-wav)

Flatline 5; Channel Corr .7; Line Noise Ratio 2.5; Spectrum -2.75, 2.75 (pre-wav); Spectrum -2.4, 2.4 (post-wav)

Flatline 5; Channel Corr .7; Line Noise Ratio 2.85; Spectrum -2.75, 2.75 (pre-wav); Spectrum -2.5, 2.5 (post-wav)

Flatline 5; Channel Corr .7; Line Noise Ratio 2.5; Spectrum -2.5, 2.5 (pre-wav)

HAPPE 1.0 Legacy Detection
FASTER within MADE
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(Gabard-Durnam et al., 2018) and MADE pipelines’ (Debnath et al.,
2020) prior automated pipeline options.

1.6. Artifact correction in continuous data

Raw EEG data may contain a number of artifacts (e.g., from par-
ticipant motion, electromyogenic activity, eye movements/blinks) that
must be addressed during processing. Historically, artifact removal has
been achieved via manual data inspection, where artifact-laden time-
points are deleted from the data, including artifact-free data from un-
affected electrodes (i.e. artifact rejection approach). HAPPILEE instead
uses wavelet thresholding methods for artifact correction (correcting
artifacts without removing any timepoints) first to allow for fewer seg-
ments or trials to be rejected in subsequent artifact rejection steps and
address artifacts that would survive segment rejection but could still im-
pact the integrity of further analyses. This artifact correction approach
is performed on each electrode independently in HAPPILEE, so it is
appropriate for all channel densities down to single-electrode record-
ings, and its performance is channel-density independent (i.e., wavelet-
thresholding will not perform differently in higher- vs. lower-electrode
densities). These properties make wavelet-thresholding an excellent op-
tion for serving a variety of low-density EEG layouts.

Wavelet-thresholding refers to a series of three steps performed on
each electrode:

Step 1) Apply the wavelet transform. Each electrode’s time series is
subjected to a wavelet transform by fitting a wavelet function to
the EEG data to represent the signal and parse it into multiple
frequency ranges (akin to frequency bands). Wavelet functions
are orthonormal basis functions that come in a variety of shapes
(called families) and are used for a variety of signal compres-
sion, denoising, and representation applications (including the
authors’ personal favorite of detecting Van Gogh forgery paint-
ings by fitting wavelet functions, Jafarpour et al., 2009). Wavelet
functions used with electroencephalography resemble the oscil-
latory shape of EEG data (see Fig. 5 for examples in optimiza-
tion section below). These wavelet functions also have excellent
temporal resolution, so they can accurately represent both time
and frequency information simultaneously. The wavelet trans-
form passes the selected wavelet function over the EEG signal
and produces a series of coefficients to describe how the wavelet
function changed to fit the EEG signal’s fluctuations across the en-
tire timeseries. Importantly, poor function selection could result
in poor fitting of the EEG signals, so the type of wavelet func-
tion used is important for the integrity of artifact-correction. The
transform also separates the EEG signal into multiple frequency
ranges and coefficients evaluate fluctuations in the signal within
each frequency range separately. In this way, the wavelet trans-
form operates like a frequency filter on the EEG signal, though
one that is subsequently completely reversed and leaves no trace
in the retained EEG data. The wavelet function has a resolution
level (i.e., level of decomposition) associated with it that deter-
mines how many of these frequency ranges the EEG signal should
be separated out into, with increasing resolution levels here pars-
ing the lower frequencies into finer frequency bins. If the res-
olution level is not determined appropriately, unnecessary loss
of low-frequency information can occur during thresholding (de-
scribed below). Once the wavelet transform separates out and fits
the EEG signal in these frequency bins in Step 1, artifacts may be
detected in Step 2.

Step 2) Threshold the data to isolate artifact signal. The wavelet
transform coefficients that describe the EEG signal within each
frequency bin are subjected to a thresholding procedure to sep-
arate out artifact signal from neural signal. This feature allows
for frequency-band-specific artifact detection relative to neural
data in those same frequencies, which is a key component of
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wavelet-thresholding’s success in EEG signals. Given that artifact
signal is larger than the neural signal found at the same frequen-
cies across all classes of artifact, and occurs more inconsistently
throughout the timeseries than neural-related fluctuations, the
wavelet coefficients reflecting these properties are separated out
as artifact-signal to be removed from the data using a threshold-
ing method and rule. If the wavelet resolution level is not set
appropriately, low-frequency neural data, which typically have
higher amplitudes than higher-frequency data in EEG signals, can
be mistakenly removed as artifacts. There are multiple methods
for determining the threshold for determining signal to be arti-
fact vs. neural. HAPPILEE uses an empirical Bayesian method that
learns from each individual’s EEG where to set the threshold and
is less sensitive to outlier effects (Clyde and George, 2000). This
threshold may be determined and applied across all frequency
ranges (level-independent threshold) or determined individually
for each frequency range based on the characteristics of the signal
in that frequency range (level-dependent threshold). HAPPILEE
uses a level-dependent threshold to best fit the artifact properties
occurring within each frequency range. Once the threshold has
been applied to determine which wavelet coefficients (reflecting
parts of the EEG signal) are above the threshold, they can be re-
moved as artifact-related signal. There are also multiple methods
for treating these thresholded coefficients in terms of how they
are separated from the rest of the signal called threshold rules,
but HAPPILEE uses a hard threshold that completely removes the
sub-threshold coefficients from the data (i.e., completely sepa-
rates the signal classified as neural from the artifact-related sig-
nal). Other rules like the soft threshold instead downweight the
sub-threshold coefficients closest to the threshold cutoff in the
data, for example. If these steps together are not optimized for
EEG signals, incomplete artifact correction, or attrition of neu-
ral signal can both occur, so great care was taken in optimiz-
ing these parameters for HAPPILEE (described below). Once the
artifact-signal is fully separated from the neural signal, it can be
removed from the electrode timeseries without disturbing the un-
derlying neural signal at those timepoints via the inverse wavelet
transform and subtraction.

Step 3) Apply the inverse wavelet transform and subtract thresh-
olded (artifact) signal. Finally, the artifact-related coefficients
are transformed back from wavelet-coefficients to the electrode’s
signal timeseries using the inverse of the wavelet transform
function. The HAPPILEE wavelet function family allows for this
transform without distortion to the data in phase, amplitude,
or frequency space. This inverse transform thus results in an
artifact-timeseries that is then simply subtracted from the elec-
trode’s original timeseries, resulting in an artifact-corrected time-
series. Because waveleting is both a time- and frequency-specific
method, the artifact timeseries will be 0 where no artifact is tem-
porally present in the data, and thus this subtraction does not dis-
turb the clean EEG signal surrounding the artifact-contaminated
segment at all (this distinguishes wavelet-thresholding from other
artifact-correction strategies like independent component analy-
sis that in practice do not consistently meet this standard in the
artifact-labeled components). The wavelet-thresholded artifact-
corrected signal may then continue through pre-processing steps
like segmentation.

Through only three steps, the wavelet-thresholding process contains
many parameters that may be optimized to improve artifact-correction
performance. The final wavelet-thresholding parameters implemented
in HAPPILEE are as follows: ‘Wavelet Family,’ ‘coif4;’ ‘Level of Decompo-
sition,’ ‘10;’ ‘Noise Estimate,” ‘Level Dependent;’ ‘Thresholding Method,’
‘Bayes;” ‘Threshold Rule,” ‘Hard’. The approaches and steps to optimize
wavelet-thresholding artifact correction are detailed below, with addi-
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tional details about each component of the wavelet-thresholding pro-
cess.

1.6.1. Wavelet threshold optimization approaches

Three approaches were taken to test and optimize automated wavelet
thresholding-based artifact correction in HAPPILEE using the BEIP
dataset. Prior to artifact correction testing, all files were initially filtered
and subjected to line noise correction. The approaches are detailed be-
low.

The first approach (the clean vs. artifact approach) involved select-
ing two 30 s segments within each participant’s EEG file. The first 30 s
segment was heavily artifact laden while the second 30 s segment was
determined to be clean and without considerable artifact by experienced
researchers. This approach facilitated testing whether artifact was effec-
tively and accurately removed via wavelet thresholding. That is, optimal
artifact correction performance would be characterized by (1) substan-
tial (artifact) signal removal for the artifact-laden 30 s file, indicating
sensitivity to artifacts, and (2) minimal signal removal for the clean 30 s
file from the same individual, indicating specificity in signal removal
constrained to artifact. High levels of signal removal in the clean 30 s
files would indicate unnecessary data loss, while low levels of signal
removal in the artifact-laden 30 s files could indicate insufficient per-
formance. Additionally, to ensure that artifact removal was not biased
to certain frequencies, data correlations pre- and post-processing were
evaluated at key frequencies spanning all canonical frequency bands in
the clean and artifact-laden segments. Examples of the clean and artifact
signals within an individual (before and after wavelet thresholding) are
provided in Fig. 3.

The second approach (artifact-addition approach) used known arti-
fact signals to establish how much artifact could be removed without
distorting underlying neural signals during wavelet thresholding. In the
absence of a ground-truth neural signal, we used the 30 s clean files
from the first approach as the signal to be recovered during artifact-
correction. We then isolated artifact timeseries by running ICA on the ar-
tifact laden 30 s files and selecting approximately 2 components per indi-
vidual that were determined to be artifact with minimal neural data via
visual inspection and automated classification through both the ICLa-
bel and Multiple Artifact Rejection Algorithm options. We subsequently
added those artifact timeseries to the clean 30 s data segment from the
same individual (see Supplemental File 1 for types of artifacts added
for each file). These 30 s files with added artifact were then subjected
to wavelet-thresholding and compared (via correlation coefficients) to
the clean 30 s files run through wavelet-thresholding to determine how
much of the added artifact was removed during the artifact-correction
step (example from single participant in Fig. 4). Higher correlation co-
efficients would indicate better recovery of the clean EEG signal and
better removal of the added artifact during the wavelet-thresholding
step. (The post-wavelet thresholded clean files were used as the compar-
ison because even these clean files had some minor artifacts that could
be removed during artifact correction, so the post-wavelet-thresholded
versions were the cleanest option for comparisons).

For the third approach, we used simulated EEG data with artifact
added to it in order to have a “ground truth” signal that we could attempt
to recover with waveleting. To create the simulated EEG data, we used
code from Bridwell et al. (2018). In short, the simulated EEG consisted of
four signals. The four signals had distinct spatial patterns and frequency
ranges (1.00-3.91, 3.91-7.81, 7.81-15.62, and 15.62-31.25 Hz). For a
more thorough description on how the simulated signals were created,
(see Bridwell et al. 2018). After creating the simulated EEG data, we
added various developmental artifacts and adult eye blinks to the data
to test multiple waveleting settings and wavelet thresholding in general.
To get the blink artifact, we used a clear blink independent component
(IC) from an adult participant (see Leach et al. 2020 for the specific study
details). This IC was selected based on both an automated artifactual IC
detection algorithm and visual inspection by two researchers with over
five years of EEG and at least two years of ICA experience. For the de-
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Fig. 3. EEG signal before and after wavelet thresholding with the following parameters that were optimized for low density data: ‘Wavelet Family,” ‘coif4;” ‘Level of
Decomposition,’ ‘10;’ ‘Noise Estimate,’ ‘Level Dependent;’ ‘Thresholding Method,” ‘Bayes;” ‘Threshold Rule,” ‘Hard.” Two files from the same participant in the example
dataset are shown with 10 s of data extracted from the clean 30 s segment (A) and artifact-laden 30 s segment (B). The EEG signal before processing is shown in the
left panel. The EEG signal after wavelet thresholding is shown in the right panel. All scales are in microvolts.
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Fig. 4. EEG signal before and after wavelet thresholding with the following parameters that were optimized for low density data: ‘Wavelet Family,” ‘coif4;” ‘Level of
Decomposition,” ‘10;” ‘Noise Estimate,” ‘Level Dependent;’ ‘Thresholding Method,” ‘Bayes;” ‘Threshold Rule,” ‘Hard.” Two files from the same participant in the example
dataset are shown with 10 s of data extracted from the clean 30 s segment (A) and artifact-added 30 s segment (B). The EEG signal before processing is shown in the
left panel. The EEG signal after wavelet thresholding is shown in the right panel. All scales are in microvolts.
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velopmental artifact, we pulled eight ICs from the BEIP dataset used
above in the artifact addition approach. After adding the artifact to the
simulated EEG data, we did a 1 Hz highpass and 35 Hz lowpass filter.
Following this, we epoched the data into two-second epochs (50% over-
lap) to prepare the data for wavelet thresholding and/or artifact rejec-
tion. For artifact rejection, we used a —100 to 100 iV voltage threshold
to identify bad epochs. We also required both frontal electrodes to ex-
ceed this threshold in order to classify an epoch as containing a blink.
In order to test how well wavelet thresholding removes artifact with-
out removing neural activity, we computed the power spectral density
(PSD) on the original simulated signal (no artifact added) and compared
that to the PSD of the signal after pre-processing with various wavelet
thresholding parameters when either one or two developmental arti-
factual independent components and an adult eye blink component are
added to the simulated signal. In addition, we looked at how the prepro-
cessed data might differ when only artifact rejection is run compared to
when waveleting is run before artifact rejection. This gave us two pre-
processing conditions: (1) Artifact rejection only (no wavelet threshold-
ing) and (2) Wavelet thresholding followed by artifact rejection.

These three distinct approaches facilitated optimizing and evaluat-
ing the wavelet thresholding method for artifact removal in low-density
data in multiple ways. Importantly, the wavelet thresholding approach
broadly includes decomposing the EEG signal via a wavelet transform,
determining a threshold value or values used to dissect data into the por-
tion to be retained and the portion to be rejected, removal of the rejected
data components, and reconstruction of the remaining signal. Each of
these steps may be accomplished multiple ways across wavelet thresh-
olding methods. Here, five key parameters in the wavelet thresholding
process were manipulated and tested to optimize wavelet thresholding
performance in this context, specifically: wavelet family, wavelet reso-
lution (i.e., level of data decomposition), noise estimate method, thresh-
olding level, and threshold rule. Each parameter was manipulated one at
a time within a default set of wavelet thresholding parameters and tested
using the clean vs. artifact approach and artifact-added approach in the
BEIP dataset. The initial default set of wavelet thresholding parame-
ters was chosen based on preliminary visual inspection of performance
across a broader range of parameters prior to optimization and was as
follows: ‘Wavelet Family,” ‘coif5;” ‘Level of Decomposition,” ‘8;’ ‘Noise
Estimate,” ‘Level Dependent;’ ‘Thresholding Method,’ ‘Bayes;’ ‘Threshold
Rule,” ‘Soft.” Subsequent optimization of each parameter is described in
detail below.

1.6.2. Wavelet family

The wavelet-thresholding method first subjects each electrode’s time
series to wavelet transform by fitting a wavelet function to the data. The
wavelet transform produces a series of coefficients to describe the EEG
signal’s fluctuations across multiple frequency ranges. The wavelet func-
tion consists of both a wavelet family, dictated by the mother wavelet
shape (e.g., the Coiflet mother wavelet is more symmetric than the
Daubechies mother wavelet), and the wavelet order, which modifies the
mother wavelet shape (see Fig. 5; i.e., Coiflet order 4 wavelet has 8 van-
ishing moments in the function). To find the optimal wavelet function
to carry out stationary wavelet transform, we tested the Coiflets family
(orders 3, 4, and 5), the Daubechies family (orders 4 and 10), and the
Symlets family (order 4). We selected these family/order combinations
as they share shapes similar to those found in EEG signals and they are
all orthogonal wavelet functions, which optimizes decomposition and
reconstruction of the EEG signal from the wavelet transform (Strang and
Nguyen, 1996). Moreover, prior literature indicates these wavelet fam-
ilies and specific orders have performed well on electrophysiologi-
cal data (Al-Qazzaz et al., 2015; Alyasseri et al., 2017; Harender and
Sharma, 2018; Lema-Condo et al., 2017; Nagabushanam et al., 2020).
Using these wavelet families, we evaluated whether there was biased
data removal at any of the data frequencies in the clean 30 s seg-
ments by evaluating correlations between data pre-waveleting and post-
waveleting at specific canonical frequencies. We also compared data re-
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moval rates between the clean files and the 30 s artifact laden files. As
a second analysis, we evaluated which wavelet family and order combi-
nation removed the most added artifact across frequencies (i.e., which
wavelet facilitated the greatest correlation between the artifact added
files and the clean files post-processing).

After running the various wavelet family/order options, we found
there were not meaningful differences between several wavelet fam-
ily/order options (Tables 2 and 3). Specifically, performance did not
differ between coif4, coif5, db4, and sym4 options across the clean vs.
artifact-laden and artifact addition tests (e.g., correlation values in the
artifact-addition tests were identical to the hundredths place). Coif4 was
selected as the wavelet implemented in HAPPILEE as this wavelet/order
also performed very well in data collected from a saline-based system
(EGI), suggesting its performance may generalize more broadly than the
other options tested here (Monachino et al., 2021).

1.6.3. Wavelet resolution/level of data decomposition

Following wavelet family/order selection, we manipulated the res-
olution of the wavelet that affects the level of data decomposition in
wavelet thresholding. Specifically, this level of decomposition deter-
mines how fine-grained the frequency bands are in which data cor-
rection occurs. Importantly, in the current code, the data sampling
rate (not for example, the frequencies retained through initial filtering)
determines which frequencies fall into different levels of decomposi-
tion. For example, the first level of decomposition for a file sampled at
1000 Hz (regardless of frequency filtering) would split data into two
halves around 500 Hz. If that file had been resampled to 500 Hz prior
to wavelet decomposition, the first level of decomposition would now
split data into halves around 250 Hz. The default decomposition level
splits data down to <1 Hz. We tested decomposition levels of ~4, 2,
and 1. The 4 Hz decomposition resulted in increased data removal in
the lower frequencies relative to other frequencies of the clean data, re-
sulting in data correlations pre-/post-thresholding of less than 0.5 (e.g.,
r=0.48 at 2 Hz). This pattern indicated the need for further decomposi-
tion levels to avoid over-rejecting low frequency data that is not artifact-
laden (low frequencies were rejected at similar rates in the artifact-laden
data). In the clean vs. artifact files, we saw no difference in which data
was rejected and retained when comparing levels 2 and 1 Hz, though
1 Hz provides coverage down to the filtering cutoff for time-frequency
analyses. Therefore, HAPPILEE decomposes data into detail coefficients
for frequencies above approximately 1 Hz to evaluate artifacts within
each frequency range for time-frequency-related analyses. For event-
related-potential decomposition optimization where signals below 1 Hz
are relevant, HAPPILEE interfaces with the HAPPE+ER pipeline and
uses those settings, so we refer readers to the HAPPE+ER manuscript
(Monachino et al., 2021).

1.6.4. Noise (Artifact) estimation level

Once the level of decomposition is set, the noise estimate parameter
is chosen to establish either a threshold for each level of decomposition
(level dependent threshold) or establish a threshold that operates across
all of the levels of decomposition (level independent threshold). The
threshold(s) determine which wavelet coefficients describe data that is
artifact-laden (i.e., coefficients describing larger amplitude changes, or
noise) and will be removed from the EEG data during this artifact cor-
rection step. Due to the unavailability of level dependent thresholding
for the wavelet function used at the time of its conception, HAPPE 1.0
(Gabard-Durnam et al., 2018) employed level independent threshold-
ing (with a different threshold method and rule as well). We antici-
pated that level dependent thresholding would improve artifact detec-
tion specificity because of its ability to scale within each frequency range
(e.g., artifacts in gamma frequencies have smaller amplitudes than ar-
tifacts in delta frequencies), rather than apply across all frequencies at
once (which may over-penalize low-frequency clean EEG data that has
higher amplitudes than higher-frequency clean EEG data). The default
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Table 2

Artifact-laden vs. Clean Approach. Correlations between the EEG signal before wavelet thresholding and the EEG signal after wavelet thresholding for the wavelet
parameters tested on the artifact-laden and clean 30 s segments. The r values of the wavelet parameters that are included in the final code are bolded. Asterisks

denote default wavelet parameters.

07565080 08043941 09116741 09152546 09126432 09397223 0.9475151
07593162 _0.8044069 09116858 09152531 0.9126547 09397121 0.9475120

Wavelet Parameters Artifact-Laden Clean |
Wavelet Family Averager __ 2har Shzr her i2her _ 20hzr __ 30her ___asher 0hzr | Averager _ 2her Sher hr 12hz¢
coif3 06495386 0.8341557 09039538 09124215 08737657 09257608 09319297 08818718 09209791 08537765 09805714 0.9942900 09946382 0.9944396 09966822 09963891 09928368 0.9925715)
coifd 06409072 08224776 09108023 09119056 08958911 09317483 09272825 08977289 09105859 0.8502602 09708517 09935547 09951477 09969815 09960891 09951767 09932113 0.9943216
coifs* 06317364 08042749 09112935 09148003 09120963 09395317 09472025 08771795 _0.9280485|
db4 06745547 08710232 0.8943305 09103185 0.8795906 09198904 09381887 08938951 09051647 08611718 09886946 09911826 09968351 09947068 0.9965864 09968433 09948863 0.9951650)
db10 06723805 08680295 09070212 09379687 09118920 09343418 09473784 08934602 _0.9262520)
B 0.6645012 0.8491330 0.8886317 09131185 0.8758145 0.9270180 09423294 08911181 0.9225114] 0.8590634 0.9869279 09901779 0.9954765 0.9930299 0.9948369 09963707 0.9915858 0.9934201)
Level of Data Decomposition
Level 7 04706001 04568898 09105142 09142371 09110843 09388060 09466663 08768213 _09274731] 07070777 04835164 09911996 09949208 09976923 09966372 09966664 09924659 _09930409|
Level 8* 06317364 08042749 09112935 09148003 09120963 09395317 09472025 08771795 09280485] 08452176 09560839 09916856 09950517 0.9980797 09969268 09968790 09926212 0.9934005)
07343196 0.8044431 09116424 09151761 09125530 0.9396270 09474459 08773602 0.9284372] 09211428 09566750 09917687 09951122 09982365 0.9970986 09969594 09927146 0.9935756)
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0.9285303]
0.9285750]
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09326935 _0.9567205
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0.9936031

00119531
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0.0687366
08042749

0.0632083
09112935

0.0689387
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0.0656005
0.9395317

0.0638888
09472025
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0.9280485|

00192180 0.0614340 _0.0673882
08452176 0.9560839 0.9916856
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0.9950517

0.0620493 0.0694187 0.0673803 _0.0620892
0.9980797 09969268 09968790 09926212

0.5678356|
0.9934005|

06317364 08042749 09112935 09148003 09120963 09395317 09472025
05449277 06324712 07956184 08398051 08147391 08727297 0.8813146
06921037 09021545 09488209 09389146 0.9389948 09616815 0.9627782
0.6631253 _0.8515140 09199850 09170071 0.9098444 09366292 _0.9460976
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08067312 08455665] 07744327 07795935 09024834 09463993 09466939 09756644 09755786 09616694 09712791
09054370 0.9486801] 08567709 09949188 09974719 09978736 09994394 09981523 09983733 0.9962493 0.9965857
0.8805530 _0.9274095] 0.8509405 0.9764616 _0.9914494 0.9944892 09950825 0.9953290 0.9949455 0.9898739 _0.9909732
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0.7692647
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0.8255840
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0.7900075
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0.9472025
08637228

04278164 03920570 0.6961517 0.7790864 0.7520299 0.8090674 _0.8273337
Hard (level 9) 04419678 03919517 0.6962050 0.7791285 0.7520823 0.8090638 _0.8273489
Hard (level 10) 04437741 03919728 06962142 07791177 0.7520895 0.8090850 0.8273534
Hard (level 11) 04445122 03920010 06961893 0.7790936 0.7521045 08091205 0827366
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0.7758505
0.7401785
0.7401665
07401521
0.7401616

0.9280485
0.8155977|
0.7599699)
0.7600296|

08452176 09560839 09916856 09950517 09980797 09969268 09968790 09926212 0.9934005
07981215 0.7915035 09417516 09731402 09702290 09837920 09798027 09621283 0.9677733
07506100 0.6286745 0.8964708 09542559 09431892 09744735 09703364 _0.9484776 09579156
0.76646649 06287149 08965116 09542537 09432158 09744641 09703503 09484915 0.9579139)
0.76800752 06287386 0.8965451 09542584 0.9432336 _0.9744747 09703579 09484932 09579214
0.76834755 06287675 0.8965547 09542651 09432359 09744798 09703611 09484892 0.9579185

0.7600506

set of parameters was run with both level dependent and level inde-
pendent thresholding and confirmed our prediction. With the improved
thresholding method and rule included in the default parameters, the
level independent threshold now heavily over-rejected the clean data
(resulting in a correlation pre-/post-thresholding of r = 0.02), removing
nearly all of the data (and a similar level of data removal was observed in
the artifact-laden data). (Note: this performance differs from HAPPE 1.0
(Gabard-Durnam et al., 2018) due to the other wavelet thresholding pa-
rameter changes included in the new default settings of HAPPILEE, and
does not reflect the functionality of wavelet-independent thresholding
in HAPPE 1.0). There was no meaningful difference between level inde-
pendent and level dependent thresholding in how much artifact was re-
moved in the artifact-added approach. This pattern of results suggested
the level dependent threshold was just as effective at removing artifact

as the level independent threshold without also removing underlying
clean neural signal. As a result, a level dependent threshold was cho-
sen in order to preserve data without compromising artifact correction
success.

1.6.5. Thresholding method and threshold rule

Wavelet coefficients are then subjected to thresholding, (here, in
a level-dependent way) such that coefficients with values smaller
than a determined threshold for that level have their contribution to
the data substantially suppressed (similar to Jansen, 2001; You and
Chen, 2005). For EEG data, this effectively isolates the artifact sig-
nals within each frequency level (which are then subtracted out of
the original EEG signal to clean it). A number of high performing op-
tions to determine the thresholds separating artifact from clean EEG
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Table 3
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Artifact-added approach. Correlations between the EEG signal before wavelet thresholding and the EEG signal after wavelet thresholding for the wavelet parameters
tested on the artifact-added 30 s segments. The r values of the wavelet parameters that are included in the final code are bolded. Asterisks denote default wavelet

parameters.
Artifact-Added
Wavelet Parameters Average r 2hzr Shzr 8hzr 12hzr 20hz r 30hz r 45hzr 70hz r
Wavelet Family
coif3 0.8457708 0.8313941 0.8897854 0.9139730 0.8552277 0.7911717 0.7652131 0.7378649 0.6396247
coif4 0.8555245 0.8300064 0.8938870 0.9125044 0.8585728 0.7944371 0.7651386 0.7339070 0.6363321
coif5* 0.8611372 0.8279496 0.8928203 0.9123030 0.8644110 0.7933849 0.7670503 0.7357956 0.6424816
db4 0.8534693 0.8336099 0.8936260 0.9108987 0.8639453 0.7975233 0.7664878 0.7377876 0.6417207
db10 0.8429546 0.8313746 0.8898814 0.9044763 0.8523632 0.7942836 0.7652877 0.7360027 0.6425811
sym4 0.8552301 0.8371324 0.8908597 0.9147460 0.8574783 0.7941530 0.7661049 0.7380412 0.6429008
Level of Data Decomposition
Level 7 0.7180408 0.4543101 0.8927883 0.9119741 0.8641361 0.7931069 0.7670180 0.7358278 0.6423913
Level 8* 0.8611372 0.8279496 0.8928203 0.9123030 0.8644110 0.7933849 0.7670503 0.7357956 0.6424816
Level 9 0.8552324 0.8282940 0.8928847 0.9121907 0.8644032 0.7933826 0.7671959 0.7358080 0.6424973
Level 10 0.8548980 0.8282981 0.8929072 0.9121704 0.8643986 0.7933852 0.7671625 0.7357656 0.6424791
Level 11 0.8551597 0.8283017 0.8929218 0.9121711 0.8643985 0.7933503 0.7671609 0.7357959 0.6424455
Noise Estmate Method
Level Independent 0.8581343 0.8230792 0.8356412 0.8219082 0.8103576 0.8160537 0.8161101 0.8296241 0.7222856
Level Dependent* 0.8611372 0.8279496 0.8928203 0.9123030 0.8644110 0.7933849 0.7670503 0.7357956 0.6424816
Thresholding Level
Bayes* 0.8611372 0.8279496 0.8928203 0.9123030 0.8644110 0.7933849 0.7670503 0.7357956 0.6424816
SURE 0.8515281 0.7972381 0.8801077 0.8995941 0.8560370 0.7896673 0.7685342 0.7288356 0.6391554
Universal Threshold 0.8388653 0.8347485 0.8904659 0.9090937 0.8618810 0.7918906 0.7647696 0.7344663 0.6425089
Minimax 0.8543168 0.8366149 0.8934580 0.9135361 0.8655974 0.7945803 0.7684510 0.7365159 0.6421699
Threshold Rule
Soft* 0.8611372 0.8279496 0.8928203 0.9123030 0.8644110 0.7933849 0.7670503 0.7357956 0.6424816
Median 0.8589594 0.7957200 0.8845254 0.9128770 0.8586024 0.7935736 0.7670473 0.7253411 0.6346028
Hard 0.8334551 0.7074031 0.8602578 0.9016819 0.8456928 0.7888608 0.7629518 0.7153628 0.6291578
Hard (level 9) 0.793786 0.6875453 0.824693 0.8749049 0.812723 0.748518 0.724296 0.692738 0.6021545
Hard (level 10) 0.818711 0.7074161 0.860373 0.9015566 0.845714 0.788833 0.763001 0.715319 0.6291468
Hard (level 11) 0.81863 0.7074121 0.860375 0.9015574 0.845713 0.788808 0.762997 0.7153220 0.6291463

have been established in the literature (Anumala and Kumar Pul-
lakura, 2018; Estrada et al., 2011; Geetha and Geethalakshmi, 2011a;
Geetha and Geethalakshmi, 2011b; Guo et al.,, 2020; Jiang et al.,
2007), specifically ‘Empirical Bayes’ (Johnstone and Silverman, 2004),
‘SURE’ (Donoho and Johnstone, 1995), ‘Universal’ (Donoho, 1995),
and ‘Minimax’ (Donoho and Johnstone, 1998) thresholding approaches.
HAPPE 1.0 (Gabard-Durnam et al., 2018) originally included a Uni-
versal Threshold approach, but we aimed to examine these additional
high-performing options as well to find the best fit for the current ver-
sion of the pipeline. Relatedly, we evaluated available threshold rules
for the various thresholding methods, specifically ‘Soft’ (Guo et al.,
2002; Donoho, 1995), ‘Median’ (Abramovich et al., 1998; Clyde and
George, 2000; Johnstone and Silverman, 2005), and ‘Hard’ (Guo et al.,
2002). Of note, not all thresholding methods are compatible with all
thresholding rules. For example, the median rule is specific to the thresh-
olding method ‘Bayes’ as it involves using the median posterior gener-
ated by the Bayesian algorithm to determine the threshold. Soft and
hard threshold rules are different in how they treat the coefficients near
the threshold (in soft thresholding, these coefficients are shrunk while
they are unaffected in hard thresholding). For thresholding options, we
found minimal difference between options when tested on the artifact-
added data, but we were able to eliminate ‘SURE’ due to over-rejecting
data in the clean files (resulting in a correlation pre-/post-thresholding
of r = 0.77). ‘Bayes’ narrowly outperformed ‘Minimax’ on the artifact-
added data (Table 3), but the reverse was true for our clean and artifact-
laden data (Table 2). ‘Bayes’ was chosen as the thresholding method as
it considers the uncertainty of the potential artifact and has been shown
to result in more accurate denoising of signals generally. Moreover, the
Bayes algorithm increases performance with increased data samples (as
it can adjust its certainty estimates about artifact from more data), so
performance on these 30 s files is a conservative reflection of this gen-
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eral performance. For threshold rule, on average, the median and hard
thresholds removed more of the clean and artifact-laden file data, espe-
cially at the lower frequencies (e.g., at 2 Hz in clean data: soft thresh-
old r = 0.84, median threshold r = 0.79, hard threshold r = 0.63, see
Table 2). However, visual inspection of data cleaned using soft vs. hard
thresholds revealed that hard thresholds appeared to better remove ar-
tifact (see Fig. 6). Therefore, this step was further explored using the
simulated signals as described below and ultimately a Bayesian method
with hard thresholding rule was implemented.

For the third approach with simulated data that had real artifact
added to it, we tested which combination of noise estimation level and
threshold rule performed best in terms of removing artifact while retain-
ing the ground-truth underlying simulated signal. We compared combi-
nations of level dependent and level independent estimation methods
with soft, median, and hard threshold rules (Fig. 7). We tested on the
simulated signal with an adult eye blink component added and either
one developmental artifactual IC added or a combination of two de-
velopmental artifactual ICs added that reflected a variety of different
artifact types and combinations to ensure generalization of the results
across artifact conditions (The specific ICs added to the simulated sig-
nal are provided above each plot in Fig. 7). We found that level de-
pendent thresholding far outperformed level independent thresholding.
This is not surprising given that level dependent thresholding scales
within each frequency range (and thus may be more sensitive to dif-
ferent artifact profiles across frequencies) rather than evaluating all fre-
quencies together as is the case for level independent thresholding (see
Fig. 7, level-independent results all lie along the x-axis). Moreover, level
dependent thresholding with a hard or median threshold rule outper-
formed level dependent thresholding with a soft threshold rule in terms
of visually returning the simulated signal’s spectrum profile. The hard
threshold rule narrowly outperformed the median threshold rule (es-
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Fig. 6. EEG signal before and after wavelet thresholding with the following parameters: ‘Wavelet Family,” ‘coif5;” ‘Level of Decomposition,” ‘10;” ‘Noise Estimate,’
‘Level Dependent;’ ‘Thresholding Method,” ‘Bayes;’ ‘Threshold Rule,’ ‘Soft’ (middle panel) and ‘Wavelet Family,’ ‘coif5;’ ‘Level of Decomposition,’ ‘10;’ ‘Noise Estimate,’
‘Level Dependent;’ ‘Thresholding Method,” ‘Bayes;” ‘Threshold Rule,” ‘Hard’ (right panel). Two files from the example dataset are shown with 10 s of data extracted
from the clean 30 s segment (A) and artifact-laden 30 s segment (B). The EEG signal before processing is shown in the left panel. The EEG signal after wavelet
thresholding with a soft threshold is shown in the middle panel. The EEG signal after wavelet thresholding with a hard threshold is shown in the right panel. All

scales are in microvolts.
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Fig. 7. Plots of the power spectral density for the simulated signal without artifact and the simulated signal with an adult eye blink component added and either
one developmental artifactual IC added (A; top panel) or two developmental artifactual ICs added (B; bottom panel) following wavelet thresholding.

pecially for lower frequencies). Together these results helped solidify

the decision to use level dependent thresholding with a hard threshold

rule as the combination of parameters that best removed artifact while

retaining the ground-truth underlying signal.

Taken together, the final wavelet-thresholding optimized parame-
ters implemented in HAPPILEE are again as follows: ‘Wavelet Family,’
‘coif4;” ‘Level of Decomposition,” ‘10;’ ‘Noise Estimate,” ‘Level Depen-
dent;” ‘Thresholding Method,” ‘Bayes;” ‘Threshold Rule,” ‘Hard’. These
parameters ensure optimized wavelet-thresholding based artifact cor-

rection occurs in EEG data.

1.7. Segmentation (Optional)

After artifact correction, HAPPILEE includes an optional data seg-

mentation step along with several additional artifact rejection steps

to further optimize processing. For data without event markers (e.g.,
resting-state EEG), regularly marked segments of any duration speci-
fied by the user are generated for the duration of the recording (e.g.,
1 s segments). For low density data with event markers (e.g., event-
related EEG data or ERP designs), data can be segmented around events

as specified by user inputs (ERP-processing is supported, including base-
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Comparison of various segment rejection options tested on nineteen files from the example dataset. P values are calculated from t-tests comparing the number
of remaining segments for each parameter following automated rejection to the number of segments remaining following manual rejection.

Segmentation Parameters Avg post-reject of 101.1 avg segments p value
Manual Rejection B5.7
Joint-Probability: 3 standard deviations 97.7 0.00002
Joint-Probability: 2.5 standard deviations 91.7 0.0006
Joint-Probability: 2 standard deviations 83.8 0.2
Joint-Probability: 1.75 standard deviations 78.1 0.001
Joint-Probability: 1.5 standard deviations 65.8 0.000004
Joint-Probability: 2.5 standard deviations; Amplitude: -150, 150 90.8 0.001
Joint-Probability: 2 standard deviations; Amplitude: -150, 150 83.5 0.1
Joint-Probability: 2 standard deviations; Amplitude: -100, 100 65.2 0.00006
Amplitude: -150, 150 100.2 0.0000005
Amplitude: -100, 100 TJ0.B 0.004

line and timing offset correction; see Monachino et al., 2021 for more
information).

Users with data files where segment rejection would lead to an un-
acceptably low remaining number of segments for analysis may choose
an optional post-segmentation step involving the interpolation of data
within individual segments for channels determined to be artifact-
contaminated during that segment, as implemented by FASTER software
(Nolan et al., 2010). Each channel in each segment is evaluated on the
four FASTER criteria (variance, median gradient, amplitude range, and
deviation from mean amplitude; Nolan et al. 2010), and the Z score (a
measure of standard deviation from the mean) for each channel in that
segment is generated for each of the four metrics. Any channels with one
or more Z scores that are greater than 3 standard deviations from the
mean for an individual segment are marked bad for that segment. These
criteria may identify segments with residual artifacts. Subsequently, for
each segment, the channels flagged as bad in that segment have their
data interpolated with spherical splines, as in FASTER (Nolan et al.,
2010). This allows users to maintain the maximum number of avail-
able segments, while still maximizing artifact rejection within individ-
ual segments. However, we caution users from implementing this op-
tion in cases where channels are distributed with significant distance
between them as the interpolation process would pull data from dis-
tal channels that does not reflect the appropriate activity profile for
that scalp space. Effects of interpolation on data may depend on exper-
iment, layout (Melnik et al., 2017; Bigdely-Shamlo et al., 2015a), and
interpolation method (Courellis et al., 2016; Petrichella et al., 2016;
Robeson, 1997).

The majority of users, including those who wish to avoid interpo-
lating data within individual segments, may instead choose to reject
segments that are determined to still be artifact-contaminated. HAP-
PILEE includes three segment rejection options. Criteria for rejection
include a choice of joint-probability criteria, amplitude-based criteria,
or a combination of joint-probability criteria with amplitude-based cri-
teria. Joint-probability criteria considers how likely a segment’s activity
is given the activity of other segments for that same channel, as well as
other channels’ activity for the same segment. The assumption is that
artifact segments should be the rare segments with activity several stan-
dard deviations apart relative to the rest of the data. Amplitude-based
criteria sets a minimum and maximum signal amplitude as the artifact
threshold, with segments being removed when their amplitude falls on
either side of this threshold. HAPPILEE allows the user to specify their
minimum and maximum allowable amplitudes. Users may also specify a
combined approach with joint-probability criteria and amplitude-based
criteria that removes outlier segments that fail either standard devia-
tions or the signal amplitude criteria.

12

To test the efficacy of the three segment rejection options and deter-
mine the optimal criterion values for the rejection of segments in low
density EEG data, we compared a series of ten automated options to a
set of manually rejected segments for fourteen files in the BEIP dataset.
We manipulated the standard deviation values for joint-probability re-
jection, the amplitude values for amplitude-based rejection, and tested
combinations of different joint-probability standard deviations with am-
plitude criteria. The number of segments rejected for each of these auto-
mated rejection approaches was compared to the segments rejected via
manual inspection as the gold standard approach using paired t-tests
(Table 4). Amplitude-based rejection alone did not sufficiently match
the manual rejection rates. However, the number of segments rejected
using joint-probability criteria of 2 standard deviations alone or in com-
bination with amplitude criteria (here, —150 and 150 microvolts) were
not significantly different from the number of segments rejected manu-
ally (both p > 0.1).

Segment rejection performance was further evaluated for these two
approaches by comparing the identity of segments rejected via the au-
tomated approach to the manually rejected segments by summing the
number of false negatives and false positives for each file and calculating
the overall accuracy rate across files compared to the manual rejection
classification (i.e., did HAPPILEE reject the same segments that were re-
jected manually). The joint probability criterion alone (using 2 standard
deviations) achieved the higher accuracy rate of 91.2% across all files
but joint-probability with amplitude also did well (91.0% accuracy) (see
Table 5). HAPPILEE therefore includes three segment rejection options
with the following recommendations. For data with sufficient channels
(e.g., here 12 was sufficient but we did not test performance on sparser
configurations), segment rejection via joint-probability criteria is rec-
ommended. This setting is also recommended for users combining data
collected across different systems or ages where the overall signal am-
plitude may differ across files. Users performing analyses in the time
domain (as for ERP paradigms) may opt to include amplitude-based cri-
teria. For users with very low-density configurations where the joint-
probability criteria relying on standard deviations may not perform as
well as it did here, amplitude-only criteria may be used for segment
rejection.

1.8. Interpolation of bad channels (if bad channel detection was run)

For all HAPPILEE runs that included bad channel detection, channels
marked as bad are now subject to spherical interpolation (with Legendre
polynomials up to the 7th order) to repopulate their signal. The identity
of all interpolated channels, if any, for a file are recorded in the HAP-
PILEE processing report for users who wish to monitor the percentage
or identity of interpolated channels in their datasets before further anal-
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ysis. This interpolation step is available for all files formats except for
.mat formats without channel locations as the interpolation step requires
electrode location information to interpolate appropriately spatially.
However, similar to segment interpolation outlined above, we caution
users against including these interpolated channels in analyses in cases
where channels are distributed with significant distance between them
as the interpolation process would pull data from distal channels that
does not reflect the appropriate activity profile for that scalp space.
Effects of interpolation on data may depend on experiment, layout
(Melnik et al., 2017; Bigdely-Shamlo et al., 2015a), and interpolation
method (Courellis et al., 2016; Petrichella et al., 2016; Robeson, 1997).
Because this step is not optional when bad channel detection is run, if
a user wishes to omit these interpolated channels from analyses, a list
of interpolated channels can be found on the data quality assessment
report.

1.9. Re-referencing (Optional)

False Neg&ti\m Rate
15.9%
15.5%

HAPPILEE offers users the choice to re-reference the EEG data if they

5 wish. While there is no ideal reference for EEG, re-referencing with one

of several practical if imperfect options can reduce artifact signals that

g exist consistently across electrodes, including residual line-noise, and re-

= m ; cover signal from online reference channels of interest. If re-referencing,

§ o |w the user may specify either re-referencing using an average across all

channels (i.e., average re-reference), using a channel subset of one or

-g multiple channels, or re-referencing to a point at infinity using the ref-

. erence electrode standardization technique (REST) (for additional in-

formation on REST, see Yao 2001). It is important to carefully consider

which re-referencing method is best suited for a particular dataset, es-

E‘ pecially when using a low-density layout (e.g. Junghofer et al. 1999).

= ﬁ g Users may re-process data with different re-referencing options

5 e selected to assess the effect of re-reference scheme on their
results.

A major concern that stems from low density layouts is inter-
electrode distance. Given the limited number of channels, there may
be cases where the electrodes used are far apart spatially on the
scalp, leading to biases when re-referencing to a channel subset of
one or multiple channels. If the reference electrode is spatially close
to some electrodes, but far from others, then it will not be represen-
tative of the signal as a whole across the scalp and be disproportion-
ately influenced by the immediately surrounding electrodes (Lei and
Liao, 2017). If the user chooses to re-reference to a channel subset, they
must ensure that the amplitude of that subset is representative of the
broader signal across other electrode sites and that the signal at the
chosen electrode(s) is not correlated with task-induced activity (Kim,
2018).

To avoid biases associated with re-referencing to electrodes on the
scalp, average re-referencing is often used, averaging across all scalp
electrodes. However, this can still be challenging with low density
datasets when the number of electrodes are limited and the distribu-
tion of the electrodes are uneven across the scalp (Dien, 1998). Average
re-referencing is recommended when the EEG layout is dense (some rec-
ommend over 100 channels) and evenly distributed, allowing the overall
activity to average to 0 (Peng and Peng, 2019). Users should consider
the distribution of their electrodes before using average re-referencing
on low density data.

REST, proposed as a neutral reference to a point at infinity
(Yao, 2001), is another option for low density data. In a study consid-
ering re-referencing for layouts with 32, 64, and 128 channels, Lei and
Liao (2017) found that the relative error was lowest for REST, followed
by average re-reference, and then referencing to a single electrode (FCz,
Oz), regardless of the number of electrodes and signal-to-noise ratio.
An additional study looking at a graph-based analysis of brain connec-
tivity using a 19-channel layout found that REST can minimize con-
tamination and reduce effects of volume conduction (Olejarczyk and
Jernajczyk, 2017). With an even broader range of electrodes (21, 34,

Segmentation Parameters

Joint-Probability: 2 standard deviations
Joint-Probability: 2 standard deviations; Amplitude: -150, 150

Performance of segment rejection parameters tested on nineteen files from the example dataset.

Table 5

13



K.L. Lopez, A.D. Monachino, S. Morales et al.

Artifact-Laden Data Before Processing

Log Power Spectral Density 10l0g, ,(1V*/Hz)
Log Power Spectral Density 10l0g, ,(:V*/Hz)

I
20
Frequency (Hz)

I
20
Frequency (Hz)

25 30 15

Artifact-Laden Data After Processing

25

Neurolmage 260 (2022) 119390

Clean Data After Processing (for comparison)

Log Power Spectral Density 1D‘Iog‘0(/:V2/Hz)

I
20
Frequency (Hz)

30 35 40 45 25 30

Fig. 8. EEG spectrum before and after complete processing through HAPPILEE with the final optimizations for each step. Two files from the same participant in the
example dataset are shown from the artifact-laden 30 s segment and clean 30 s segment. The artifact-laden EEG spectrum before processing is shown in the left panel.
The artifact-laden EEG spectrum after processing is shown in the middle panel. The clean EEG spectrum after processing is shown in the right panel for comparison.

74, 128 electrodes), Chella et al. (2016) found that REST reduces bi-
ases associated with referencing to a singular electrode and average re-
referencing across all electrode density layouts, although REST’s perfor-
mance was further improved with high-density layouts. REST has been
implemented in HAPPILEE using the open-source MATLAB toolbox for
REST of scalp EEG (Dong et al., 2017).

Note that for re-referencing to a subset of channels and average re-
referencing, only channels within the user-specified channel subset se-
lected for HAPPILEE processing can be used for re-referencing. During
re-referencing, if there is a prior reference channel (e.g., an online ref-
erence channel), that channel’s data is recovered and included in the
re-referenced dataset. For example, EGI (Electrical Geodesics, Inc., Eu-
gene, OR) data is typically online-referenced to channel CZ. In this ex-
ample, users could now recover data at channel CZ by re-referencing to
any other channel or channels (or average rereference) in this step.

An example file pre- and post-processing with HAPPILEE is shown in
Fig. 8 to demonstrate the effectiveness of the pipeline. Clean 30 s seg-
ment of data pre- and post-processing is shown as well as an artifact-
laden 30 s segment of data pre- and post-processing. The clean and
artifact-laden power spectra are much more similar post-processing
compared to pre-processing.

1.10. HAPPILEE outputs

HAPPILEE outputs include the processed EEG and the HAPPILEE pro-
cessing reports. These outputs are generated in several folders that are
located within the user-specified folder of files for processing. EEG files
are saved out after several intermediate processing steps so that users
can explore in-depth and visualize how those steps affected the EEG sig-
nal in their own datasets. The intermediate files are separated into fold-
ers based on the level of processing performed on the data and include:
(1) data after filtering to 100 Hz and line-noise reduction, (2) data post-
bad channel rejection (if selected), and (3) post-wavelet-thresholded
data. If segmenting is enabled, HAPPILEE outputs one to two additional
intermediate files: (5) post-segmented EEG data (always) and (6) inter-
polated data (if bad data interpolation is enabled). If segment rejection
is selected, HAPPILEE saves the data post-segment rejection as well.

HAPPILEE outputs fully processed files that are suitable inputs for
further analyses in one of several formats, selected by the user at the
start of the HAPPILEE run, to increase compatibility with other software
for data visualizations or statistical analyses. Options include mat, .set,
and .txt formats. Alongside the fully processed data, HAPPILEE also out-
puts the HAPPE Data Quality Assessment Report and the HAPPE Pipeline
Quality Assessment Report, each described in detail below. Finally, if
HAPPILEE is run in the semi-automated setting, the software generates
an image for each file containing the fully processed data’s power spec-
trum.
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2. HAPPILEE data quality assessment report

HAPPILEE generates a report table of descriptive statistics and data
metrics for each EEG file in the batch in a single spreadsheet to aid
in quickly and effectively evaluating data quality across participants
within or across studies. The report table with all these metrics is pro-
vided as a .csv file in the “quality_assessment_outputs” folder generated
during HAPPILEE. We describe each of these metrics below to facili-
tate their use to determine and report data quality (for an example data
quality assessment report, see Table 6).

2.1. File length in seconds

HAPPILEE outputs the length, in seconds, of each file prior to pro-
cessing.

2.2. Number of user selected channels

HAPPILEE outputs the number of channels included for each file as
determined by the user.

2.3. Number of good channels selected and percent of good channels
selected

The number of channels contributing data (“good channels”) and the
percentage of channels remaining following rejection of bad channels
are provided.

2.4. Bad channel IDs

The identity of channels that are marked bad during the bad channel
detection step and subsequently interpolated are provided. Users wish-
ing to limit the amount of interpolated data in further analyses can easily
identify channels for exclusion using this metric. Users may also reject
files from further analysis on the basis of too high a percentage of bad
channels.

2.5. Percent variance retained post-wavelet

The percent change of the variance of the signal following wavelet
thresholding compared to before wavelet thresholding is provided for
the user to evaluate how much data is retained following this step of
artifact correction.

2.6. Channels interpolated per segment

Users that choose to perform bad data interpolation within segments
(as in FASTER, Nolan et al. 2010) will be provided with the list of chan-
nels interpolated for each segment.
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Table 6

Example HAPPILEE data quality assessment report for the 30 files in the example dataset.

A.set
B.set
Cset
D.set
E.set
F.set
G.set
H.set
l.set
J.set
K.set
L.set
M.set
N.set
O.set
P.set
Q.set
R.set
S.set
T.set
U.set
V.set
W.set
X.set
Y.set
Z.set
ZA.set
ZB.set
ZC.set
ZD.set

File_Length_in_
Seconds
578.1855469
252.6542969
315.8105469
350.4355469
217.2792969
205.4042969
177.0292969
192.2167969
215.4980469
399.9355469
214.4980469
161.8417969
189.6855469
228.3730469
169.0292969
169.0292969
359.4355469
211.9667969
208.7480469
194.0605469
160.8730469
193.0292969
215.4355469
195.7167969
204.7480469
214.2792969
183.2792969
172.7480469
185.7480469
189.6230469

Number_User-
Selected_Chans
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

Number_Good_ Percent_Good_
Chans_Selected Chans_Selected Bad_Chan_IDs

10
10
10
11
10
10
12
12
12
9

11
10
10
11
11
11
11
11
12
11
8

8

1
10
10
11
12
10
10
10

83.33333333
83.33333333
83.33333333
91.66666667
83.33333333
83.33333333

100

100

100

75
91.66666667
83.33333333
83.33333333
91.66666667
91.66666667
91.66666667
91.66666667
91.66666667

100
91.66666667
66.66666667
66.66666667
91.66666667
83.33333333
83.33333333
91.66666667

100
83.33333333
83.33333333
83.33333333

F3T8
T778
1778
8
F3T7
T778
None
None
None
027778
02
T7T8
C4 02
T8
02
7
02
T7
None
7
01027778
02P3PZT7
o1
T778
F3 02
02
None
02PZ
T7T8
T778

Percent_Var_Retained_ Chans_Interpolated_ Number_Segs_ Number_Segs_ Percent_Segs_

Post-Wav
7.212419357
33.56138136

96.2459489
30.85257549
80.66740534
96.02627215
81.23165619
68.62454605

82.2100646
34.98028171
34.80806798
62.50611461
23.30805844
38.92346417

22.2175945
59.88916015
14.43611281
22.85687395
13.41107304

85.4095742
18.89744645
24.76913879
11.94601744
84.71330967
42.98928308
84.08946948
75.51290637

12.0893025
28.30493799
82.27536771

per_Seg
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Pre-Seg_Rej
289
126
157
175
108
102

88
96
107
199
107
80
94
114
84
84
179
105
104
97
80
96
107
97
102
107
91
86
92
94

Post-Seg_Rej
216
94
122
127
88
77
55
59
71
148
78
56
72
78
56
62
122
72
69
69
63
71
75
66
74
80
65
57
60
68

Post-Seg_Rej
74.74048443
74.6031746
77.70700637
72.57142857
81.48148148
75.49019608
62.5
61.45833333
66.35514019
74.3718593
72.89719626
70
76.59574468
68.42105263
66.66666667
73.80952381
68.15642458
68.57142857
66.34615385
71.13402062
78.75
73.95833333
70.09345794
68.04123711
72.54901961
74.76635514
71.42857143
66.27906977
65.2173913
72.34042553
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2.7. Number of segments pre-segment rejection and number of segments
post-segment rejection

HAPPILEE reports the number of segments before segment rejection
and post segment rejection (using joint probability, amplitude-based re-
jection, or both). If segment rejection is not enabled, these numbers are
identical. If the user enabled segment rejection in HAPPILEE, they may
evaluate the number of data segments remaining post-rejection for each
file to identify any files that cannot contribute enough clean data to be
included in further analyses (user discretion). The user may also easily
tabulate the descriptive statistics for remaining segments to report in
their manuscript’s Methods section (e.g., the mean and standard devia-
tion of the number of usable data segments per file in their study).

2.8. Percent of segments post-segment rejection

The percentage of segments that remain following segment rejec-
tion (using joint probability, amplitude-based rejection, or both) are
provided for the user.

3. HAPPILEE pipeline quality assessment report

For each run, HAPPILEE additionally generates a report table of de-
scriptive statistics and data metrics for each EEG file in the batch in a
single spreadsheet to aid in quickly and effectively evaluating how well
the pipeline performed across participants within or across studies. Note
that these metrics may also be reported in manuscript methods sections
as indicators of how data manipulations changed the signal during pre-
processing. The report table with all these metrics is provided as a .csv
file in the “quality_assessment_outputs” folder generated during HAP-
PILEE processing (for an example pipeline quality assessment report,
see Tables 7 and 8).

3.1. r pre/post linenoise processing

HAPPILEE automatically outputs cross-correlation values at and near
the specified line noise frequency (correlation between data at each fre-
quency before and after line noise processing). These cross-correlation
values can be used to evaluate the performance of line noise attenu-
ation, as the correlation pre- and post-line noise alogirthm should be
lower at the specified frequency or frequencies, but not at the surround-
ing frequencies beyond 1 to 2 Hz (unless those are also specified by
the user). HAPPILEE will automatically adjust which frequencies are re-
ported depending on the user-identified line noise frequency. This met-
ric can also be used to detect changes in how much line noise is present
during the recordings (e.g., if generally cross-correlation values are high
when study protocol is followed, indicating low line-noise removal from
the data, but a staff member forgets and leaves their cell phone on the
amplifier for several testing sessions, the degree of line noise removal
for those files summarized by this metric could be used as a flag to check
in on site compliance with acquisition protocols).

3.2. r pre/post wav-threshold

HAPPILEE automatically outputs the cross-correlation values before
and after wavelet thresholding across all frequencies and specifically at
0.5, 1, 2, 5, 8, 12, 20, 30, 45, and 70 Hz. These specific frequencies
were selected to cover all canonical frequency bands across the lifespan
from delta through high-gamma as well as the low-frequencies retained
in ERP analyses. These cross-correlation values can be used to evaluate
the performance of waveleting on the data for each file. For example, if
cross-correlation values are below 0.2 for all participants in the sample,
the wavelet thresholding step has not progressed as intended (users are
advised to first check their sampling rate in this case and visualize sev-
eral raw data files). Note that this measure may also be used to exclude
individual files from further analysis based on dramatic signal change
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during waveleting (indicating high degree of artifact), for example if
the 8 Hz or all-data cross-correlations are below some threshold set by
the user (e.g., 3 standard deviations from the median or mean, r values
below 0.2).

Through these quality assessment reports, HAPPILEE aims to pro-
vide a rich, quantifiable, yet easily accessible way to effectively evalu-
ate data quality for even very large datasets in the context of automated
processing. Visual examination of each file is not required, although it
is available. We also hope to encourage more rigorous reporting of data
quality metrics in manuscripts by providing these outputs already tab-
ulated and easily transformed into descriptive statistics for inclusion in
reports. Users may also wish to include one or several of these metrics as
continuous nuisance covariates in statistical analyses to better account
for differences in data quality between files or verify whether there are
statistically significant differences in data quality post-processing be-
tween study groups of interest.

Several metrics may also be useful in evaluating study progress re-
motely to efficiently track the integrity of the system and data collec-
tion protocols. For example, the r pre/post linenoise removal metric
may indicate environmental or protocol deviations that cause signifi-
cant increases in line noise in the data, and the Percent Good Chan-
nels Selected and Interpolated Channel ID metrics can be used to track
whether the net/cap is being applied and checked for signal quality prior
to paradigms or whether a channel (or channels) is in need of repair. For
example, if the T6 electrode starts consistently returning bad data for a
specific net/cap, it may need to be examined for repair. For further guid-
ance about using the processing report metrics to evaluate data, users
may consult the User Guide distributed with HAPPILEE software.

4. HAPPILEE compared to other low-density pre-processing
approaches

The HAPPILEE pipeline uses wavelet-thresholding based artifact-
correction methods to improve pre-processing capabilities for low-
density EEG. Below we compare HAPPILEE’s approach to two other
common pre-processing methods, independent component analysis
(ICA) for artifact correction, and voltage-thresholding segment rejec-
tion for artifact rejection, to justify the choice of wavelet-thresholding
in HAPPILEE’s pre-processing sequence.

4.1. HAPPILEE’s wavelet-thresholding vs. ICA

Automated artifact correction approaches in high-density EEG
pipelines to date have relied on independent component analysis (ICA)
and wavelet thresholding methods instead as they can successfully re-
move artifact while retaining the entire length of the data file. ICA
clusters data across electrodes into independent components that can
segregate artifacts from neural data, while wavelet-thresholding parses
data within frequency ranges using coefficients that can detect arti-
fact fluctuations in either electrode data or independent components.
ICA is included as an artifact rejection approach in many pipelines,
including MADE (Debnath et al., 2020) and HAPPE 1.0 (Gabard-
Durnam et al., 2018) software. Wavelet thresholding was also im-
plemented in HAPPE 1.0 (Gabard-Durnam et al., 2018) as part of
an initial wavelet-enhanced ICA (W-ICA) artifact rejection step (see
Castellanos and Makarov 2006 for details).

Importantly, prior literature suggests that ICA is not an optimal ar-
tifact rejection tool for low-density EEG configurations, as the number
of channels determines the number of independent components to be
generated, and many low-density configurations have too few channels
to adequately segregate artifact from neural components sufficiently.
For example, Troller-Renfree and colleagues have indicated through
their MiniMADE pipeline that ICA performs poorly on their low-density
data to remove artifacts (the MiniMADE pipeline instead uses threshold-
based rejection to remove eye blinks) (Troller-Renfree et al., 2021).
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Table 7

Example HAPPILEE pipeline quality assessment report with line noise removal metrics for the 30 files in the example dataset.

Row
Aset
B.set
Cset
D.set
E.set
F.set
G.set
H.set
l.set
Jset
K.set
L.set
M.set
N.set
O.set
P.set
Q.set
R.set
S.set
T.set
U.set
V.set
W.set
X.set
Y.set
Zset
ZAset
ZB.set
ZCset
ZD.set

r all fregs
pre/post
linenoise
removal
0.9895814

0.99874141
0.99526418
0.99992679
0.99995544
0.9997208
0.99995562
0.99999205
0.99991029
0.97661328
0.99976037
0.99997
0.99985629
0.99997315
0.99999693
0.99997888
0.99731004
0.9999804
0.99985049
0.99982912
0.99997007
0.99998053
0.99991565
0.99977752
0.99994833
0.99922498
0.99996414
0.99971643
0.99838329
0.99992831

r40 hz

pre/post

linenoise

removal
0.99916088
0.9843148
0.9987152
0.99984987
0.99995286
0.99993601
0.99996793
0.99998119
0.99986924
0.99909874
0.99798388
0.99997344
0.99952672
0.99988226
0.99995721
0.99998035
0.98472223
0.99988081
0.999452
0.99985272
0.99994831
0.9999484
0.99965725
0.99979784
0.99978906
0.99951606
0.99995533
0.99944307
0.99842717
0.99983712

r4s hz

pre/post

linenoise

removal
0.99644431
0.90221024
0.99578353
0.99937489
0.99972841
0.99965987
0.99984965
0.99989748
0.99937952
0.99740593
0.99301702
0.99989615
0.99822228
0.99937573
0.99977971
0.99987129
0.96237522
0.99945366
0.99855145
0.99935802
0.99990024
0.99971675
0.99909171
0.99884597
0.99878341
0.99783684
0.99978953
0.99855334
0.99104299
0.99920218

r48 hz
pre/post
linenoise
removal
0.98022096
0.73531683
0.97366386
0.99575213
0.99908999
0.99740427
0.99854702
0.99883357
0.9960597
0.99098957
0.98525218
0.99896074
0.99430809
0.99597055
0.99829089
0.99887411
0.88934726
0.99623581
0.99474223
0.99579984
0.99937704
0.99764214
0.99661777
0.99728648
0.99362509
0.98727464
0.99811689
0.99295167
0.96864615
0.99445904

r4g hz

pre/post

linenocise

removal
0.86469263
0.36352515
0.82912091
0.93563779
0.98310402
0.94715739
0.94971335
0.93811411
0.94540149
0.91934691
0.84939148
0.92345332
0.94061181
0.9486231
0.9663383
0.8793857
0.83264049
0.93545451
0.94081079
0.93317402
0.98688745
0.9433815
0.94282742
0.94893447
0.93512208
0.822414
0.95169148
0.94766401
0.71929041
0.92374343

r50 hz
pre/post
linenocise
removal
0.33371696
0.22909941
0.05115399
0.28364414
0.94361287
0.56617677
0.7742945
0.85950546
0.60977441
0.57185672
0.27712993
0.87963389
0.77130518
0.73235895
0.8342959
0.72272262
0.19142304
0.48938239
0.15810407
0.19223419
0.73126419
0.62501427
0.67624156
0.52934479
0.24384017
0.22435442
0.67689576
0.72351196
0.19836283
0.47946854

r51hz
pre/post
linenoise
removal
0.77400032
0.40797185
0.81430535
0.89770156
0.98518078
0.94607281
0.96505007
0.96014715
0.92796341
0.9543752
0.856229
0.94860666
0.94837614
0.94924453
0.93645735
0.93854405
0.60948385
0.92669674
0.92079243
0.911564
0.97589938
0.92909583
0.94356029
0.94584092
0.92558383
0.92402445
0.94998353
0.94603815
0.85785552
0.91020571

r52 hz
pre/post
linenoise
removal
0.96478077
0.67003827
0.96859053
0.99323203
0.99881865
0.99705639
0.99850716
0.99891695
0.99560634
0.99114355
0.9818124
0.9984046
0.99385609
0.99530518
0.99777481
0.99814135
0.81991902
0.9950726
0.9941236
0.99482378
0.99926087
0.99704409
0.99674682
0.99593381
0.99337544
0.99140367
0.99791772
0.99247567
0.97279489
0.99376132

r55hz
pre/post
linenoise
removal
0.99123658
0.88151448
0.99245845
0.99873473
0.99959138
0.99949761
0.99978344
0.99986374
0.99896467
0.99720506
0.98596694
0.99981865
0.99707406
0.9991414
0.99972248
0.99971333
0.90894947
0.99908373
0.99791162
0.99900041
0.99988354
0.99937493
0.99883932
0.99859054
0.99862699
0.99704442
0.99972576
0.99583247
0.98902752
0.9988481

r60 hz

pre/post

linenocise

removal
0.99752658
0.96356484
0.99754057
0.999657
0.99985627
0.99980818
0.99991486
0.9999523
0.99960335
0.99815621
0.99379299
0.99992927
0.9985271
0.99966782
0.99990079
0.99989713
0.95199375
0.99961147
0.99926551
0.99957367
0.99995294
0.99975862
0.99922797
0.99905058
0.99931048
0.99909007
0.99987542
0.99681325
0.99592998
0.99961874
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Table 8
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Example HAPPILEE pipeline quality assessment report with waveleting metrics for the 30 files in the example dataset.

r5hz
post/pre

r8hz
post/pre

ri2hz
post/pre

r20 hz r30hz
post/pre  post/pre

ras hz
post/pre

r70 hz
post/pre

RMSE MAE SNR PeakSNR  ralldata r2hz
post/pre  post/pre | post/pre  post/pre  post/pre  post/pre

Row waveleting waveleting waveleting leting leting leting
Aset 80.2036493 24.5264354 -11.158704 2.0922241 0.26855262 0.35668465
B.set 27.4390852 9.06174569 -2.8972717  9.883836 0.57921712 0.40659774
Cset 3.62385187 1.23180389 13.9212956 26.5164837 0.98057121 0.97447051
D.set 223524747 8.78922034 2.24398429 14.8460408 0.55581221 0.70933009
E.set 10.1174558 3.61799627 7.05994895 19.6016505 0.89888822 0.79281439
F.set 3.69784979 1.19484433 14.9080903 27.2979494 0.97978514 0.96692913
G.set 10.7384814 4.98605979 8.06536447 20.6171252 0.90153301 0.8631454
H.set 13.8040082 3.89166993 6.75852699 19.0633386 0.82859534 0.84100362
l.set 11.4146357 5.28723752 7.29600937 19.9091352 0.90677316 0.90671698
J.set 35.6607235 10.9502505 -2.3899513 11.5107345 0.5914081 0.39635384
K.set 28.4280726 8.47810377 -2.3238425 10.0705084 0.59024531 0.39640933
Lset 19.1016098 7.52164676 2.44978504 14.8116502 0.79024881 0.66047529
M.set 50.6675557 22.858232 -4.282522 829312582 0.48490409 0.3325696
N.set 31.621449 127379685 -0.5532397 12.1643219 0.62395176 0.38975491
O.set 45.5828501 18.470154 -4.7372906 7.42950417 0.47215319 0.25175227
P.set 17.4438781 6.07557965 2.09688137 14.3584708 0.7735312 0.78090638
Q.set 51.1736059 22.1457835 -7.3633643 5.80453469 0.38006098 0.19585139
R.set 37.1394466 15.3013833 -5.2228178 7.16395324 0.47847535 0.44111817
S.set 67.5591808 30.8568964 -7.9612712 4.57305767 0.36618467 0.1164457
T.set 6.56389955 2.63045549 8.62347716 21.2396539 0.92386143 0.94587918
U.set 542737578 18.3534165 -6.3392719 7.21382916 0.43574459 0.11974818
V.set 287507774 13.2220565 -1.8308035 10.2683989 0.49773445 0.30582347
W.set 68.6275297 23.7725488 -9.1527223 3.15901839 0.34651169 0.11466863
X.set 8.63826442 3.7296824 8.93089478 21.2201482 0.91929569 0.90007118
Y.set 28.628211 9.84474748 -1.3123038 11.6191363 0.65620046 0.74475626
Zset 7.51295161 2.66106093 10.8832931 23.0579575 0.91703487 0.88110527
ZAset 12.0964379 5.61034156 5.81672793 18.9395186 0.86877716 0.77369485
2B .set 46.8006324 19.3934277 -6.3514564 5.82802834 0.34853939 0.24660545
ZCset 28.1659883 11.7343191 -3.0208581 9.2030858 0.53205336 0.44512235
ZD.set 7.99637138 3.6056648 9.75431575 21.9533815 0.90698026 0.95047858

0.14887036

0.6351261
0.98901209
0.81072506
0.82995984
0.99732799
0.95669052
0.94480304
0.98541043
0.69531587
0.79277823
0.90170106
0.62567461
0.70667006

0.5778485
0.94723397
0.40037374
0.69354753

0.2353187
0.84140087
0.29281595
0.64589253
0.44977473
0.97841142

0.4648043
0.95416158
0.98114882
0.55497008
0.84964771
0.96178709

waveleting leting
0.01081803 0.01269972
0.74639992 0.78932447
0.98021073 0.96710936
0.76097867 0.65799095
0.94065533 0.91907142
0.99067432 0.9642797
0.96260545 0.93104839
0.91313401 0.9396424
0.96839748 0.95244883
0.68304352 0.69989085
0.92030331 0.95551133
0.96075704 0.9373528
0.85622804 0.88783935
0.89778094 0.93468175
0.85643279 0.89894671
0.93355169 0.9124163
0.5518685 0.58674381
0.89174099 0.88257248
0.36992241 0.48425837
0.98675665 0.97215172
0.78463117 0.68616847
0.84748939 0.88862519
0.7056822 0.80403151
0.96212902 0.95055886
0.78793475 0.87524234
0.91545411 0.9248888
0.9440629 0.88977697
0.75640132 0.91000502
0.87356113 0.9161105
0.99120753 0.98895411

0.05500862
0.57458252
0.99750454
0.87210154
0.84338011
0.99929499
0.93721556
0.89858849
0.99216724

0.5947786
0.81326934
0.94302686

0.7672895
0.71198467
0.66808907

0.9453857
0.48068075
0.83891649
0.21833125
0.98362314
0.14470407
0.76028173
0.53237562

0.9663019
0.63038341
0.89993385

0.9639691
0.62628607
0.94513502
0.99418802

0.07696646
0.67210513
0.977783
0.92024466
0.85207415
0.99883182
0.98296667
0.95818359
0.99527105
0.84985923
0.91583643
0.95447216
0.85372446
0.93443652
0.60964507
0.98841419
0.42383743
0.78203285
0.2183328
0.89686689
0.54644507
0.7815601
0.73375809
0.9956443
0.66270479
0.94654272
0.9817632
0.71480755
0.90003438
0.99187791

0.01014302
0.60786376
0.90585438
0.58208682
0.80532188
0.95931622
0.81811401
0.86435339
0.91449986
0.49194963
0.77923178
0.83625005
0.71829452
0.85215335
0.81901935
0.86648348
0.38110692
0.88807277

0.3855793
0.93432972

0.1594845
0.86302796
0.72381947
0.87692015

0.8047755
0.86603806
0.82618597
0.91683455
0.88513137
0.94475438

0.01158555
0.66093624
0.90012548
0.62212352
0.81331945
0.98579873
0.75916617
0.89118546
0.92581277
0.64629721

0.9281164
0.89635819

0.7733812
0.85168062
0.83662889
0.84466482
0.52405389
0.91758708
0.36617643
0.95038871
0.34900533
0.85743974
0.79228836
0.92897569
0.91801002
092132681
0.87155366
0.88789039
0.81440391
0.95324358

ICA has also failed to remove classes of artifact like line noise in low-
density data (Xue et al., 2006). In contrast, wavelet-thresholding op-
erates on each EEG channel separately, and thus should have density-
independent artifact-correction performance. Indeed, wavelet thresh-
olding has been found to outperform denoising methods that could
apply to low-density data, including Empirical Mode Decomposition,
Kalman filtering (Salis et al., 2013), and ICA. Specifically, prior stud-
ies have found that wavelet thresholding outperforms ICA as an artifact
removal approach on data with fourteen channels (Bajaj et al., 2020).
Krishnaveni and colleagues also found that waveleting performs bet-
ter than ICA (using the JADE algorithm) in removing eye blinks in the
low frequency range while preserving brain signal in high frequencies
(Krishnaveni et al., 2006).

Wavelet thresholding has several additional advantages beyond
channel-density independent performance when compared to other ar-
tifact correction and rejection approaches. First, wavelet-thresholding
can be applied down to the level of single-channel EEG recordings, as
it has no minimum channel number to run effectively. Additionally,
wavelet thresholding corrects artifact without removing discrete time-
points from the EEG recording, an issue that is inherent to manual arti-
fact rejection where whole EEG segments are rejected (and so data from
clean channels during that segment are sacrificed). Relatedly, wavelet
thresholding can detect and remove isolated and non-stereotyped arti-
facts easily without removing neural data from other points in time or
other channels, whereas ICA must reject an entire timeseries (the com-
ponent) to remove the artifact, even if it occurs relatively rarely over
the recording (or ICA must be paired with initial segment rejection,
which sacrifices good data from other electrodes during those artifact-
contaminated segments). Wavelet thresholding is also computationally
more efficient than either ICA or manual inspection (with results that
are perfectly reproducible each time the method is applied to the same
dataset). All of these features make wavelet thresholding appealing as a
strategy for removing artifact from low-density EEG layouts.
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In addition to the prior literature and conceptual reasons provided so
far in favor of wavelet-thresholding as an artifact-correction strategy for
low-density recordings, we ran a series of empirical tests to provide ev-
idence for our decision to implement wavelet thresholding, rather than
ICA, as our artifact correction method. In order to test ICA’s performance
as a function of channel density, we ran ICA under two conditions: on a
subset of 5 channels (F3 F4 FZ C3 C4) and on 12 channels downsampled
to the same 5 channels following ICA correction. We predicted that ICA
would perform differently as a result of varying the number of channels
run on artifact correction for the two datasets. Confirming our predic-
tion, we found that ICA run on five channels rejected all independent
components on a total of five files, while ICA run on twelve channels
did so for only two files. That is, processing performance differed as a
function of channel density during ICA.

Moreover, downsampling before vs. after artifact correction led to
differing performances of ICA, as measured by percent variance retained
following ICA (t(8) = 2.61, p = 0.03); see Table 9 below. Further, these
findings are supported by clear visual differences between the post-
artifact corrected signal when downsampling occurs before vs. after ICA
(Fig. 9). Notably, bad channel detection was not run for this assessment,
but these findings raise concerns that removing bad channels and thus
changing the channel density for ICA across files within a dataset would
vary ICA performance within that dataset. Meanwhile, running the same
files under the above conditions through waveleting made no difference
as the artifact correction runs within each channel independently (and
thus is agnostic to channel density differences within or across files).
That is, wavelet thresholding for artifact correction within a dataset is
never channel-density dependent, so correction will operate similarly if
a file has many, few, or no bad channels flagged.

As one additional test of ICA’s performance on low density datasets
under conditions where bad channels could more commonly alter chan-
nel density, we ran ICA on a subset of 8 channels (F3 F4 C3 C4 P3 P4 O1
02) and on 12 channels downsampled to the same 8 channels following
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Table 9
Percent variance retained following ICA and waveleting for files with 5 channels (F3 F4 FZ C3
C4) and files with 12 channels downsampled to the same 5 channels.

D 67.35 66.57
G 74.14 69.75
H 100.00 94.81
K 54.13 39.54
L 82.24 48.27
U 4.11 7.38
X 82.30 52.92
ZA 56.17 53.69
ZD 86.54 72.37
Average 67.44 56.14
D 83.99 83.99
G 81.68 81.68
H 89.97 89.97
K 36.54 36.54
L 64.88 64.88
u 18.44 18.44
X 85.93 85.93
ZA 76.64 76.64
ZD 89.42 89.42
Average 69.72 69.72
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Fig. 9. EEG signal before artifact correction (A), after waveleting (B) and after ICA (C) when the file is downsampled to 5 electrodes following artifact correction,
and after ICA when the file is downsampled to 5 electrodes before artifact correction (D). All scales are in microvolts.
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Percent variance retained following ICA and waveleting for files with 8 channels (F3 F4 C3 C4 P3
P4 01 02) and files with 12 channels downsampled to the same 8 channels.

OS¥xcr=xxT000w®

Average

S¥xecr=xT000w®

Average

4.22 19.49
20.87 19.86
82.38 65.57
75.68 73.58
13.63 31.45
60.68 40.19

5.15 6.18
54.26 47.89
42.28 4431
69.30 70.04
39.91 41.86
35.59 35.59
28.53 28.53
78.04 78.04
68.05 68.05
34.60 34.60
61.14 61.14
19.06 19.06
83.21 83.21
78.51 78.51
81.78 81.78
56.85 56.85

ICA correction (several files in the BEIP dataset had 3-4 bad channels
resulting in ICA on 8-9 good channels instead of the full 12 channels).
Once again, as predicted, we found that downsampling before vs. after
artifact correction led to differences in the performance of ICA, as ICA
run on 8 channels removed all components on four files, while down-
sampling to 8 channels rejected all components on only two files. For the
subset of files retained by both processing runs, although there were not
significant differences between processing conditions measured by per-
cent variance retained following ICA (p > 0.05), several individual files
experienced dramatic changes in variance retained as a function of chan-
nel density (e.g., 13 vs 31%, 60 vs 40%); see Table 10 below. Once again,
there are clear visual differences between the post-artifact corrected sig-
nal when downsampling occurs before vs. after ICA (Fig. 10; significant
signal loss in multiple channels observable in the case of downsampling
before running ICA).

This pattern may indicate inconsistent ICA results across these chan-
nel densities. Again, as expected, the percent variance retained for
waveleting and files rejected were identical for 8 channels compared to
12 channels downsampled to 8 channels. These results together further
solidify our decision to use waveleting instead of ICA to ensure consis-
tent performance across files regardless of differences in bad channel
number with low density data in HAPPILEE.

Even with the complete set of channels in a low-density context, ICA
underperformed in artifact correction relative to wavelet-thresholding
visually (Fig. 11). For example, ICA and wavelet thresholding perform
similarly on the clean segment where there is very little artifact to cor-
rect, but high amplitude artifact clearly remains in the artifact laden
segment after it is run through ICA (Fig. 11). Meanwhile, wavelet thresh-
olding effectively removes the high amplitude artifact.

Beyond the inconsistency of ICA’s performance as a function of chan-
nel density with low density datasets, ICA is also far less computationally
efficient than waveleting, reflected both mathematically (e.g., complex-
ity of a learning algorithm vs. wavelet function) and in differences in
processing time on the same machine. When run on twelve full length
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BEIP files averaging roughly three and a half minutes in length and con-
taining 12 channels, ICA was much slower to complete than wavelet-
thresholding. ICA averaged 165 s per file while waveleting averaged
1 s per file for artifact correction. Both the prior literature and these
additional assessments suggest that waveleting-based approaches will
provide the more efficient and consistent performance relative to ICA
across the range of low-density layouts considered here.

We do note that how wavelet-thresholding (spatially-independent
approach) and spatial filtering approaches (e.g. ICA, PCA) perform rel-
ative to each other in correcting artifacts in EEG may depend on several
contextual parameters that the field has yet to systematically explore.
For example, the inter-channel distance, total spatial coverage on the
head across channels, number of channels, and type of artifact signal
may all affect how ICA performs relative to wavelet-thresholding. Here,
channels were spatially distributed across the scalp and a variety of ar-
tifact types were included but not compared directly to each other. Fur-
ther research is required to systematically quantify how these factors
impact artifact correction performance across layout configurations and
age.

4.2. HAPPILEE’s wavelet-thresholding correction vs. segment rejection

Another option for addressing artifact involves no artifact-correction
steps (e.g., wavelet-thresholding, ICA), instead just artifact rejection
through segment/trial rejection. Although no manipulations are per-
formed on the retained data segments in the “segment rejection only”
approach, there is loss of good data from channels without artifact in the
segments that are rejected. Here we examined whether the inclusion of
wavelet thresholding reduced the need to reject segments or trials of
data downstream in the pipeline. To do so, we compared segment rejec-
tion rates in both the simulated and real EEG datasets.

With respect to the simulated data that had adult eye-blink and other
developmental artifacts added, an automated amplitude-based voltage
threshold (—100 to 100 xV threshold) was used for segment rejection
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Table 11
Performance of two pre-processing sequences on simulated EEG data and real EEG data.
Waveleting followed by
Artifact Rejection artifact rejection

Simulated EEG
Trials retained 269 286
Proportion of trials retained 94% 100%
Real EEG
Trials retained 62.6 85.7
Proportion of trials retained 59% 81%

comparisons. Only the wavelet thresholding approach retained all trials
of simulated signal (Table 11) and appeared (based on visual inspection)
to have removed all blinks and most of the other artifacts. In contrast,
when using artifact rejection only, epochs exceeding the voltage thresh-
old were removed, including some epochs with blinks, but not all. A total
of 116 epochs were contaminated with blink artifact, but only 17 epochs
were removed with voltage threshold artifact rejection when additional
artifact was included in the simulated data (in a separate test, not re-
ported in detail here, we ran the data with just blink artifact included
and 107/116 epochs with blinks were removed with voltage threshold
artifact rejection). Visual inspection of the data suggested that some
of the blinks in noisier epochs were retained when subjected to only
artifact-rejection thresholding because the noise stemming from mus-
cle activity included negative deflections that lowered the amplitude of
the blinks, which caused the blink artifacts to fall within our acceptable
voltage threshold range. Of note, some muscle activity still remained
in the simulated data in all pre-processing conditions in this test. These
simulated data results strongly support the use of HAPPILEE’s wavelet-
thresholding as an artifact-correction approach prior to segment rejec-
tion to improve both artifact removal and segment retention.

To further evaluate the performance of segment retention only com-
pared to wavelet-thresholding, the real EEG data in the BEIP study was
leveraged with manual segment rejection. Manual segment rejection
here addressed the effect observed above in the simulated data where
some artifacts in the segment rejection only approach passed through
automated voltage thresholds when combined with other artifacts (as
often occurs in real EEG data). Specifically, manual segment rejection
rates were compared in 14 files of the BEIP dataset that were processed
twice, once with and once without wavelet-thresholding on the data
(mean number of segments before rejection = 105.6). The mean num-
ber of clean segments retained after manual rejection on post-waveleted
data (85.7 segments) was significantly higher than the mean number of
clean segments retained without wavelet thresholding (62.6 segments;
t(18) = —9.07, p = 0.00000004, Table 11). That is, artifact-correction
via wavelet-thresholding improved segment retention by 37% relative
to no artifact-correction before segment rejection in real EEG data. This
pattern of results across comparisons with ICA and artifact rejection via
voltage-thresholding provides consistent evidence in support of using
wavelet-thresholding for artifact-correction in pre-processing EEG data
in low-density contexts.

5. Conclusion

The field of cognitive neuroscience has been rapidly moving toward
the use of automated EEG pre-processing pipelines that make use of
contemporary artifact correction and rejection approaches like wavelet-
thresholding and ICA as effective, efficient, standardized alternatives to
subjective and labor-intensive manual pre-processing. Here we provide a
solution suitable for lower-density layouts from approximately 32 chan-
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nels down to single channel EEG with the current automated pipeline,
HAPPILEE. HAPPILEE supports processing resting-state and task-related
EEG, as well as ERP data (see Monachino et al. 2021 for details on op-
timization for ERP analyses). HAPPILEE is suitable for configurations
with any number of channels, though it may perform best on data with
1 to around 32 channels (those with higher-density configurations may
consider pipelines optimized for high-density data, including the com-
panion HAPINNES or HAPPE+ER (Monachino et al., 2021) pipelines
within HAPPE 2.0 software.

There are several limitations to HAPPLIEE that should also be consid-
ered. First, HAPPILEE was optimized and validated using developmental
EEG and simulated signals, so it remains to be validated in adult EEG
data or other populations. Though the authors do not anticipate specific
reasons HAPPILEE would not perform well in other populations, and
have run HAPPILEE in adult EEG data themselves, researchers with EEG
data from populations not validated in this manuscript are encouraged
to carefully verify performance themselves before using HAPPILEE. Sec-
ond, bad channel detection was tested on a dataset with twelve chan-
nels. As a result, those working with layouts with substantially fewer
electrodes may consider verifying for themselves that the default set-
tings work sufficiently well for their datasets. Alternatively, the bad
channel detection step is optional, so if it is unsuitable or is not de-
sired for a dataset, the user may opt-out of this step of the pipeline.
Furthermore, the appropriate amplitude threshold for performing seg-
ment rejection by amplitude will vary across datasets collected on dif-
ferent ages or systems and should be verified through visual inspection
of several files (via running HAPPILEE in the semi-automated setting
with visualizations). Lastly, HAPPILEE was optimized using a single,
gel-based (low-impedance) system (James Long) given the data avail-
able to the researchers, but others should independently verify perfor-
mance on the other systems and recording contexts to confirm com-
patibility with HAPPILEE. Although the authors do not currently fore-
see any difference in performance between datasets collected in labora-
tory environments (i.e., the current optimization dataset) and datasets
collected in the home or clinics, further testing will be necessary in
order to fully verify its efficacy on data collected in non-laboratory
settings.

The HAPPILEE pipeline is freely available as part of the HAPPE soft-
ware (first released with HAPPE version 2.0), covered under the terms
of the GNU General Public License (version 3) (Free Software Foun-
dation, 2007). HAPPILEE’s sequence of processing steps are automat-
ically triggered within HAPPE 2.0+ software when the user indicates
they have data with fewer than 32 channels. HAPPILEE may be ac-
cessed at: https://github.com/PINE-Lab/HAPPE. The HAPPE 2.0+ soft-
ware download includes a user guide to aid in the set-up and implemen-
tation of the pipeline. The subset of BEIP EEG data used to optimize the
HAPPILEE pipeline, including the files used in the clean vs. artifact and
artifact addition approaches and simulated signals are publicly available
at: https://zenodo.org/record/5088346 (Lopez et al., 2021).
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