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Abstract

Sustainable food security is a major challenge in today’s world, particularly in developing countries. Among many fac-
tors, environmental stressors, i.e., drought, salinity and heavy metals are major impediments in achieving sustainable
food security. This calls for finding environment-friendly and cheap solutions to address these stressors. Plant growth-
promoting rhizobacteria (PGPR) have long been established as an environment-friendly means to enhance agricul-
tural productivity in normal and stressed soils and are being applied at field scale. Similarly, pyrolyzing agro-wastes
into biochar with the aim to amend soils is being proposed as a cheap additive for enhancement of soil quality and
crop productivity. Many pot and some field-scale experiments have confirmed the potential of biochar for sustainable
increase in agricultural productivity. Recently, many studies have combined the PGPR and biochar for improving soil
quality and agricultural productivity, under normal and stressed conditions, with the assumption that both of these
additives complement each other. Most of these studies have reported a significant increase in agricultural productiv-
ity in co-applied treatments than sole application of PGPR or biochar. This review presents synthesis of these studies
in addition to providing insights into the mechanistic basis of the interaction of the PGPR and biochar. Moreover, this
review highlights the future perspectives of the research in order to realize the potential of co-application of the PGPR
and biochar at field scale.
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Introduction

Recently in agro-ecosystems, soil amendments are used
to support plant growth and development, especially by
adding organic and inorganic nutrients to the soil. Soil
amendments are elements that are added to the soil to
improve its ability to support plant life [1]. Soil amend-
ments such as compost, animal slurry, savage sludge,
green manure, farm yard manure, fly ash, biochar (BC),
PGPR (plant growth-promoting rhizobacteria), etc., are
the organic soil amendments have been explored as inno-
vative strategies to increase crop productivity and soil
fertility [2—6]. Numerous previous studies have shown
that soil organic amendments can provide various ben-
efits to soil such as improved soil texture, increased soil
fertility, long-term maintenance of soil health, and in par-
ticular, crop yields [7-9].

However, the application of organic soil amendments
to agricultural soils poses a number of threats to the
agro-ecosystem and human health. Organic soil amend-
ments often include a range of pollutants, including
heavy metals, potential human pathogens, persistent
organic pollutants, and emerging pollutants. From the
emerging pollutants the presence of antibiotic-resistant
bacteria, antibiotic residues, and antibiotic-resistant
genes in agricultural organic amendments is of great
concern at the moment, due to the harmonious risks
to human health [10]. Soil amendments should have
characteristic such as environmental protection and
should not have a negative impact on soil structure, soil

fertility, or the ecosystem as a whole [11]. PGPR and
biochar due to their different properties has attracted
growing interest in the last few years to be the prom-
ising soil amendments in reducing risk associated with
other soil amendments application under normal and
stressed conditions [4, 12—16].

Various PGPR have been isolated and proven to alle-
viate various environmental stresses in plants and boost
productivity. They may improve soil quality and boost
plant productivity by direct and indirect mechanisms.
Nitrogen fixation, phosphate and potassium solubili-
zation, and production of growth-promoting phyto-
hormones like indole acetic acid and siderophores are
direct mechanisms through which PGPR perform these
aforesaid functions; whereas, the indirect mechanisms
involve production of lytic enzymes and antibiotics,
lowering the soil pH, production of exopolysaccharides,
etc. (Fig. 1). The effectiveness of PGPR for sustainable
agro-ecosystem under normal and stress environments
has been reviewed in many studies [15, 17, 18].

Biochar, a char produced by pyrolyzing organic mate-
rials particularly wastes under limited oxygen supply,
has gained immense popularity for its vast range of
uses like enhancing soil quality, soil carbon sequestra-
tion, adsorption and mitigation of organic and inor-
ganic pollutants from aqueous and soil media, animal
feedstock, etc. Multiple review articles and meta-anal-
yses have summarized the positive effects of biochar on
soil quality and agronomic productivity as well as the
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factors that contribute to the ameliorative role of bio-
char [19]. The biochars have also been used to alleviate
various environmental stresses like salinity, drought,
heavy metals, etc., from plants. This aspect has also
been reviewed in multiple studies [20].

Sustainable food security is a major challenge in today’s
world, more so in developing countries. The teeming mil-
lions in developing world, e.g., South Asia, South East
Asia, and Africa, coupled with all around climate changes
affecting agricultural operations and productivity are
a major risk to sustainable food security [21]. Accord-
ing to Food and Agriculture Organization of the United
Nations, the COVID-19 pandemic has worsened the
food security such that over 2 billion people do not have
enough food to eat [22]. Food and agriculture systems
have already changed considerably, but more needs to be
done in this changing global environment.

Different strategies are used to improve soil quality
and increase the crop yields including land reforms, bet-
ter water management, stress-tolerant varieties, increas-
ing use of fertilizers, improved seeds, use of pesticides,
genetically modified crops, plant growth regulators, and
soil amendments; PGPR, biochar [4, 8, 23-25]. Given the
trade-offs between food, fuel, housing and other uses of
land, the quest for long-term, sustainable, eco-friendly
and cost-effective techniques and tools for boosting soil
quality and agricultural productivity has never been
stronger and more urgent than today.

The agricultural productivity is reduced by different
abiotic stresses such as salinity, drought, and heavy metal
contaminants in soils among others [26]. The world’s
land affected by salinity is 1125 million hectares, which
is approximately 6% of the total global area including 20%
of cultivated and 33% of the irrigated land. Soil saliniza-
tion reduces productivity by up to 46 million hectares per
year [27]. Soil salinity accounts for 1.5 million hectares of
farmland from productions annually.

Crop and livestock production are water-intensive
enterprises because agriculture is the largest consumer of
water globally, accounting for 70% of global water returns
[28]. Agricultural drought stress is one of the major abi-
otic stresses that are very common in semi-arid and arid
areas around the world. Moreover, climate changes are
exacerbating the droughts. Global demand for water for
agriculture is expected to increase by 60% by 2025 [29].
Under drought stress, crop growth and yields are gener-
ally reduced due to low amounts of nutrients, poor pho-
tosynthesis and limited water supply [30]. Furthermore,
drought accelerates the biological synthesis of ethylene in
plants which inhibits root length and growth [31].

Another important abiotic stress is heavy metals in
soils resulting in losses of agricultural productivity.
Due to various natural and human activities, significant
amounts of heavy metals are regularly added to the
soil worldwide [32]. More than 10 million sites of soil
contamination have been reported globally, with more
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than 50% of sites contaminated with heavy metals [33].
These heavy metals come into the soil from expanding
industries, coal burning, wastewater irrigation, petro-
chemical spillage, coal combustion, animal manure, and
sewage sludge [34]. Recent exponential increase in pro-
duction and consumption of metal based nanoparticles
has been found to enhance the soil contamination with
heavy metals via sewage sludge applications. Moreover,
increasing use of nano-metal-based fertilizers and pes-
ticides is an emerging source of heavy metals in soils
[35].

Recently, PGPR and biochar have been co-applied in
various studies in order to improve soil quality and agro-
nomic productivity under normal and stressed condi-
tions. The explicit or underlying assumption in these
studies has been that the biochar would increase nutrient
availability and provide conducive habitat for the PGPR
to flourish and in response the latter would perform their
designated functions (phytohormone production, nutri-
ent solubilization, etc.) at higher rates. These studies have
been performed in stress-free as well as stressed soils.
However, these studies have not been comprehensively
synthesized and critically reviewed. This review paper
aims to fill this gap. Moreover, we also present the future
directions of research in order to optimally exploit the
combined potential of PGPR and biochar for sustainable
agro-ecosystem.

Effect of co-application of biochar and PGPR on soil
quality under normal conditions

Soil quality is a complex concept. The soils perform a
variety of ecosystem services, which lead them to be
defined from the point of view of those services [36].
From concurrent agricultural and environmental points
of view, it is defined as the “the capacity of a soil to func-
tion within ecosystem and land-use boundaries to sustain
biological productivity, maintain environmental qual-
ity, and promote plant and animal health” [37, 38]. The
most commonly used chemical indicators of soil quality
are soil organic matter, pH, and available macronutrients
(nitrogen, phosphorus, and potassium). Similarly, the
most commonly used physical indicators include water
storage, bulk density, and structural stability, whereas
the biological indicators include soil respiration, micro-
bial biomass, nitrogen mineralization, and extracellular
enzymatic activities [36]. The role of co-application of
biochar and PGPR in improving the soil quality would be
assessed based on these indicators in this review.

Various PGPRs co-applied with biochar are proposed
as a good strategy to improve soil quality [39—41]. The
presence of biochar can increase the efficiency of PGPR,
as biochar provides a substrate to PGPR due to its high
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surface area and enriched nutrients for their survival
[42]. In the following subsections, the effect of co-appli-
cation of biochar and various PGPRs on soil quality and
crop productivity has been reviewed.

Effect on soil nutrients

A number of studies have assessed the effect of co-
application of PGPR and biochar on soil quality defin-
ing physicochemical and biological properties of soils
(Table 1). Co-application of biochar with PGPR has gen-
erally been found to increase the mineral nutrient con-
tent in soils when compared to sole application of either
biochar or PGPR. For instance, combined use of biochar
(2% w/w) and PGPR (Paenibacillus polymyxa and Bacil-
lus amyloliquefaciens) showed 87% higher soil nitrate
content than nitrogen only treatment [43]. Moreover,
in the same study, soil urease activity in PGPR+ bio-
char + nitrogen, was 34.20%, 13.51% and 44.78% higher
than nitrogen only, biochar + nitrogen and PGPR + nitro-
gen, respectively. They found that soil NH,"-N contents
in PGPR+biochar and biochar+ nitrogen treatments
was 136.83% and 82.07% higher than nitrogen only
treatment. Jabborova et al. [44] evaluated the effect of
co-inoculation of multifarious PGPRs (Bradyrhizobium
japonicum and Pseudomonas putida) and different lev-
els of maize biochar (1% and 3%) on soil nutrients. They
found that co-application of the PGPR with 3% maize
biochar increased available nitrogen, phosphorus, and
potassium by 73%, 173%, and 17%, respectively, when
compared to the 3% maize biochar only treatment.
Ren et al. [45] found that using Bacillus megaterium (a
nitrogen-fixing bacteria) with wheat-derived biochar
increased nitrate, inorganic nitrogen, and total potas-
sium in PGPR+biochar treatment by 68%, 45%, and
21%, respectively, than PGPR only and by 22%, 16%, and
30%, respectively, than biochar only treatment. Simi-
larly, a PGPR Bacillus megaterium, when co-applied
with biochar derived from agricultural waste, was found
to increase organic carbon, available phosphorus, and
available nitrogen by 16%, 79%, and 15%, respectively,
in comparison to the control (no PGPR and no biochar)
treatment. Saxena et al. [40] found that shoot nitro-
gen was 1.64 mg N g~! shoot in soil treated with PGPR
(Bacillus sp.) co-inoculated with biochar, which was sig-
nificantly higher than that in sole applications of Bacillus
sp. (1.24 1.64 mg N g™ ! shoot) or biochar (1.31 mg N g™*
shoot). Overall these studies indicate that co-application
of biochar and PGPR works in synergy to raise the nutri-
ent level higher than the individual application of any
of these. Biochars are rich in macro- as well as micro-
nutrients. When applied to soils, they contribute nutri-
ents to soils as a result of dissolution and decomposition
under the influence of soil conditions and microbial
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activity [46]. The PGPR, particularly those solubilizing
the organic phosphate, apparently accelerates the accrual
of available phosphorus from biochar [47]. Consequently,
freeing the soil microorganisms from investing on the
acquisition some nutrients, the combined application of
PGPR and biochar facilitates them to invest on acquisi-
tion of other nutrients thereby leading to enhancing
enzymatic activity and release of other nutrients [48].

Effect on water holding capacity of soil

The biochar has potential to improve water holding
capacity of soils, particularly for coarse-textured ones,
thanks to its large surface area-to-volume ratio. A num-
ber of reviews have compiled studies on this question
[57, 58]. Some of the studies testing co-application of bio-
char and PGPR have also reported the ameliorative effect
of biochar on water holding capacity. Co-application
of a nitrogen-fixing PGPR, Bacillus megaterium, along
with wheat-derived biochar increased soil WHC by 24%
and 18% than PGPR only and biochar only treatments,
respectively [45]. Although the PGPR alone has never
been reported to ameliorate water holding capacity nor
water content of a soil, they may enhance drought toler-
ance of crop plants [31]. However, it must be expected
that the enhanced WHC, thanks to biochar, would syn-
ergize with PGPR given that the nutrient cycling, soil
organic matter decomposition, and microbial signaling
becomes better under optimum moisture conditions
[59, 60]. It must be noted that this indirect benefit of co-
applying biochar with PGPR has not been explored so far.

Effect on indigenous soil microbial communities

Many physicochemical properties of soil are improved
by biochar, which ultimately facilitate the working of
indigenous soil microbial communities. For instance,
biochar may improve water holding capacity, pH (lim-
ing effect), and substrate and nutrient availability, which
may lead to increase in microbial biomass, abundance
and diversity [81, 82]. However, co-application of PGPR
along with a biochar may also ease the nodulation pro-
cess and improve symbiotic performance of a rhizobium
[83]. Moreover, biochar has also been shown to improve
the nodulation of the natural rhizobia with plants. This
is due to the improvement in aeration by biochar that
provides more air to nodule bacteria, which may survive
for long on the porous surface of a biochar before ulti-
mately colonizing a root [84, 85]. Similarly, adding bio-
char may further improve the mutualistic relationship of
extant microbes for the benefit of plants. For instance,
adding biochar and Pseudomonas sp. increased root
colonization by arbuscular mycorrhizal fungi when com-
pared to sole addition of Pseudomonas sp. and/or AMFE.
The phosphate-solubilizing Pseudomonas sp. enhanced
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available phosphorus in the soil presumably by solubiliz-
ing it from the biochar thereby leading to enhanced root
colonization and overall growth of the plant [39]. The
combined application of biochar and PGPR may enhance
the general abundance of certain microbial groups in soil,
which contribute to overall improved soil quality. For
example, an Alcaligenes sp. strain in interaction with a
maize-stalk-derived biochar increased the population of
soil bacteria by 30% when compared to sole application
of Alcaligenes sp. and by 15% when compared to biochar
only treatment. Similarly, inoculation by Bacillus mega-
terium of a eucalyptus plantation along with addition of
wheat-derived biochar significantly improved the micro-
bial community in the soil, thereby leading to improved
nutrient availability. The authors attributed this increase
in beneficial microbes to the enhanced soil organic mat-
ter content and its decomposition due to interactive
effect of biochar and the inoculant [45].

Effect on intra- and extra-cellular enzymes

The potential beneficial effects of combined applica-
tion of biochar and PGPR have also been assessed and
reported by studying various intra- and extracellular
enzymes. Combined application of a biochar with a
nitrogen-fixing Bacillus deuterium increased soil sucrose
activity to 4.8 mg.g”! and 3.31 mg.g~' from 2.48 mg.
g~! in PGPR only treatment [51]. Soil urease activity
was 44.78%, and 13.51% higher while using Paenibacil-
lus polymyxa and Bacillus amyloliquefaciens with bio-
char (2% w/w) treatment than that in the sole PGPR
and biochar treatments, respectively [43]. Jabborova
et al. [44] found the increase in protease (twofold), alka-
line (1.3 fold) and acid phosphomonoesterase (1.5-fold)
using co-inoculation of PGPRs (Bradyrhizobium japoni-
cum and Pseudomonas putida) with 3% maize biochar
than PGPRs only and PGPRs with 1% maize biochar.
Similarly, synergistic use of Bacillus subtilis with cotton-
derived biochar was found to significantly enhance the
invertase and catalase activities in soil than the biochar
only treatment [86]. Co-application of B. japonicum and
P, putida with the biochar (10 t ha™!) has been reported
to increase the activity of different enzymes like FDA
activity, alkaline phosphomonesterases and proteases in
the soil than biochar only and the uninoculated control
(no PGPR, no biochar) [87]. Overall PGPR in combina-
tion with biochar have found to increase soil sucrase,
urease, protease, invertase, catalase, alkaline and acid
phosphomonoesterase enzymatic activity. These enzymes
stimulate biochemical processes in soil ecosystem and
can define direction and intensity of nutrient transforma-
tion processes in soil, thus ensuring enhanced soil fertil-
ity. Enhanced activity of the enzymes in soil by PGPR and
biochar has linear relationships with soil nutrients [43,
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50]. It must be noted that the effect of co-application of
biochar and biochar on important N-cycling enzymes,
leucine aminopeptidase and N-acetyl-glucosaminidase,
has not yet been explored. These enzymes catalyze com-
plex proteinaceous materials in soil [88]. Given that the
biochar are complex organic materials packing organic
proteins, the activity of these enzymes in the presence of
PGPR could reveal the extent of accrual of mineral nitro-
gen from the added biochars.

Effect of co-application of biochar and PGPR

on agricultural productivity under normal
conditions

Sustainable agriculture requires that crops grow with a
low rate of agrochemical application possessing better
nutritional values and disease resistance. Widespread use
of expensive agrochemicals in agriculture has led to the
use of more sustainable alternatives, such as PGPR and
biochar in recent decades [89, 90]. Both PGPR and bio-
char have been extensively documented for their positive
effects on plants. But in recent years the combined use
of PGPR and biochar has also proved to be more effec-
tive in plant production than using PGPR or biochar
separately. Various studies have reported positive effects
of combined application of PGPR and biochar [29, 70,
71, 91]. For instance, a PGPR Micrococcus yunnanensis,
when co-applied with 2% biochar, increased the yield
to 42.1 g pot™! from 38.9 g pot™' when applied alone
or from 36.3 g pot™' when biochar was applied alone
[41]. Co-application of both also induced a 9% increase
in 1000-kernel weight than Micrococcus yunnanensis
only and 8% increase in phosphorus uptake than the 2%
biochar alone treatments. Yuan et al. [43] reported an
increase in tomato yield in co-applied PGPR (Paenibacil-
lus polymyxa and Bacillus amyloliquefaciens) strains with
2% biochar derived from millet straw and nitrogen ferti-
lizer. They recorded 32.45%, 10.44% and 45.69% higher
yield in PGPR+ biochar + nitrogen than nitrogen only,
biochar +nitrogen and PGPR+nitrogen treatments,
respectively. Jabborova et al. [44] found seed germination
increased by 20%, root length by 76%, root dry weight by
56%, shoot length by 41% and shoot dry weight by 59%
with co-inoculation of Bradyrhizobium japonicum and
Pseudomonas putida with 3% maize biochar than in 3%
biochar only treatment. Similarly, combined application
of Alcaligenes sp. with 0.5 t ha™! maize biochar enhanced
the shoot fresh biomass, shoot dry biomass, plant height,
grain yield, and 1000-grain weight by 9, 12, 6, 14 and
5%, respectively, than PGPR alone [50]. A 3% increase in
plant height, 11% in shoot weight and 61% in number of
nodules of cowpea plant were found by using biofertilizer
(made from consortium of Bacillus thuringiensis, Pseu-
domonas putida and Klebsiella variicola PGPR strains)
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in combination with biochar than the biofertilizer only
[92]. Combination of PGPR(s) with biochar has also been
tested under reduced fertilizer regime in an effort to min-
imize the greenhouse gas emissions associated with fab-
rication of ammoniac fertilizers and their volatilization.
For instance, combined application of PGPRs, i.e., Enter-
obacter, Pseudomonas, Azospirillum, Agrobacterium and
biochar raised the wheat yield to 5.04 t ha™! than 2.56
t ha™! PGPR only and 3.16 t ha™! in biochar only treat-
ments [93]. Similarly, combining Bacillus sp with bio-
char in French beans increased shoot biomass from
2.34 g pot™! to 3.22 g pot™}, root length from 13.33 cm
to 14.88 cm, and root biomass from 1.31 g pot ™ to 1.85 g
pot™!, respectively [40]. Overall, these studies show that
the combined application of PGPR and biochar can
increase seed germination, plant growth such as plant
height, shoot length, shoot dry weight, shoot biomass,
root length, root dry weight, root biomass and plant
yield than the individual application of PGPR or biochar.
This combination may work in two ways. In the direct
mechanism, the usual production of phytohormones by
the PGPR like indole acetic acid, siderophores, etc., and
increase in soil nutrients via phosphate solubilization and
N, fixation leads to higher plant growth and yield. Indi-
rectly, the presence of biochar may facilitate the survival
of the PGPR in higher numbers in addition to providing
them nutrient rich substrate thereby leading enhanced
performance by the PGPR ultimately resulting in higher
plant production [94].

Co-application of biochar and PGPR

under environmental stressors

The PGPR are known since long to help alleviate mul-
titude of environmental stressors that hamper plant
growth and development. They have been proven very
effective against drought, salinity, heavy metal contami-
nation (Fig. 2).

For instance, the potential of PGPR to secrete exopoly-
saccharides under dry conditions help induce drought
tolerance in plants [95]. Under saline conditions, they
could enhance potassium uptake at the cost of sodium
thereby mitigating direct adverse effects of soil salin-
ity, increase water uptake, reduce stomatal conductance,
and antioxidant enzyme activities. All of these changes
help plants to grow better under saline conditions [96].
Similarly, the PGPR have been found to immobilize and
reduce uptake of heavy metals by plants in addition to
improving the overall nutrient uptake thereby alleviat-
ing the heavy metal induced toxicity [97]. These findings
have been reviewed in a number of papers [95, 98].

Biochar has also been shown to enhance salinity
tolerance, alleviate drought stress, and mitigate the
toxicity induced to plants by inorganic and organic
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soil pollutants. Drought stress alleviation in biochar-
amended soils occurs through enhanced water holding
capacity thanks to large surface area-to-volume ratio of
biochar [80]. Similarly, decrease in osmotic stress thanks
to improved soil water content in addition to reduced
Na' uptake due to Na™’s transient binding on sorption
sites on biochar alleviate soil salinity stress for plants in
biochar-amended soils [80]. Sorption is also the major
mechanism through which biochar alleviates toxicity
stress of organic and inorganic heavy metals. All these
uses of biochar against different environmental stress-
ors have been reviewed in multiple articles [49, 99, 100].
Recently, some studies have explored the potential of co-
application of PGPR and biochar to alleviate the environ-
mental stressors for plant growth with the assumption
that both the additives would act synergistically (Table 2).
Although the mechanistic synergism between the two,
i.e., PGPR and biochar, has not been actively explored in
these studies, synergies have indeed been found. The fol-
lowing sections would narrate these studies.

Effect of co-application of PGPR and biochar on soil quality
under environmental stressors

The combined use of PGPR and biochar perform multiple
functions in alleviation of drought stress thereby leading
to improved soil quality (Table 2). Both seem to work in
tandem to improve the soil functions thereby alleviating
the drought stress. For instance, combined application of
algal biochar (4% w/w) and a PGPR Serratia odorifera to
maize, when moisture content was 50% of the field capac-
ity, significantly improved pH by 7 and 5%, EC by 34 and
13%, nitrate by 57 and 34%, phosphorus by 54 and 49%,
extractable K by 30 and 15%, and organic matter by 69
and 21% in comparison to biochar alone and PGPR alone
treatments, respectively [76]. Similarly, Nafees et al. [65]
co-applied Cellulomonas pakistanensis or Sphingobacte-
rium pakistanensis with biochar to Vicia faba growing
on induced drought stress. They found that the combined
application increased the water-use efficiency by 43.62%.
In another study, soil moisture content was significantly
higher in combined application of Pseudomonas sp. and
biochar derived from poplar saw dust than sole applica-
tion of PGPR or biochar [79]. The emerging pattern from
these studies suggest that the enhanced water holding
capacity and concurrent reduction in drought stress bol-
sters the survival and abundance of the PGPR, which in
turn, perform their functions better [76].

As far as the soil quality is concerned, salinity reduces
microbial activity and biomass in addition to changing
the microbial community structure in soil [101]. Moreo-
ver, in saline conditions K™ transport channels are over-
taken by Na* leading to lower and reduced plant growth
[102]. However, co-application of PGPR and biochar
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under saline conditions has been shown to induce salt
tolerance and plant growth mainly by reducing Na™
uptake and improving K*/Na™ ratio. For instance, co-
application of either of the two endophytic PGPRs, Bur-
kholderia phytofirmans or Enterobacter sp, with biochar
significantly mitigated the salinity stress in maize by
reducing the xylem Na+ uptake [80]. Similarly, co-appli-
cation of Pseudomonas koreensis and Bacillus coagulans
PGPRs with biochar significantly increased the K* and
K*/Na% ratio thereby leading to lowered salinity stress
in rice plants [60]. In the same study, the sodium adsorp-
tion ratio and Na™ in soil solution were also decreased by
the latter’s addition to adsorption sites and desorption
of K* by co-application of PGPRs and biochar. Another
PGPR Burkholderia phytofirmans, which is capable of
producing exopolysaccharides, when inoculated along
with biochar significantly, decreased salinity stress for
plants by lowering Na™ content in soil solution. In addi-
tion to lowering Na* content, co-applying PGPRs with
biochar enhances colonization efficiency of the former
thereby leading to synergistic effects on soil quality. For
instance, Akhtar et al. [80] reported an increase in colo-
nizing efficiency of PGPRs Burkholderia phytofirmans
and Enterobacter sp. strains co-applied with 5% biochar
(derived from hard wood and soft wood) in a saline soil
than PGPRs without biochar in soil. Enterobacter sp with
5% biochar showed high colonizing efficiency in saline
soil than Burkholderia phytofirmans with and without 5%
biochar. Similarly, co-application of an endophytic PGPR
with biochar to Chenopodium quinoa grown in a saline
soil induced an increase of ~150-250% in PGPR colo-
nization in rhizosphere, root interior and shoot interior
bacterial population than PGPR inoculation alone. In
presence of biochar studies showed a decreased Na*/K*
ratio in soil and increased root colonizing efficiency of
PGPRs hence alleviating salinity stress in soil. In soil solu-
tion, biochar and PGPRs maintain the nutrient balance
by releasing mineral nutrients such K, Ca?>* and Mg>™,
thereby reducing Na™ in soil. This ultimately increased
the K*/Na" ratio in soil. Exopolysaccharide produced
from PGPRs under stress binds Na* in soil [80].

The use of PGPR in combination with biochar has also
been studied in polluted soils (Table 2). On the basis of
results, it emerges as a promising tool for reducing heavy
metal contamination in the soil. For instance, Sabir et al.
[16] found that Enterobacter sp. (PGPR) inoculums with
biochar (paper and pulp derived) could be an efficient
approach to accelerate remediation of soil contaminated
with cadmium (Cd) (80 mg kg™ soil). Although PGPR
and biochar immobilized Cd in soil thereby mitigating its
availability by 15.2% and 28.3%, respectively, their com-
bination decreased it by 45.6%. Another PGPR, Bacil-
lus sp. in the presence of biochar increased soil enzyme
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Fig. 2 Effect of PGPR and biochar on plant growth and soil quality under different environmental stresses
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(dehydrogenase) 4.61 times high than biochar leading
to increased bioremediation. This combination also
decreased HOAc-extractable Cd level by 11.34% than
sole applications of biochar or PGPR [70]. The applica-
tion of Bacillus sp with 1% biochar significantly reduced
the toxic effect of chromium and improved plant health
by limiting the availability of the heavy metal [71]. Both
PGPRs and biochar immobilizes metals through metal
immobilizing bacteria, adsorption, co-precipitation, and
complexation, thus reducing their availability in soil for
uptake [103].

Effect of co-application of PGPR and biochar on agriculture
productivity under different stressors

Many studies have reported the effect of combined
application of PGPR and biochar on plant productivity
under different environmental stressors (Table 2). They
have studied and invoked various physiological attrib-
utes to explain the effect of combined application of
PGPR and biochar on plant growth and productivity. For
instance, one of the effects of drought stresses is increase
in ethylene levels in plants. It has been shown that the
drought-induced increased ethylene level in plants can
be mitigated by using ACC deaminase producing PGPR
in conjunction with biochar because the latter supports
the survival rate of inoculants and increases coloniza-
tion in the plant rhizosphere [73]. This led to increased
plant yields as compared to only PGPR or biochar

application. Similarly, it was found in another study that
co-applying ACC deaminase producing PGPRs Achromo-
bacter xylosoxidans, Pseudomonas aeruginosa, Leclercia
adecarboxylata, and Enterobacter cloacae with timber
waste biochar (0.75 and 1.50% w/w) in drought condi-
tions improved the growth of maize by inducing higher
nutrients uptake and lower ethylene level than sole appli-
cation of biochar or PGPR [104]. Briefly, they reported
that A. xylosoxidans+ 1.50% biochar showed 19 and 6%
higher transpiration rate, 30 and 7% higher photosyn-
thetic rate, and 16% and 7% higher stomatal conductance,
respectively, than alone A. xylosoxidans or 1.5% biochar
under severe drought. E cloacae + 1.5% biochar increased
chlorophyll a by 26 and 13%, carotenoids by 28 and 4%,
and total chlorophyll by 29 and 9%, respectively, than E.
cloacae or 1.5% biochar, respectively. Similarly combined
application of P aeruginosa and biochar decreased elec-
trolyte leakage by 28% and 4% than applying P. aeruginosa
or biochar alone, respectively. Similarly, Nafees et al. [65]
investigated combined use of Cellulomonas pakistanen-
sis and Sphingobacterium pakistanensis PGPRs and bio-
char derived from wood of Morus alba (5% w/w) on Vicia
faba under drought stress. They found that co-applica-
tion positively ameliorated fresh and dry leaf weight by
28.57 and 10.47%, fresh and dry root weight by 36.36
and 14.28%, and fresh and dry shoot weight by 16 and
10% than sole application of biochar or PGPR, respec-
tively. Some other ACC deaminase producing PGPRs,
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i.e., Agrobacterium fabrum and Bacillus amyloliquefa-
ciens have also been found to boost wheat productivity
under severe drought when used in combination with
timber waste biochar [73]. B. amyloliquefaciens+ biochar
increased plant height by 34 and 24%, root length by 25
and 8%, and spike length by 5 and 2% than B. amylolique-
faciens or biochar alone. Similarly, A. fabrum+ biochar
increased 1000-grains weight by 13% when compared
to sole application of A. fabrum. Ullah et al. [76] evalu-
ated the effect of co-application of a PGPR, Serratia
odorifera, and algal biochar on maize growth under
drought stress. The co-application increased maize
growth parameters like plant height by 38 and 16%,
shoot fresh weight by 29 and 17%, shoot dry weight by
44 and 24%, root fresh weight by 60 and 27%, root dry
weight by 84% and 24%, and root length by 47 and 32%
than sole application of PGPR or biochar under severe
drought stress, respectively. Decreased proline content
due to combined application of PGPRs and biochar has
also been cited as drought alleviating mechanism [60].
The PGPRs namely Pseudomonas koreensis and Bacillus
coagulans, when used with biochars, on rice plant under
drought conditions increased relative water content, sto-
matal conductance, Ca®* and K* content and decreased
proline content in plants. Another PGPR, P. fluorescens,
when applied along with biochar to cucumber under
limited moisture conditions was found in much higher
number than when it was applied alone [59]. Their com-
bined application under severely limited moisture con-
ditions improved shoot length, shoot fresh weight, root
length, and root fresh weight by 10%, 10%, 29% and 16%,
respectively, than the sole application of biochar. Also in
PGPR + biochar treatment chlorophyll content and rela-
tive water content increased by 5% and 6% than biochar
only treatment. They also found reduced electrolyte leak-
age which helped plants to deal with water stress condi-
tions. Drought elevates ethylene and electrolyte leakage
in plants leading to retardation of plant growth. Over-
all, co-application of PGPR with biochar can alleviate
drought stress in plants by lowering ethylene content and
electrolyte leakage in plants. PGPR with biochar found to
increase to relative water content, stomatal conductance,
chlorophyll, carotenoids in plants.

Soil salinity affects plant growth, development and
photosynthesis. It also affects protein synthesis and
lipid metabolism [105]. Plant growth under saline soils
is adversely affected by osmotic effects and hormonal
imbalances. It also causes malnutrition and specific ion
toxicity [106]. Other reason is growth is inhibited by
sodium and chloride ions as sodium ions are retained in
roots and stems and in some plants only chloride ions are
concentrated in the shoot which has a negative effect on
plants [107, 108]. Co-application of PGPRs and biochar
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usually exerts synergistic effects on alleviating salinity
stress and increasing plant productivity than their indi-
vidual effects. For example, a siderophore-producing
strain, Burkholderia phytofirmans in combination with
tree-twig derived biochar improved plant height, root
dry weight, shoot dry weight, grain yield, photosynthetic
rate, stomatal conductance of Chenopodium quinoa by
17, 26, 10, 5, 5, 16 and 12%, respectively, under saline
conditions than individual PGPR application only [68].
Evidence from multi-year field studies has also confirmed
the synergistic potential of combining PGPR and biochar
to alleviate soil salinity stress for plants. For instance,
PGPR strains Bacillus coagulans and Pseudomonas kore-
ensis were co-applied with rice husk-derived and corn
stalk-derived biochars in a rice field having electrical con-
ductivity of 4.67 dS m~! biochar. The co-application alle-
viated the negative effects of salinity by decreasing Na™
content by 15.34% and 15.73%, and proline content by
52.49% and 49.57% in first and second year of the study,
respectively, in rice leaves, in comparison to the unin-
oculated control [60]. Similarly, Akhtar et al. [80] found
25% and 8% less Nat uptake than biochar or PGPR sole
applications, respectively, by using Enterobacter with 5%
biochar and Burkholderia phytofirmans with 5% biochar
derived from hard and soft wood in saline soil.

PGPR and biochar play an important role in the
management of heavy metal stress in plants. They can
transform, accumulate or detoxify heavy metals [109].
For instance, Zafar-ul-Hye et al. [66] found 13.5% less
uptake of Pb in mint leaves after it was inoculated with
ACC-deaminase producing PGPRs, Alcaligenes faecalis
and Bacillus amyloliquefaciens and provided with com-
post (mixed fruits) mixed biochar (vegetable waste).
Resultantly, they found that A. faecalis strain along
with compost-mixed biochar significantly improved
plant chlorophyll content by 37%, root dry weight by
58%), nitrogen by 46%, phosphorus by 39%, and potas-
sium by 63% in mint leaves than untreated control. In
another study, the lead uptake in spinach decreased
by 43% whereas potassium uptake increased by 10.5%
over untreated control by the use of compost-mixed
biochar and Bacillus amyloliquefaciens strain [69]. The
PGPR Enterobacter sp. when co-applied along with bio-
char significantly enhanced growth of Brassica napus in
cadmium-spiked (80 mg kg™?!) soil [16]. The co-appli-
cation significantly increased shoot and root length by
52.5 and 76.5%, respectively, than sole application of
PGPR, by 22 and 34.8% than soil without PGPR and by
29 and 41.6% sole application of biochar under stress.
PGPR + biochar treatment also decreased Cd uptake
by 40.1 and 38.2% in root and shoot than PGPR (16.8
and 16.9%), and biochar (23.4 and 21.3%), respectively,
as compared to control under Cd stress conditions. Ma
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et al. [70] found an increase in ryegrass biomass (1.96 g
pot™!) than biochar only (0.42 g pot™!) and lowest Cd
concentration (5.45 mg kg™!) was found in PGPR + bio-
char treatment as compared to biochar, PGPR and con-
trol (soil without PGPR and biochar).

Mechanistic understanding of interaction of PGPR
and biochar
The synthesis of literature so far in this paper has amply
highlighted that the biochar and PGPRs work synergis-
tically in improving the soil quality and agriculture pro-
ductivity. When biochar is applied with PGPR inoculants,
it provides habitat for PGPR (i.e., colonization, reproduc-
tion and growth) due to its porous structure and high
surface area and also the ability to adsorb microorgan-
isms and organic compounds [110]. Some studies cited
in the previous sections have suggested this by showing
higher growth and abundance of PGPR inoculants when
biochar is also applied to soils. Biochar also protects
them from other harmful pathogens [111]. Owing to
richness in carbon, i.e., substrate, and essential nutrients,
it provides both energy and the required nutritive build-
ing blocks for inoculants’ survival and growth [112]. In
addition, biochar modifies physicochemical properties
of soils that may lead to increase in soil microbial bio-
mass and enzymatic activity [29, 98]. Biochar is rich in a
range of mineral nutrients including nitrogen, phospho-
rus, potassium, calcium, magnesium, zinc, etc., depend-
ing upon the feedstock type and pyrolysis temperature
[113]. Upon addition to soil, it is decomposed gradually
to release these nutrients in the soil solution [114-116].
PGPRs are involved in plant growth promotion under
normal and stressed conditions through their direct and
indirect mechanisms. Similar to biochar, the PGPR may
either bring in a nutrient from outside through their
direct mechanism such as nitrogen fixation (by nitrogen-
fixing bacteria) or solubilize the immobilized nutrients
(by phosphate-solubilizing bacteria) thereby contributing
to plant nutrition. For instance, nitrogen-fixing PGPRs
such as Paenibacillus polymyxa, Rahnella sp., Serratia sp.
have the ability to enhance the mineral nitrogen content
in soil solution through their nitrogen-fixing traits and
prevents its leaching in soil [56, 117]. A large number of
phosphate-solubilizing PGPRs, e.g., Bacillus sp., Bacillus
lentus, B. subtilis, Bacillus megaterium, Burkholderia sp.,
Glomus etunicatum, G. mosseae, Pseudomonas species,
Pseudomonas fluorescencs Penicillium strains, Lysiniba-
cillus fusiformis, Azotobacter chroococcum, Azospirillum
brasilense, Arthrobacter, Streptomyces, have been shown
to solubilize and provide phosphate in soil for plant
uptake [40, 49, 51, 53, 56, 77,91, 112, 117, 118]. While the
direct accrual of phosphorus from biochar by co-applied
PGPR has not been demonstrated in any study, it can be
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safely speculated that such a mechanism exists. A simi-
lar mechanism of enhanced availability of potassium can
be assumed because PGPR are known for lowering the
soil pH and making the soil potassium available to plants
and biochar are known to be rich in potassium [28, 96].
Another direct mechanism is production of ACC deami-
nase which lowers the production of ethylene elevated
level produced under stress conditions through its break-
down into ammonia and alpha ketobutyrate [119]. PGPRs
such as Enterobacter sp., Alcaligenes sp., Pseudomonas
fluorescens, Serratia odorifera. Leclercia adecarboxylata,
Agrobacterium fabrum, Bacillus amyloliquefaciens, Pseu-
domonas aeruginosa, etc., have the ability to produce
ACC deaminase. These strains show synergistic effects
with biochar in abiotic stress alleviation [59, 72, 73, 80,
104]. PGPRs through their indirect mechanisms such as
pH regulations, production of exopolysaccharides, pro-
tection against plant diseases are also involved in plant
growth promotions [120].

Conclusions and perspective

Under different environmental stresses, low crop growth
and crop failure is the norm across many important food
and cash crops. Co-application of PGPR and biochar
offers a sustainable, cost-effective, and environment-
friendly technique for increasing crop productivity and
improving soil quality. Even under normal conditions,
this combination may act synergistically to improve crop
productivity as well as soil quality in addition to low-
ering the need for chemical fertilizers. However, as is
highlighted by this review, there are not many field exper-
iments that have been conducted to explore the potential
of combined application of the PGPR and biochar for
sustainable food production. Given the state-of-the-art
of the subject, we have following recommendations for
future studies:

o Mechanistic understanding of the interaction
between PGPR and biochar needs further explora-
tion. For instance, currently we don’t know exactly
if the synergistic effect of the two is because of the
conducive habitat afforded to the PGPR by biochar
or it is due to the enhanced availability of substrate
and nutrients due to biochar that sustains and pro-
motes the PGPR. It can be done by using isotopically
labeled biochar (i.e., 13C, ¥ N, ®P) in order to trace
the carbon and nutrients accrued into microbial bio-
mass. Concurrently, the colonization efficiency of the
PGPR should also been estimated.

+ Long-term field experiments could be a highly effec-
tive way of evaluating the combined effect of the
PGPR and biochar. Individually, the PGPR and bio-
char have been assessed in reasonably long-term
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experiments for their potential for sustainable food
production [12-14, 121]. However, they should now
be assessed together in multi-year field experiments
under the assumption that the biochar keeps influ-
encing soil properties with aging, whereas the PGPR
might persist longer in biochar-amended soils.

+ The PGPR technology is not very successful in
degraded soils situated in semi-arid and arid areas,
especially which are poor in soil organic matter,
because the PGPR have not good reserves of sub-
strate and nutrient-source for their growth and
function. Combined application of the PGPR and
biochar in these soils could be a very good strategy
and needs to be assessed. The biochar may provide
the PGPR the habitat to survive and flourish as well
as the necessary substrates, which are lacking in
such soils, and is the key reason of failure of PGPR
technology there.

+ Meta-analyses of the studies on biochar vis-a-vis
agricultural productivity have revealed that the
major mechanism by which they improve produc-
tivity is the liming effect [19, 82]. Such biochars,
when combined with phosphate-solubilizing bac-
teria that prefer acidic or near-neutral pH will not
give good results. Therefore, the studies should
combine the biochar and PGPR after keeping into
account such complementarities.
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