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A B S T R A C T

Classification accuracy achieved by a machine learning technique depends on the feature set used in the
learning process. However, it is often found that all the features extracted by some means for a particular
task do not contribute to the classification process. Feature selection (FS) is an imperative and challenging
pre-processing technique that helps to discard the unnecessary and irrelevant features while reducing the
computational time and space requirement and increasing the classification accuracy. Generalized Normal
Distribution Optimizer (GNDO), a recently proposed meta-heuristic algorithm, can be used to solve any
optimization problem. In this paper, a hybrid version of GNDO with Simulated Annealing (SA) called Binary
Simulated Normal Distribution Optimizer (BSNDO) is proposed which uses SA as a local search to achieve
higher classification accuracy. The proposed method is evaluated on 18 well-known UCI datasets and compared
with its predecessor as well as some popular FS methods. Moreover, this method is tested on high dimensional
microarray datasets to prove its worth in real-life datasets. On top of that, it is also applied to a COVID-19
dataset for classification purposes. The obtained results prove the usefulness of BSNDO as a FS method. The
source code of this work is publicly available at https://github.com/ahmed-shameem/Feature_selection.
1. Introduction

Data mining and Machine learning are some of the fastest-growing
research topics in the information industry due to the availability of
ample amounts of data that can be converted to potentially useful in-
formation. These fields are essential and integral part of the knowledge
discovery (KDD) process which consists of a set of iterative sequences
of tasks such as data cleaning, data reduction, data integration, and
data transformation etc. Han et al. (2011). These pre-processing steps
have a major impact on the performance of data mining and machine
learning algorithms. Data can be considered as the ’new currency’
in this decade, which simply states the importance of data. Hence,
handling data properly for our needs is a new adventure. With the
growing popularity of these fields, we are receiving data in abundance,
which is making our job difficult as the dimensions of these data are
very high. Now, any data mining and machine learning algorithm take
a huge amount of time during training because of this. To solve this
problem of the ’curse of dimensionality’, researchers have come up with
various techniques. Feature selection (FS) is one such most popular
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technique, which removes the unnecessary and irrelevant features,
thereby reducing the number of attributes that do not help in the
classification purpose, rather act as a noise and increase the space
requirement as well as the computational cost.

Generally speaking, there are two ways to perform FS: filter and
wrapper (Liu & Motoda, 2012). Filter methods try to evaluate the
feature subset using some designated methods such as Information gain
(IG), Chi-square (Zheng et al., 2004), Laplacian score (He et al., 2006)
etc. Whereas, wrapper methods use a learning algorithm to evaluate the
selected feature subset. Filter methods are usually faster than wrapper
methods but generally wrapper methods produce better classification
accuracy (Liu & Motoda, 2012).

Some of the recent and promising ones like the column-subset
selection problem (Boutsidis et al., 2014; Cortinovis & Kressner, 2020;
Drineas et al., 2008; Tripathi & Reza, 2020) are known to perform FS
with provable theoretical bounds. These methods have been used to
perform FS on k-means (Boutsidis et al., 2009), SVM (Paul et al., 2016)
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which provide a significant performance enhancement. These methods
are known to outperform existing methods like mutual information,
recursive feature elimination, etc.

Finding the most functional feature subset or necessary features is
a challenging task. For the last few years, meta-heuristic algorithms
have been employed to address the FS problem. These works have
widened the way to FS in an efficient manner. If any dataset con-
sists of ‘N’ features/attributes, then there are 2𝑁 -1 number of feature
combinations. Evaluating all these feature subsets is a hectic task,
i.e., it is very time consuming and hence inefficient. To solve this
problem random search is another possible solution (Lai et al., 2006).
However, meta-heuristic procedures are considered to be more ap-
propriate as they can handle the worst case scenario (Talbi, 2009).
There are many such meta-heuristic algorithms in literature like ge-
netic algorithm (GA) (Davis, 1991), particle swarm optimization (PSO)
algorithm (Kennedy & Eberhart, 1995), artificial bee colony (ABC)
algorithm (Karaboga & Basturk, 2007), harmony search (HS) algo-
rithm (Geem et al., 2001), sine–cosine algorithm (SCA) (Mirjalili, 2016)
etc. The search process of any meta-heuristic algorithm depends on the
balance between its exploration and exploitation phases. Exploration
simply means diversification of solutions, i.e., evaluate the candidate
solutions which are not neighbouring solutions. Exploitation, on the
other hand, means intensification, i.e., searching the neighbourhood
for possible better solutions. These two traits become the deciding
factor in finding an optimal solution. Hence, proper tuning between
these two is very important. In this paper, we have tried to main-
tain a fine balance between these two phases of Generalized Normal
Distribution Optimizer (GNDO) (Zhang et al., 2020) with the help of
Simulated Annealing (SA) (Kirkpatrick et al., 1983) which acts as a
local search to enhance the exploitation capabilities of GNDO. The
proposed method has been applied over various datasets to prove its
worth and effectiveness.

The rest of the paper is organized in the following manner: Section 2
discusses some popular and recent meta-heuristic algorithms found in
the literature, Section 3 presents the motivation and contribution of this
work, Section 4 describes the search process of GNDO and SA, Section 5
discusses the fitness function and transfer function used here, as well
as the time complexity of the method, Section 6 reports the detailed
experiments that have been performed to prove the effectiveness of
the proposed method, Section 7 proves the robustness of the model,
Section 8 shows the effectiveness of the proposed method in COVID
detection and finally Section 9 concludes the paper along with its future
work.

2. Related work

In recent times, optimization algorithms have attracted a lot of
attention from researchers. In particular, meta-heuristic algorithms
have seen numerous improvements over the years. Meta-heuristic is
a genre of randomized algorithms where the algorithm learns to find
the optimal solution through the iteration process. Meta-heuristic algo-
rithms can be divided into different categories: single solution based
and population-based (Gendreau & Potvin, 2005), nature-inspired and
non-nature inspired (Abdel-Basset et al., 2018; au2 et al., 2013), etc.
From the ‘inspiration’ point of view, these algorithms can broadly be
divided into four categories (Nematollahi et al., 2019): Evolutionary,
Swarm inspired, Physics based, and Human related.

• Evolutionary Algorithms: These algorithms are basically in-
spired by the biological process of evolution. In an evolutionary
endeavour, the fittest individual is generated through crossover
and mutation in each generation, which inspired the pioneer al-
gorithm in this field, Genetic Algorithm (GA) (Davis, 1991). Other
evolutionary algorithms are Genetic programming (Koza, 1994),
Co-evolving algorithm (Hillis, 1990), Cultural algorithm (Xue
et al., 2011), Biogeography-Based Optimization (Simon, 2008),
2

Grammatical evolution (Ryan et al., 1998) etc.
• Swarm inspired algorithms: This genre of algorithm mimics
the individual and social behaviour of swarm, herd, schools,
groups, and teams. The key idea behind such algorithms in the
optimization field is that in swarms, each individual has a certain
behaviour but with the collective effort, the swarm can solve
very complex optimization problems. One of the most popular
algorithms in this field is PSO (Kennedy & Eberhart, 1995),
which is inspired by the behaviour of flock of birds. The other
famous swarm-based algorithms are the Shuffled frog-leaping
algorithm (Eusuff et al., 2006), Bacterial foraging Passino (2002),
ABC (Karaboga & Basturk, 2007), Firefly Algorithm (Yang, 2009),
Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014), Crow search
algorithm (Askarzadeh, 2016), The Whale Optimization Algo-
rithm (Mirjalili & Lewis, 2016), Grasshopper Optimization Algo-
rithm (Saremi et al., 2017), Squirrel Search Algorithm (Jain et al.,
2019).

• Physics based algorithms: This type of algorithms is inspired by
the working principle of the physical world. Music, metallurgy
to mathematics, physics, chemistry, and complex dynamic sys-
tems, are some of the physical processes which inspire Physics
based meta-heuristic algorithms. Some noted algorithms are the
Gravitational Search algorithm (GSA) (Rashedi et al., 2009),
SA (Kirkpatrick et al., 1983), Self propelled particles (Vicsek et al.,
1995), HS algorithm (Geem et al., 2001), Black hole optimiza-
tion (Hatamlou, 2013), Multi-verse optimizer (Mirjalili et al.,
2015), Find-Fix-Finish-Exploit-Analyze (Kashan et al., 2019) etc.

• Human related algorithms: These are developed based on hu-
man behaviour Teaching–Learning-Based optimization (Rao et al.,
2011), Society and civilization (Ray & Liew, 2003), Fireworks
algorithm (Tan & Zhu, 2010), are some algorithms in this genre.

However, one of the issues with meta-heuristic algorithms is their
premature convergence that leads to finding less optimal solutions.
Therefore, these algorithms are often coupled with other techniques
(e.g. local search algorithms). In this case, the local search algorithm
tries to find solutions that are locally adjacent to an existing solution,
which can outperform the existing solutions. Some of the commonly
used local search algorithms are Hill Climbing (HC), SA (Kirkpatrick
et al., 1983), Tabu Search (TS) (Glover & Laguna, 1998), Late accep-
tance hill climbing (LAHC). Some modifications to HC algorithm are
𝛽HC (Al-Betar, 2016) and Adaptive 𝛽HC (Al-Betar et al., 2019). Some
f the work based on hybridization of local search and meta-heuristic
lgorithms are Elgamal et al. (2020), Kurtuluş et al. (2020) and Mafarja
nd Mirjalili (2017).

. Motivation and contributions

For the past few decades, meta-heuristic algorithms have proved
heir utilities in several research fields. Because of its immense use-
ulness, researchers are investing more time in it to come up with
etter-performing algorithms. At the end of the day, we want to find
he most optimal solution to such NP-hard problems. So there is not
eally any best result. We can always improve our findings with new
r modified algorithms. Moreover, according to the No Free Lunch (NFL)
heorem (Wolpert & Macready, 1997), any two algorithms produce
quivalent results when they are evaluated on all possible optimization
roblems. It has been observed that an algorithm may achieve superior
esults on some problems, but that does not ensure the same on other
roblems. Hence, we can say that there is no such universal algorithm
hat is qualified enough to be used in all the optimization problems and
roduce the best results. These inferences keep the research resilient
n this field. As FS is considered as an optimization problem (Ghosh
t al., 2020), so researchers are also coming up with new and efficient
S methods using meta-heuristic algorithms.

This is the motivation of our proposed work where we have de-
igned a new algorithm by modifying the GNDO (Zhang et al., 2020).
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The GNDO algorithm is inspired by the generalized normal distribution
model, where each individual uses a generalized normal distribution
curve to update its current position in the hope of finding a better
position. GNDO is employed to increase the accuracy of extracting the
unknown parameters of the single diode model, double diode model
and photovoltaic module model. There are two ways of hybridizing
meta-heuristic algorithms (Talbi, 2009): low-level and high-level. A
low-level approach en routes one algorithm in the other, whereas
the algorithms are executed in succession in the high-level accession.
This work follows the high-level version to hybridize GNDO and SA,
maintaining a pipeline model where the output of one meta-heuristic
algorithm is considered as the input to the other. To the best of our
knowledge, this is the first time, GNDO is hybridized with SA for
solving FS problems.

The present work proposes an improved version of the binary form
of GNDO (BGNDO), known as Binary Simulated Normal Distribution
Optimizer (BSNDO), hybridized with another meta-heuristic algorithm
called SA (Kirkpatrick et al., 1983). Recently, some hybrid FS methods
have been proposed (Ahmed et al., 2021, 2020b; Bhattacharyya et al.,
2020; Sheikh et al., 2020), which have demonstrated their effectiveness
and superiority over other methods. This has also motivated us to
come up with hybrid version of GNDO. Also, COVID-19 is a threat to
the humanity as many people are suffering from it as well as many
have died. Our normal day-to-day life is destroyed because of this
uncertainty. Many works have been proposed for detection of COVID,
few of them are Das et al. (2021), Garain et al. (2021), Karbhari et al.
(2021) etc. We have performed FS on a publicly available COVID-19
dataset for classification purpose of COVID-19. In a nutshell, the main
contributions of this work are as follows:

• A new FS method called BSNDO is introduced using BGNDO and
another popular meta-heuristic called SA.

• The proposed hybrid FS method is assessed on 18 standard UCI
datasets (Dua & Graff, 2017) using K-nearest Neighbours (KNN)
classifier, Random Forest classifier as well as Naive Bayes classi-
fier.

• BSNDO is also applied on high-dimensional microarray datasets
to prove its effectiveness.

• It is also applied on a publicly available COVID-19 dataset for
classification purposes.

• The proposed FS method is compared with many state-of-the-art
meta-heuristic based FS methods.

. Preliminaries

.1. Generalized normal distribution optimizer

GNDO (Zhang et al., 2020) is inspired from normal distribution
Gaussian distribution) theory. This distribution is used to narrate the
atural phenomenon. A normal distribution is described as follows:
ssume a random variable ‘r’, obeys a probability distribution having
ocation parameter 𝛼 and scale parameter 𝛽, and its probability density
unction can be written as:

(𝑟) = 1
√

2𝜋𝛽
exp(−

(𝑟 − 𝛼)2

2𝛽2
) (1)

hen ‘r’ is a random variable and this distribution is called normal
istribution, i.e., r�̃�(𝛼, 𝛽).

Any population-based optimization algorithm starts with the ran-
om initialization, and then all solutions converge towards the global
ptima following the rules of exploration and exploitation. In the end,
ll individuals assemble around the achieved the best solution. Now, we
an visualize this search process as multiple normal distributions. The
osition of every individual is regarded as random variables which are
ubject to normal distribution. Exploration of GNDO is dependent on
hree randomly selected agents. And the exploitation of GNDO is based
3

n the generalized normal distribution model, which is accompanied
y the current mean position and the current optimal position.

Based on the correspondence between the distribution of the so-
utions in the population and the normal distribution, a generalized
istribution model can be built by:
𝑡
𝑖 = 𝛼𝑖 + 𝛽𝑖 × 𝛾, 𝑖 = 1, 2, 3,… , 𝐷 (2)

here 𝑣𝑡𝑖 is the trail vector of the 𝑖th agent at time t, 𝛼𝑖 is generalized
ean position of the 𝑖th agent, 𝛽𝑖 is generalized standard variance and
is a penalty factor. Also, 𝛼, 𝛽 and 𝛾 can be defined as follows:

𝑖 =
1
3
(𝑟𝑡𝑖 + 𝑟𝑡𝑏𝑒𝑠𝑡 +𝑀) (3)

𝛽𝑖 =
√

1
3
[(𝑟𝑡𝑖 − 𝛼)2 + (𝑟𝑡𝑏𝑒𝑠𝑡 − 𝛽)2 + (𝑀 − 𝛼)2] (4)

=

{
√

− log(𝜆1) × cos (2𝜋𝜆2), if 𝑎 ≤ 𝑏
√

− log(𝜆1) × cos (2𝜋𝜆2 + 𝜋), otherwise
(5)

where a, b, 𝜆1 and 𝜆2 are random numbers ∈ [0, 1], 𝑟𝑡𝑏𝑒𝑠𝑡 is the current
best position and M is the mean position of the current population,
which is calculated by:

𝑀 =
∑𝐷

𝑖=1 𝑟
𝑡
𝑖

𝐷
(6)

As current best individual 𝑟𝑡𝑏𝑒𝑠𝑡 contains useful information related
to the global optimal solution, the 𝑖th individual 𝑟𝑡𝑖 is pulled towards
the direction of 𝑟𝑡𝑏𝑒𝑠𝑡. It is to be noted that when 𝑟𝑡𝑏𝑒𝑠𝑡 gets confined into
local optima, all agents still move towards the direction of 𝑟𝑡𝑏𝑒𝑠𝑡 that
will lead the algorithm to premature converge. To resolve this concern,
the mean position of the current population M is introduced. Although
the position of 𝑟𝑡𝑏𝑒𝑠𝑡 may not change in some generations, however, the
mean position M is changed over the generation that becomes useful
for finding better solutions. Thus, the mean position M is introduced
in the searching process, which increases the probability to avoid the
local optima.

𝛽𝑖 is employed to amplify the local search ability of GNDO. Further,
𝛽𝑖 can be interpreted as a random progression to perform the local
search around the generalized mean position 𝛼𝑖. Moreover, the distance
between the position of the 𝑖th individual 𝑟𝑡𝑖 and the mean position M
and the position of the best individual 𝑟𝑡𝑏𝑒𝑠𝑡 is larger, the oscillation of
the generated random sequence is prominent. Hence, the probability
to find a better solution around an individual is very minimal when 𝑟𝑡𝑖
has a very bad fitness value which can help the individual to search
better solution. On the contrary, there is a large probability for the
individual to find a better solution around it when the individual 𝑟𝑡𝑖
has good fitness. Thus, a random sequence with weak oscillation may
help the individual to achieve a better solution.

In the GNDO algorithm, the penalty factor 𝛾 is used to increase
the randomness of the generated generalized standard variance. Most
penalty factors are located ∈ [−1, 1]. As the generated generalized
standard variances are all positive, the penalty factor can increase the
search directions of GNDO, which can enhance its searchability.

Now, the global exploration of GNDO is dependent on three ran-
domly selected individuals, which is given by:

𝑣𝑡𝑖 = 𝑟𝑡𝑖 + 𝛿 × (|𝜆3| × 𝑣1) + (1 − 𝛿) × (|𝜆4| × 𝑣2) (7)

where 𝜆3 and 𝜆4 are randomly generated numbers subject to standard
normal distribution, 𝛿 is the adjust parameter which is a random
number ∈ [0, 1], 𝑣1 and 𝑣2 are trail vectors which are calculated as
follows:

𝑣1 =

{

𝑟𝑡𝑖 − 𝑟𝑡𝑝1, if 𝑓 (𝑟
𝑡
𝑖) < 𝑓 (𝑟𝑡𝑝1)

𝑟𝑡𝑝1 − 𝑟𝑡𝑖, otherwise
(8)

𝑣2 =

{

𝑟𝑡𝑝2 − 𝑟𝑡𝑝3, if 𝑓 (𝑟
𝑡
𝑝2) < 𝑓 (𝑟𝑡𝑝3)

𝑡 𝑡 (9)

𝑟𝑝3 − 𝑟𝑝2, otherwise
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Table 1
Brief description of parameters used in GNDO.

Parameter Description Value

𝛼 Generalized mean position NA
𝛽 Generalized standard variance (enhances local search ability) NA
𝛾 Penalty factor (enhances randomness of generated generalized standard variance) [−1,1]
a,b, 𝜆1, 𝜆2 Random numbers [0,1]
𝜆3, 𝜆4 Random numbers subject to standard normal distribution [0,1]
𝛿 Adjust parameter [0,1]
D Dimension of search space NA
where p1, p2 and p3 are three randomly generated integers ∈ [1, D],
ollowing 𝑝1 ≠ 𝑝2 ≠ 𝑝3 ≠ 𝑖. The 𝑖th individual is given information

by p2 and p3. The solution p1 shares information with 𝑖th solution .
The adjust parameter 𝛿 is used to balance the two information-sharing
procedures. Moreover, 𝜆3 and 𝜆4 are random numbers with standard
normal distribution, which can make GNDO has a larger search space in
the process of performing the global search. In order to bring the better
solution into the next generation population, a mechanism is designed,
which is represented as :

𝑟𝑡+1𝑖 =

{

𝑣𝑡𝑖if 𝑓 (𝑣
𝑡
𝑖) < 𝑓 (𝑟𝑡𝑖)

𝑟𝑡𝑖otherwise
(10)

A brief description of the parameters used in GNDO are summarized
in Table 1.

The pseudocode of the GNDO algorithm is given in Algorithm 1.

Algorithm 1 Pseudo-code of GNDO algorithm
Input: Problem dependent Information Output: Best
olution
1: Initialize population
2: Calculate the fitness value of every individual using Eq. (11) and

achieve the optimal solution 𝑟𝑏𝑒𝑠𝑡
3: while 𝑡 < 𝑇𝑚𝑎𝑥 do
4: for i = 1:N do
5: Generate a random number ’rnd’ ∈ [0, 1]
6: if rnd > 0.5 then
7: Select the current optimal solution 𝑟𝑏𝑒𝑠𝑡 and calculate the

mean position M using Eq. (6)
8: Compute generalized mean position 𝛼, generalized standard

variance 𝛽 and penalty factor by Eqs. (3)–(5) respectively
9: Perform local exploitation using Eqs. (2) and (10)

10: else
11: Perform global exploration using Eqs. Eqs. (7)–(10)
12: end if
13: end for
14: Update the current number of iteration, t = t + 1
15: end while
16: Return 𝑟𝑏𝑒𝑠𝑡

4.2. Simulated annealing

SA, proposed by Kirkpatrick et al. (1983), is inspired by an analogy
between simulation of annealing of solids and large combinatorial opti-
mization problems. Often meta-heuristic algorithms can fail to find the
global optima, rather they can stagnate in local optima. To overcome
this issue, SA uses a probabilistic approach to accept a poor solution.
By accepting poor solutions with a certain probability, exploration
increases. The algorithm starts with a randomly generated initial so-
lution, in each iteration, a solution neighbouring with respect to the
current solution is generated on a random basis based on the existing
neighbouring structure. Then, the neighbouring solution is evaluated
based on the fitness function. There may occur two possibilities:

1. Neighbouring solution is a better performing solution than the
4

existing solution: in this case, a new solution is always accepted.
Table 2
Brief description of parameters used in SA.

Parameter Description Value

𝑃 Boltzmann probability [0, 1]
𝑇 Temperature NA
‖𝑁‖ Number of attributes for each dataset NA

2. Neighbouring solution is worse performing solution in compar-
ison with the existing solution: in this case, the worse solution
can be accepted with a certain probability determined by the
Boltzmann probability, 𝑃 = 𝑒−

𝛿
𝑇 . Here 𝛿 is the difference of

fitness value of the neighbouring solution and existing best solu-
tion, and 𝑇 is the temperature of ‘‘simulated annealing process’’.
The temperature is periodically reduced over the iterations. The
temperature is initialized to 2 ∗ ‖𝑁‖ where ‖𝑁‖ represents
the feature-length. The temperature reducing scheme can be
represented by the following equation: 𝑇 (𝑡 + 1) = 0.93 ∗ 𝑇 (𝑡).
It is to be noted that the temperature decay and the probabil-
ity of exploration/exploitation are taken from the work done
by Kirkpatrick et al. (1983) and Zhang et al. (2020) respectively.

A brief description of the parameters used in SA are summarized in
Table 2.

Algorithm 2 shows the pseudo-code of SA.

5. Proposed method

This section elaborates the fitness function and transfer function
used, and the computational complexity of the proposed algorithm. At
every iteration, the agents update their position following the rules
of GNDO and at the end, they try to find a better solution in their
neighbourhood using SA.

5.1. Fitness function

Selecting the relevant features from a dataset that actually helps
the classifier to identify the class of a sample is the main challenge.
Now, during the process of selecting relevant features, we have to au-
tomatically rule out the redundant ones and maximize the classification
accuracy of a classification problem when the selected feature subset is
used for classification purposes (Pudil et al., 1994). This work applies
BSNDO to find the best feature subset and calculate the classification
accuracy of this subset using a classifier. Let 𝑐 be the classification
accuracy of the model calculated using a classifier, 𝑑𝑠 be the dimension
of the feature subset and 𝑡 be the total number of attributes present
in the original dataset. So, (1 - 𝑐) is the classification error and 𝑑𝑠

𝑡
is the fraction of features selected from the original dataset. We define
the fitness function as:

↓ 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜇 ⋅ (1 −𝑐 ) + (1 − 𝜇) ⋅
𝑑𝑠
𝑡

(11)
where 𝜇 ∈ [0, 1] denotes weightage given to the classification error.
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Algorithm 2 Pseudo-code of SA
Input: Problem dependent information
Output: BestSol
1: 𝑇0 = 2 ∗ |𝑁|, |𝑁| is number of attributes
2: BestSol := 𝑆′

𝑖
3: 𝛿(BestSol) := 𝛿(𝑆𝑖), 𝛿 indicates the quality of the solution
4: while T > 𝑇0 do
5: Generate a random new solution, TrialSol in the neighborhood of

𝑆′
𝑖

6: Calculate 𝛿(TrialSol)
7: if 𝛿(TrialSol) > 𝛿(BestSol) then
8: 𝑆′

𝑖 := TrialSol
9: BestSol := TrialSol

10: 𝛿(𝑆′
𝑖 ) := 𝛿 (TrialSol)

11: 𝛿(BestSol) := 𝛿(TrialSol)
12: else if 𝛿(TrialSol) == 𝛿(BestSol) then
13: Calculate |TrialSol| and |BestSol|
14:
15: if |TrialSol| < |BestSol| then
16: 𝑆′

𝑖 := TrialSol
17: BestSol := TrialSol
18: 𝛿(𝑆′

𝑖 ) := 𝛿 (TrialSol
19: 𝛿(BestSol) := 𝛿(TrialSol)
20: end if
21: else
22: Calculate 𝜃 = 𝛿(TrialSol) − 𝛿(BestSol)
23: Generate a random number, rnd ∈ [0,1]
24: if rnd ≤ 𝑒𝑥𝑝−

𝜃
𝑇 then

5: 𝑆′
𝑖 := TrialSol

26: 𝛿(𝑆′
𝑖 ) := 𝛿 (TrialSol

27: end if
28: end if
29: T = 0.93 * T
30: end while

5.2. Transfer function

As FS is a binary optimization problem (Ghosh et al., 2020), its
output is ∈ {0, 1} where zero represents that the feature is rejected
as it is redundant and one represents that the feature is useful and
hence it is selected. However, we cannot discard the possibility of the
obtained result going out of the desired range. To ensure that the output
always stays within the expected range, we have to apply a binarization
function on each agent. Here, this task is performed by the sigmoid
(S-shaped) transfer function (Mirjalili & Lewis, 2013). The S-shaped
transfer function, depicted in Fig. 1, is given by -

𝑇 (𝑥) = 1
1 + 𝑒−𝑥

(12)

𝑑 (𝑡) =

{

1 if 𝑟𝑛𝑑 < 𝑇 (𝑋𝑑 (𝑡))
0 if 𝑟𝑛𝑑 ≥ 𝑇 (𝑋𝑑 (𝑡))

(13)

The range of this function ∈ [0,1]. If the transfer function produces
output > 𝑟𝑛𝑑, where rnd is a random number with uniform distribution
in the range (0, 1), we set the value to be 1 i.e., we consider that
attribute is useful and if it is ≤ rnd, we set the value to be 0 i.e., the
attribute is redundant, hence it will not be considered (Mafarja et al.,
2019).

5.3. Computational complexity

For any meta-heuristic algorithm, the computation complexity de-
pends on the time taken by each individual to update their positions,
5

p

Fig. 1. S-shaped transfer function.

Table 3
Brief idea of the datasets employed here to assess the proposed FS method.

Sl. No. Dataset #Attributes #Samples #Classes Domain

1 Breastcancer 9 699 2 Biology
2 BreastEW 30 569 2 Biology
3 CongressEW 16 435 2 Politics
4 Exactly 13 1000 2 Biology
5 Exactly2 13 1000 2 Biology
6 HeartEW 13 270 2 Biology
7 IonosphereEW 34 351 2 Electromagnetic
8 KrvskpEW 36 3196 2 Game
9 Lymphography 18 148 4 Biology
10 M-of-n 13 1000 2 Biology
11 PenglungEW 325 73 2 Biology
12 SonarEW 60 208 2 Biology
13 SpectEW 22 267 2 Biology
14 Tic-tac-toe 9 958 2 Game
15 Vote 16 300 2 Politics
16 WaveformEW 40 5000 3 Physics
17 WineEW 13 178 3 Chemistry
18 Zoo 16 101 6 Artificial

the maximum number of iterations and some other operations like
comparison/sorting and the time to update variables. The computa-
tional complexity of BSNDO is 𝑂(𝑀𝑎𝑥𝑖𝑡𝑒𝑟 × 𝑃𝑜𝑝𝑠𝑖𝑧𝑒 × 𝐷𝑖𝑚𝑠 × 𝑇𝑓𝑖𝑡𝑛𝑒𝑠𝑠),

here 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 represents the maximum number of iterations, 𝑃𝑜𝑝𝑠𝑖𝑧𝑒
epresents the number of agents, 𝐷𝑖𝑚𝑠 represents the dimension of the
earch space, and 𝑇𝑓𝑖𝑡𝑛𝑒𝑠𝑠 indicates the required time for calculating
he fitness of a particular solution using a classifier. The usage of SA
s to find a better solution if available in the neighbourhood of the
urrent solution. SA does not affect the computational cost in terms
f 𝑂-notation.

. Experiments

.1. Dataset details

To investigate the performances of BGNDO and BSNDO, 18 standard
CI datasets (Dua & Graff, 2017) are considered here. These datasets
re from diverse domains. Some basic information regarding these
atasets is provided in Table 3. As the datasets used here are assorted
n terms of the number of features and instances, so it helps us to
nderstand the robustness of the proposed FS method.

.2. Parameter settings

For any multi-agent evolutionary algorithm, the parameters always
lay an important role in determining the outcome. Specially, the
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Table 4
Achieved classification accuracy obtained by BGNDO and BSNDO with different population sizes.

Pop_size 10 20 30 40 50

Dataset BGNDO BSNDO BGNDO BSNDO BGNDO BSNDO BGNDO BSNDO BGNDO BSNDO

Breastcancer 98.57 100 97.14 100 99.28 98.57 99.28 99.28 98.57 100
BreastEW 96.49 97.36 97.37 98.25 96.49 98.24 97.36 97.36 95.61 99.122
CongressEW 96.55 100 97.7 100 98.85 98.85 96.55 97.7 98.85 98.85
Exactly 100 100 100 100 100 100 100 99.5 100 100
Exactly2 77 78.5 80.5 80.5 80 78.5 79 80 80 79.5
HeartEW 85.18 83.33 90.74 94.44 88.88 90.74 85.18 94.44 85.18 90.74
IonosphereEW 91.43 92.86 95.71 95.74 91.43 94.28 94.29 92.86 92.85 94.28
KrvskpEW 97.65 98.12 98.12 98.44 98.43 97.49 98.59 97.81 97.96 97.33
Lymphography 93.33 93.33 96.67 96.67 90 96.67 96.67 90 96.67 93.33
M-of-n 100 100 100 100 100 100 100 100 100 100
PenglungEW 93.33 93.33 100 100 93.33 93.33 86.67 100 93.33 100
SonarEW 95.23 88.09 97.62 95.24 92.85 92.86 97.62 95.23 92.85 97.62
SpectEW 90.56 94.44 92.45 96.22 92.45 94.44 94.33 90.74 92.45 88.89
Tic-tac-toe 83.33 86.46 89.58 87.5 84.89 86.46 83.85 86.46 88.54 84.89
Vote 98.33 100 100 100 98.33 98.33 100 100 98.33 100
WaveformEW 84.3 84.4 84.5 87 83.4 84.6 85.3 85.6 85.7 83.8
WineEW 97.22 100 100 100 100 100 100 100 97.22 100
Zoo 100 100 100 100 100 100 100 100 100 100
Table 5
Number of selected features by BGNDO and BSNDO for different population sizes.

Pop_size 10 20 30 40 50

Dataset BGNDO BSNDO BGNDO BSNDO BGNDO BSNDO BGNDO BSNDO BGNDO BSNDO

Breastcancer 4 4 7 4 4 6 4 3 4 4
BreastEW 13 8 14 4 15 11 16 5 13 12
CongressEW 6 6 9 7 7 9 8 10 7 8
Exactly 7 6 10 6 7 6 6 7 7 6
Exactly2 6 4 9 8 8 6 9 12 7 6
HeartEW 5 5 6 4 6 4 5 4 4 5
IonosphereEW 17 12 26 16 15 16 20 12 10 8
KrvskpEW 24 24 22 22 21 25 26 24 22 17
Lymphography 10 5 11 5 8 8 6 6 9 6
M-of-n 7 6 8 6 7 6 7 6 7 6
PenglungEW 48 132 209 187 129 132 171 179 177 139
SonarEW 30 24 39 27 33 31 30 36 27 28
SpectEW 9 13 14 6 10 7 11 6 11 12
Tic-tac-toe 6 9 9 9 7 9 9 9 9 9
Vote 10 7 10 3 7 3 8 6 6 7
WaveformEW 34 25 27 33 27 26 31 28 26 4
WineEW 6 4 9 3 7 1 4 4 4 4
Zoo 8 6 11 5 6 1 7 6 5 8
population size and the total number of iterations (number of gen-
erations) always affect the outcome of the algorithm heavily. Hence,
we have performed some experiments to determine the approximate
ideal population size and a total number of iterations. The achieved
classification accuracy by BGNDO and BSNDO for different population
sizes varying from 10 to 50 are provided in Table 4. Similarly, the
numbers of selected features for different population sizes varying from
10 to 50 by BGNDO and BSNDO are depicted in Table 5. To observe
the convergence of the solution to the optimal position, convergence
graphs have been plotted (which are given in Fig. 2) over 50 iterations.
To maintain the fairness of the comparison, we have run each dataset
10 times and taken the average over these runs.

From the initial experiments, we have found that a population size
of 20 leads to noteworthy results. Keeping the computational cost in
min,d this population size is considered for further experiments. At
the same time, from the convergence graphs, approximately after 30
iterations, the best solution is almost at the optimal position. Hence, it
has been used for further experiments.

6.3. Result and discussion

This section discusses the outcomes produced by BGNDO and
BSNDO evaluated on UCI datasets whose details are given in Table 3
while evaluated using KNN, Random Forest and Naive Bayes classifiers.
These results establish the superiority of BSNDO over BGNDO.
6

Tables 6–8 present the outcomes obtained by the proposed BSNDO
algorithm while evaluated by KNN, Random Forest and Naive Bayes
classifiers respectively. Compared to the BGNDO algorithm, the ob-
tained results clearly depicts the effect of BSNDO in finding a better
solution. Observing these results, we can conclude that BSNDO per-
forms better than BGNDO on UCI datasets. Furthermore, KNN is used
widely in the references for FS on UCI datasets (Emary et al., 2016;
Mafarja & Mirjalili, 2017; Mafarja et al., 2019), hence, for further
experiments and discussion, we have utilized KNN classifier with 𝐾 = 5.

Inspecting the results in these tables, we can observe that BSNDO
provides better results than BGNDO in every dataset while evalu-
ated using different classifiers. From Table 6 we can see that BSNDO
achieves >90% accuracy in 15 datasets (83.33%), out of which it
produces 100% classification accuracy in 8 datasets (44.44%) while
evaluated using KNN classifier. It produces better classification accu-
racy than BGNDO except Exactly, Exactly2, Lymphography, M-of-n,
PenglungEW, Vote, WineEW and Zoo, where both produces equivalent
accuracy. Considering the number of selected features, BSNDO beats
BGNDO in every dataset except WaveformEW. They select the same
number of features in the case of KrvskpEW.

Similarly, from Table 7 we can see that BSNDO achieves >90%
accuracy in 16 datasets (88.89%) while evaluated using Random Forest
classifier. It achieves 100% accuracy in 6 datasets (33.33%). In the
case of Exactly, Exactly2, M-of-n, Vote, WineEW and Zoo, BSNDO
and BGNDO produces the same classification accuracy. BSNDO has
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Fig. 2. Convergence graphs depicting the convergence of best individual at every iteration for 18 UCI datasets using BGNDO and BSNDO.
the upper hand over BGNDO over the rest cases. Talking about the
number of selected features, only in the case of BreastEW, CongressEW,
PenglungEW and Tic-tac-toe, BGNDO produces better results. They
select the same number of features in cases of Exactly, Exactly2 and
HeartEW. BSNDO selects fewer features than BGNDO in the rest cases.

While evaluated using Naive Bayes classifier, BSNDO produces
>90% classification accuracy in 15 datasets (83.33%) Table 8. It
achieves 100% accuracy in 7 datasets (38.89%). BSNDO and BGNDO
7

produce equivalent results in the case of Exactly2, Vote, WineEW and
Zoo. BSNDO produces better results in the rest of the cases. It also
selects fewer features than BGNDO in almost every dataset except
KrvskpEW and PenglungEW. Both of them selects the same number of
features in the case of M-of-n and SpectEW.

From the above discussion, we can say that BSNDO is superior
to BGNDO while evaluated using KNN, Random Forest and Naive
Bayes classifiers. The results achieved by BSNDO using these classifiers
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Table 6
Achieved classification accuracy and number of selected features by BGNDO and BSNDO using KNN classifier (highest classification
accuracies and lowest no. of selected features are highlighted in bold font).
Sl. No. Dataset Original BGNDO BSNDO

Accuracy Features Accuracy Features Accuracy Features

1 Breastcancer 96 9 97.14 7 100 4
2 BreastEW 92.63 30 97.37 14 98.25 4
3 CongressEW 92.18 16 97.7 9 100 7
4 Exactly 72.3 13 100 10 100 6
5 Exactly2 73.3 13 80.5 9 80.5 8
6 HeartEW 68.15 13 90.74 6 94.44 4
7 IonosphereEW 83.43 34 95.71 26 95.74 16
8 KrvskpEW 96.1 36 98.12 22 98.44 22
9 Lymphography 81.33 18 96.67 11 96.67 5
10 M-of-n 87.4 13 100 8 100 6
11 PenglungEW 81.33 325 100 209 100 187
12 SonarEW 80.95 60 94.62 39 95.24 27
13 SpectEW 82.22 22 92.45 14 96.22 6
14 Tic-tac-toe 81.1 9 83.854 8 87.5 8
15 Vote 92.33 16 100 10 100 3
16 WaveformEW 81.44 40 84.5 27 87 33
17 WineEW 66.67 13 100 9 100 3
18 Zoo 87 16 100 11 100 5
Table 7
Achieved classification accuracy and number of selected features by BGNDO and BSNDO using Random Forest classifier (highest
classification accuracies and lowest no. of selected features are highlighted in bold font).
Sl no. Dataset Original BGNDO BSNDO

Accuracy Features Accuracy Features Accuracy Features

1 Breastcancer 97.8 9 97.14 7 97.86 2
2 BreastEW 98.2 30 95.61 2 100 4
3 CongressEW 97.7 16 96 1 98.85 5
4 Exactly 78.5 13 100 6 100 6
5 Exactly2 74 13 76 1 76 1
6 HeartEW 81.5 13 88.89 5 94.44 5
7 IonosphereEW 91.4 34 95.71 24 98.57 20
8 KrvskpEW 99.5 36 98.12 28 99.53 17
9 Lymphography 90 18 93.33 8 96.67 4
10 M-of-n 100 13 100 8 100 6
11 PenglungEW 86.7 325 93.33 140 100 193
12 SonarEW 90.7 60 92.86 42 95.24 14
13 SpectEW 88.9 22 90.74 15 96.3 7
14 Tic-tac-toe 95.8 9 82.94 5 94.37 8
15 Vote 95 16 98.33 12 98.33 6
16 WaveformEW 85.8 40 83 33 86.2 29
17 WineEW 100 13 100 4 100 3
18 Zoo 100 16 100 4 100 3
establish the fact that BSNDO produces noteworthy and impressive
results while evaluated using different classifiers.

6.4. Comparison

We have established this claim that BSNDO produces better re-
sults than BGNDO beforehand. This section provides the performance
comparison of BSNDO with eight state-of-the-art FS methods. These
state-of-the-art methods consist of few popular methods and some re-
cently proposed hybrid methods. They are: GA, PSO, adaptive switching
grey-whale optimizer (ASGW), serial grey-whale optimizer (HSGW),
random switching grey-whale optimizer (RSGW), social ski driver algo-
rithm and late acceptance hill-climbing (SSDs+LAHC) (Chatterjee et al.,
2020), electrical harmony based meta-heuristic (Sheikh et al., 2020)
and embedded chaotic whale survival algorithm (ECWSA-4) (Guha
et al., 2020).

From Table 9 we can say that BSNDO produces the overall best
result. In the case of Breastcancer, BSNDO and EHHM produce 100%
accuracy. In BreastEW, BSNDO holds the second position along with
SSDs+LAHC after ASGW and EHHM. BSNDO holds the top position
along with SSDs+LAHC in CongressEW producing 100% accuracy. In
8

the case of Exactly, BSNDO produces the best result with SSDs+LAHC,
HSGW, BGA, BPSO and EHHM. HSGW beats BSNDO in Exactly2 with a
very narrow margin. It stands at third position in the case of HeartEW.
It stands at fifth position in IonosphereEW and SonarEW. In the case
of KrvskpEW and Lymphography, it attains the second position after
BGA and EHHM respectively. In the case of M-of-n, PenglungEW, Vote,
WineEW and Zoo, BSNDO stands at first position along with few other
methods. It achieves the highest classification accuracy in the case of
SpectEW and Tic-tac-toe. In the case of WaveformEW, it produces the
second best result after EHHM.

Table 10 gives the comparison of BSNDO with state-of-the-art FS
methods based on the number of selected features. It selects the least
number of features in BreastEW, Exactly along with SSDs+LAHC, BGA
and BPSO, Lymphography along with BGA and BPSO. It also produces
the best result in the case of Vote along with BPSO. It stands at
second position in the case of Breastcancer along with BGA and BPSO,
HeartEW, M-of-n with SSDs+LAHC, BGA and BPSO, SpectEW with
BPSO, WineEW along with SSDs+LAHC. BSNDO stands at third position
in the case of Exactly2 with SSDs+LAHC and Zoo along with BPSO. It
stands at fourth position in the case of IonosphereEW and Tic-tac-toe
along with ECWSA-4. It selects the same number of features as EHHM
in the case of CongressEW attaining the fifth position. In the case of

PenglungEW and WaveformEW, it stands at ninth position.
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Table 8
Achieved classification accuracy and number of selected features by BGNDO and BSNDO using Naive Bayes classifier (highest
classification accuracies and lowest no. of selected features are highlighted in bold font).
Sl. No. Dataset Original BGNDO BSNDO

Accuracy Features Accuracy Features Accuracy Features

1 Breastcancer 89.28 9 97.87 7 99.24 5
2 BreastEW 96.49 30 97.36 14 98.2 5
3 CongressEW 98.85 16 98.85 8 100 6
4 Exatly 69.5 13 96 8 100 6
5 Exactly2 76 13 76 9 76 6
6 HeartEW 94.44 13 92.3 9 94.44 4
7 IonosphereEW 95.71 34 92.88 18 95.74 15
8 KrvskpEW 65.88 36 95.31 9 97.18 12
9 Lymphography 86.67 18 90 15 100 8
10 M-of-n 96.5 13 98.5 6 100 6
11 PenglungEW 60 325 73.33 120 93.33 157
12 SonarEW 80.95 60 80.95 23 97.61 21
13 SpectEW 72.22 22 90.24 14 92.59 14
14 Tic-tac-toe 75.52 9 72.92 6 82.92 5
15 Vote 98.33 16 100 8 100 3
16 WaveformEW 82.2 40 82.5 25 85.8 18
17 WineEW 100 13 100 3 100 2
18 Zoo 100 16 100 5 100 3
Table 9
Comparison of BSNDO with state-of-the-art FS methods based on achieved classification accuracy tested on UCI datasets (highest classification
accuracies are highlighted).

Dataset BSNDO SSDs+LAHC HSGW RSGW ASGW BGA BPSO EHHM ECWSA-4

Breastcancer 100 98.93 98.6 97.1 98.5 97.43 96.29 100 95.21
BreastEW 98.25 98.25 98.1 98.2 100 97.54 97.19 100 97.38
CongressEW 100 100 97.5 96.1 99.4 96.79 96.33 98.85 96.23
Exactly 100 100 100 99.7 99.9 100 100 100 78.09
Exactly2 80.5 79 81.5 77.9 77.7 77 76.8 79.1 78.9
HeartEW 90.74 91.67 92.3 84.8 83.1 87.41 83.7 90.7 85.63
IonosphereEW 95.74 96.43 94.4 97.8 97.2 94.89 94.89 98.6 86.79
KrvskpEW 98.44 97.81 97.3 97.2 97.1 98.5 97.31 97.81 93.53
Lymphography 96.67 96.67 93.4 89.3 88.4 83.78 89.19 96.9 87.02
M-of-n 100 100 100 100 100 100 100 100 92.47
PenglungEW 100 100 94.2 100 100 91.89 91.89 100 87.63
SonarEW 95.24 97.62 96.4 97.9 94.8 99.04 94.23 92.85 76.84
SpectEW 96.22 95.15 86.2 81.5 87 89.55 88.81 90.74 79.84
Tic-tac-toe 87.5 87.24 82.8 85.9 86.5 79.96 79.96 85 78.75
Vote 100 100 98.3 99.6 98.4 97.33 96 98.4 95.08
WaveformEW 85 84.4 74.8 75.7 74.6 78.36 75.6 86.8 80.18
WineEW 100 100 100 100 100 98.88 97.75 100 98.02
Zoo 100 100 100 100 100 90.2 96.08 100 98.95

Avg rank 1.833 2 3.5 3.944 4 4.22 5.33 2.33 5.944
Ass rank 1 2 4 5 6 7 8 3 9
Table 10
Comparison of BSNDO with state-of-the-art methods based on number of selected features tested on UCI datasets (least number of selected
features are highlighted).

Dataset BSNDO SSDs+LAHC HSGW RSGW ASGW BGA BPSO EHHM ECWSA-4

Breastcancer 4 2.5 5 5.933 4.867 4 4 4 7
BreastEW 4 9 16.667 17.5 15.833 8 9 13 15
CongressEW 7 5.5 8.867 9.7 8.833 2 3 7 4
Exactly 6 6 6.7 7.1 6.867 6 6 7 7
Exactly2 8 8 9.033 9.2 7.933 1 1 5 9
HeartEW 4 5 8.767 6.133 6.367 5 3 8 9
IonosphereEW 16 12 18.167 20.5 17.3 7 7 7 10
KrvskpEW 22 20 24.8 24.8 24.5 11 12 15 16
Lymphography 5 6.5 10.567 10.567 11.2 5 5 6 10
M-of-n 6 6 6.8 7.1 6.867 6 6 7 5
PenglungEW 187 140 135.33 181.2 170.3 84 130 74 93
SonarEW 27 23.5 34.3 36.433 35.5 19 22 22 23
SpectEW 6 9 10.233 13.3 10.167 5 6 11 7
Tic-tac-toe 8 9 7 7 7 5 6 6 8
Vote 3 4.5 7.567 8.8 8.967 5 3 5 6
WaveformEW 33 22.5 26.933 27.533 25.833 15 15 20 15
WineEW 3 3 4.533 5.867 5.933 4 5 1 7
Zoo 5 4.5 5.533 5.3 7.6 4 5 1 7

Avg rank 3.5 3.22 5.277 6.277 5.33 1.61 2.055 2.944 4.16
Ass rank 5 4 7 9 8 1 2 3 6
9
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Table 11
𝑝-values generated via pairwise Wilcoxon test using the results obtained from 20 independent runs of the proposed BSNDO method and
state-of-the-art FS methods used for comparison.

Dataset SSDs+LAHC HSGW RSGW ASGW BGA BPSO EHHM ECWSA-4

Breastcancer 0.031623 0.000212 0.000292 0.013724 0.000126 0.000392 0.000455 0.000392
BreastEW 0.275234 0.00029 0.000119 0.284088 0.003088 0.001373 1.91E−06 1.91E−06
CongressEW 0.599266 0.000138 0.000297 0.017474 0.000161 0.008211 0.176853 0.000212
Exactly 0.022958 8.83E−05 8.73E−05 0.000131 8.54E−05 8.72E−05 0.000131 0.000618
Exactly2 7.88E−05 8.72E−05 8.66E−05 0.000127 0.000153 7.99E−05 0.00021 0.974353
HeartEW 0.359797 8.81E−05 0.000102 0.00023 0.000153 8.72E−05 0.521673 8.72E−05
IonosphereEW 0.925575 0.000291 0.000127 0.003191 0.000845 0.047031 0.294252 1.91E−06
KrvskpEW 0.000155 8.86E−05 8.83E−05 0.000515 8.81E−05 0.000132 1.91E−06 0.009436
Lymphography 0.510917 0.000127 8.34E−05 0.001458 0.000285 0.000213 3.62E−05 0.000119
M-of-n 0.072789 8.77E−05 8.79E−05 8.77E−05 8.82E−05 0.000131 0.000618 8.72E−05
PenglungEW 0.054977 0.000234 0.014786 0.145537 0.213681 0.474082 0.009436 8.77E−05
SonarEW 0.264962 0.000115 0.00013 0.000527 0.937537 0.011806 1.91E−06 0.000127
SpectEW 0.262646 8.77E−05 0.000212 0.011068 0.000178 0.00013 1.91E−06 0.000127
Tic-tac-toe 0.155787 8.78E−05 8.83E−05 0.021748 0.000187 8.84E−05 0.452375 8.84E−05
Vote 0.166793 0.000128 0.000127 0.029028 0.00019 0.000406 4.77E−05 9.02E−05
WaveformEW 0.000182 8.86E−05 0.000103 8.77E−05 8.86E−05 8.83E−05 1.91E−06 0.000297
WineEW 0.365712 9.95E−05 8.71E−05 0.000859 0.05349 0.000269 0.001341 0.000269
Zoo 0.763025 9.02E−05 0.000104 0.0455 0.001689 0.000147 0.974353 8.77E−05
Table 12
Description of datasets used to check the robustness of BSNDO.

Dataset Number of features Number of samples Number of classes

AMLGSA2191 12 616 54 2
DLBCL 7070 77 2
Leukaemia 5147 72 2
Prostate 12 533 102 2
MLL 12 533 72 3
SRBCT 2308 83 4

To make a quantitative decision about a process, we perform a
tatistical test. The goal of this test is to determine whether there is
nough clarity to ‘‘reject’’ a conjecture about the process. The conjec-
ure is called the null hypothesis. In our case, the null hypothesis states
hat the two sets of results have the same distribution, which implies
hat if the distribution of two results is statistically different, then the
enerated 𝑝-value from the test statistics will be <0.05 when the test is

performed at 0.05% significance level. This will result in the rejection
of the null hypothesis. So, to determine the statistical significance of
the BSNDO algorithm, Wilcoxon rank-sum test (Wilcoxon, 1992) has
been performed. It is a non-parametric statistical test where a pairwise
comparison is performed. Individual meta-heuristic algorithms were
run 20 times for each UCI dataset used here to perform the statistical
test. From the test results provided in Table 11, we can conclude that
the results of the proposed BSNDO algorithm is found to be statistically
significant.

7. Additional testing on microarray datasets

The reported results, mentioned above, establish the fact that
BSNDO performs better than the state-of-the-art methods considered
here for comparison. To check the robustness of the proposed method,
we have applied it on several high-dimensional microarray datasets
(Ahmed et al., 2020a). The description of the datasets is given in
Table 12. To confirm the superiority of the proposed method, it is
compared with some state-of-the-art methods, namely: GA (Ghosh
et al., 2018a), Memetic algorithm (MA) (Ghosh et al., 2019b, 2018b),
WFACOFS (Ghosh et al., 2019a) and ECWSA (Guha et al., 2020). The
comparison table is given in Table 13

As microarray datasets consist of a very high number of attributes,
it becomes a challenging task for us to rule out the irrelevant ones. The
obtained results again demonstrate the effectiveness of BSNDO. From
this Table 13, we can see that BSNDO produces noteworthy results
as compared to the other methods considered here for comparison.
It produces 100% accuracy in every dataset except Prostrate. It also
selects the least features in the case of AMLGSE2191 and SRBCT.
10
8. Testing on COVID-19 dataset

COVID-19 is a contagious disease, which is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). The common symp-
toms of COVID-19 are fever, cough, fatigue, breathing difficulties, and
loss of smell and taste etc. Symptoms begin 1 to 14 days after exposure
to the virus. While most people have mild symptoms, some people
develop acute respiratory distress syndrome (ARDS). Because of its na-
ture, the accurate result of the COVID-19 test has become a challenging
task. Some recent COVID-19 screening techniques are Bandyopadhyay
et al. (2021), Barnes et al. (2021), Dey et al. (2021), Ismael and Şengür
(2021), Kundu et al. (2021) and Nigam et al. (2021). More than 190
million people is suffering from COVID-19, and more than 4 million
people have died because of it. So, detecting the COVID-19 and keeping
those people in quarantine have become one of the topmost priorities
of every country. Though vaccination process has started, it will take
time to reach everyone, especially in the under-development countries.

We have tested our FS method on a COVID-19 dataset, which
is publicly available at https://github.com/Atharva-Peshkar/Covid-19-
Patient-Health-Analytics in csv format. This dataset contains 1086 in-
stances and 74 attributes. The obtained results are compared with some
meta-heuristics based FS methods: SSDs+LAHC, ASGW, HSGW, RSGW,
GA, PSO and Adaptive 𝛽-coral reefs optimization (A𝛽CRO) (Ahmed
et al., 2020a). The comparison table shows the achieved classifica-
tion accuracy and the number of selected features (in brackets) (see
Table 14).

9. Conclusion and future work

In this work, a new FS method, called BSNDO, which is based
on GNDO and SA has been proposed. SA has been used as a local
search to enhance the exploitation of the GNDO and to create a proper
balance between exploration and exploitation of the overall method.
The proposed method shows significant improvement in achieved clas-
sification accuracy while FS is performed using BSNDO than BGNDO
and some state-of-the-art methods. Primarily the method has been
tested on various UCI datasets. To prove the robustness of the model,
the proposed method is also applied on high dimensional microarray
datasets. Furthermore, it is experimented on a COVID-19 dataset for de-
tecting the COVID-19 cases. This is to be noted that all the datasets used
here are publicly available. The obtained results show the applicability
of BSNDO in varied datasets. One of the limitations of this method may
be the computational complexity due to addition of the local search to
the GNDO algorithm. As a future scope of this work, a deeper analysis
of the gene selections done by BSNDO and their biological impact
can be studied. The proposed FS method can also be applied to some

https://github.com/Atharva-Peshkar/Covid-19-Patient-Health-Analytics
https://github.com/Atharva-Peshkar/Covid-19-Patient-Health-Analytics
https://github.com/Atharva-Peshkar/Covid-19-Patient-Health-Analytics
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Table 13
Comparison of the results of BSNDO on microarray with state-of-the-art methods. The number of features selected is provided in brackets at
the side of the accuracy.

Dataset GA MA WFACOFS ECWSA-1 ECWSA-2 ECWSA-3 ECWSA-4 BSNDO

AMLGSE2191 100(98) 100(91) 96.3(17) 96.67(17) 100(9) 95.83(16) 95.83(18) 100(9)
DLBCL 100(88) 100(105) 100(3) 100(29) 100(24) 100(26) 100(31) 100(10)
Leukaemia 100(85) 100(65) 100(5) 97.22(7) 100(8) 100(4) 97.22(5) 100(12)
Prostrate 100(99) 100(107) 100(22) 96.3(16) 98.15(16) 96.3(9) 96.3(19) 95.24(20)
MLL 100(94) 100(80) 100(25) 100(16) 100(17) 100(8) 100(15) 100(16)
SRBCT 100(78) 100(50) 100(19) 100(45) 100(32) 100(34) 100(30) 100(11)
Table 14
Comparison of achieved classification accuracy evaluated on mentioned COVID-19 dataset.

GNDO+SA SSDs+LAHC ASGW HSGW RSGW GA PSO A𝛽CRO

98.61 (26) 97.69 (23) 97.69 (40) 96.31 (50) 97.75 (54) 94.9 (23) 97.24 (31) 98.2(20)
B

C

D

D
D

D

D

E

E

E

G

G

G

G

other real-world problems like handwritten word or digit recognition,
and face recognition etc., where researchers sometimes use very high
dimensional feature vectors without knowing the importance of all the
features.

CRediT authorship contribution statement

Shameem Ahmed: Conceptualization, Methodology, Writing – orig-
nal draft, Software, Investigation. Khalid Hassan Sheikh: Writing –
eview & editing, Software, Investigation, Conceptualization. Seyedali
Mirjalili: Writing – review & editing, Supervision, Project administra-
tion, Validation. Ram Sarkar: Writing – review & editing, Supervision,
Project administration, Validation, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

We would like to thank the Centre for Microprocessor Applications
for Training, Education and Research (CMATER) laboratory of the
Computer Science and Engineering Department, Jadavpur University,
Kolkata, India for providing us with the infrastructural support.

References

Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Metaheuristic algorithms:
A comprehensive review. In Computational intelligence for multimedia big data on
the cloud with engineering applications (pp. 185–231). Elsevier, http://dx.doi.org/10.
1016/b978-0-12-813314-9.00010-4.

Ahmed, S., Ghosh, K. K., Garcia-Hernandez, L., Abraham, A., & Sarkar, R. (2020). Im-
proved coral reefs optimization with adaptive 𝛽-hill climbing for feature selection.
Neural Computing and Applications, http://dx.doi.org/10.1007/s00521-020-05409-1.

Ahmed, S., Ghosh, K. K., Mirjalili, S., & Sarkar, R. (2021). AIEOU: Automata-based im-
proved equilibrium optimizer with U-shaped transfer function for feature selection.
Knowledge-Based Systems, 228, Article 107283. http://dx.doi.org/10.1016/j.knosys.
2021.107283.

Ahmed, S., Ghosh, K. K., Singh, P. K., Geem, Z. W., & Sarkar, R. (2020). Hybrid of
harmony search algorithm and ring theory-based evolutionary algorithm for feature
selection. IEEE Access, 8, 102629–102645. http://dx.doi.org/10.1109/access.2020.
2999093.

Al-Betar, M. A. (2016). 𝛽-hill climbing: an exploratory local search. Neural Computing
and Applications, 28(S1), 153–168. http://dx.doi.org/10.1007/s00521-016-2328-2.

Al-Betar, M. A., Aljarah, I., Awadallah, M. A., Faris, H., & Mirjalili, S. (2019).
Adaptive 𝛽-hill climbing for optimization. Soft Computing, 23(24), 13489–13512.
http://dx.doi.org/10.1007/s00500-019-03887-7.

Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineer-
ing optimization problems: Crow search algorithm. Computers & Structures, 169,
1–12. http://dx.doi.org/10.1016/j.compstruc.2016.03.001.

u2, I. F. J., Yang, X.-S., Fister, I., Brest, J., & Fister, D. (2013). A brief review of
nature-inspired algorithms for optimization. arXiv:1307.4186.
11
Bandyopadhyay, R., Basu, A., Cuevas, E., & Sarkar, R. (2021). Harris hawks optimisation
with simulated annealing as a deep feature selection method for screening of
COVID-19 CT-scans. Applied Soft Computing, 111, Article 107698. http://dx.doi.org/
10.1016/j.asoc.2021.107698.

arnes, S. J., Diaz, M., & Arnaboldi, M. (2021). Understanding panic buying during
COVID-19: A text analytics approach. Expert Systems with Applications, 169, Article
114360. http://dx.doi.org/10.1016/j.eswa.2020.114360.

Bhattacharyya, T., Chatterjee, B., Singh, P. K., Yoon, J. H., Geem, Z. W., & Sarkar, R.
(2020). Mayfly in harmony: A new hybrid meta-heuristic feature selection al-
gorithm. IEEE Access, 8, 195929–195945. http://dx.doi.org/10.1109/access.2020.
3031718.

Boutsidis, C., Drineas, P., & Magdon-Ismail, M. (2014). Near-optimal column-based
matrix reconstruction. SIAM Journal on Computing, 43(2), 687–717. http://dx.doi.
org/10.1137/12086755x.

Boutsidis, C., Drineas, P., & Mahoney, M. W. (2009). Unsupervised feature selection for
the 𝑘-means clustering problem. Advances in Neural Information Processing Systems,
22, 153–161.

Chatterjee, B., Bhattacharyya, T., Ghosh, K. K., Singh, P. K., Geem, Z. W., & Sarkar, R.
(2020). Late acceptance hill climbing based social ski driver algorithm for feature
selection. IEEE Access, 8, 75393–75408. http://dx.doi.org/10.1109/access.2020.
2988157.

ortinovis, A., & Kressner, D. (2020). Low-rank approximation in the frobenius norm by
column and row subset selection. SIAM Journal on Matrix Analysis and Applications,
41(4), 1651–1673. http://dx.doi.org/10.1137/19m1281848.

as, S., Roy, S. D., Malakar, S., Velásquez, J. D., & Sarkar, R. (2021). Bi-level prediction
model for screening COVID-19 patients using chest X-Ray images. Big Data Research,
25, Article 100233. http://dx.doi.org/10.1016/j.bdr.2021.100233.

avis, L. (1991). Handbook of genetic algorithms. CumInCAD.
ey, S., Bhattacharya, R., Malakar, S., Mirjalili, S., & Sarkar, R. (2021). Choquet

fuzzy integral-based classifier ensemble technique for COVID-19 detection. Com-
puters in Biology and Medicine, 135, Article 104585. http://dx.doi.org/10.1016/j.
compbiomed.2021.104585.

rineas, P., Mahoney, M. W., & Muthukrishnan, S. (2008). Relative-error $CUR$ matrix
decompositions. SIAM Journal on Matrix Analysis and Applications, 30(2), 844–881.
http://dx.doi.org/10.1137/07070471x.

ua, D., & Graff, C. (2017). UCI machine learning repository. URL: http://archive.ics.
uci.edu/ml.

lgamal, Z. M., Yasin, N. B. M., Tubishat, M., Alswaitti, M., & Mirjalili, S. (2020). An
improved harris hawks optimization algorithm with simulated annealing for feature
selection in the medical field. IEEE Access, 8, 186638–186652. http://dx.doi.org/
10.1109/ACCESS.2020.3029728.

mary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization
approaches for feature selection. Neurocomputing, 172, 371–381. http://dx.doi.org/
10.1016/j.neucom.2015.06.083.

usuff, M., Lansey, K., & Pasha, F. (2006). Shuffled frog-leaping algorithm: a memetic
meta-heuristic for discrete optimization. Engineering Optimization, 38(2), 129–154.
http://dx.doi.org/10.1080/03052150500384759.

arain, A., Basu, A., Giampaolo, F., Velasquez, J. D., & Sarkar, R. (2021). Detection of
COVID-19 from CT scan images: A spiking neural network-based approach. Neural
Computing and Applications, http://dx.doi.org/10.1007/s00521-021-05910-1.

eem, Z. W., Kim, J. H., & Loganathan, G. (2001). A new heuristic optimization
algorithm: Harmony search. Simulation, 76(2), 60–68. http://dx.doi.org/10.1177/
003754970107600201.

endreau, M., & Potvin, J.-Y. (2005). Metaheuristics in combinatorial optimization.
Annals of Operations Research, 140(1), 189–213. http://dx.doi.org/10.1007/s10479-
005-3971-7.

hosh, M., Adhikary, S., Ghosh, K. K., Sardar, A., Begum, S., & Sarkar, R. (2018).
Genetic algorithm based cancerous gene identification from microarray data using
ensemble of filter methods. Medical & Biological Engineering & Computing, 57(1),
159–176. http://dx.doi.org/10.1007/s11517-018-1874-4.

http://dx.doi.org/10.1016/b978-0-12-813314-9.00010-4
http://dx.doi.org/10.1016/b978-0-12-813314-9.00010-4
http://dx.doi.org/10.1016/b978-0-12-813314-9.00010-4
http://dx.doi.org/10.1007/s00521-020-05409-1
http://dx.doi.org/10.1016/j.knosys.2021.107283
http://dx.doi.org/10.1016/j.knosys.2021.107283
http://dx.doi.org/10.1016/j.knosys.2021.107283
http://dx.doi.org/10.1109/access.2020.2999093
http://dx.doi.org/10.1109/access.2020.2999093
http://dx.doi.org/10.1109/access.2020.2999093
http://dx.doi.org/10.1007/s00521-016-2328-2
http://dx.doi.org/10.1007/s00500-019-03887-7
http://dx.doi.org/10.1016/j.compstruc.2016.03.001
http://arxiv.org/abs/1307.4186
http://dx.doi.org/10.1016/j.asoc.2021.107698
http://dx.doi.org/10.1016/j.asoc.2021.107698
http://dx.doi.org/10.1016/j.asoc.2021.107698
http://dx.doi.org/10.1016/j.eswa.2020.114360
http://dx.doi.org/10.1109/access.2020.3031718
http://dx.doi.org/10.1109/access.2020.3031718
http://dx.doi.org/10.1109/access.2020.3031718
http://dx.doi.org/10.1137/12086755x
http://dx.doi.org/10.1137/12086755x
http://dx.doi.org/10.1137/12086755x
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb13
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb13
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb13
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb13
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb13
http://dx.doi.org/10.1109/access.2020.2988157
http://dx.doi.org/10.1109/access.2020.2988157
http://dx.doi.org/10.1109/access.2020.2988157
http://dx.doi.org/10.1137/19m1281848
http://dx.doi.org/10.1016/j.bdr.2021.100233
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb17
http://dx.doi.org/10.1016/j.compbiomed.2021.104585
http://dx.doi.org/10.1016/j.compbiomed.2021.104585
http://dx.doi.org/10.1016/j.compbiomed.2021.104585
http://dx.doi.org/10.1137/07070471x
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1109/ACCESS.2020.3029728
http://dx.doi.org/10.1109/ACCESS.2020.3029728
http://dx.doi.org/10.1109/ACCESS.2020.3029728
http://dx.doi.org/10.1016/j.neucom.2015.06.083
http://dx.doi.org/10.1016/j.neucom.2015.06.083
http://dx.doi.org/10.1016/j.neucom.2015.06.083
http://dx.doi.org/10.1080/03052150500384759
http://dx.doi.org/10.1007/s00521-021-05910-1
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1007/s10479-005-3971-7
http://dx.doi.org/10.1007/s10479-005-3971-7
http://dx.doi.org/10.1007/s10479-005-3971-7
http://dx.doi.org/10.1007/s11517-018-1874-4


Expert Systems With Applications 200 (2022) 116834S. Ahmed et al.

G

G

G

H
H

H

I

J

K

K

L

L

M

M

M

M

N

N

P

P

R

S

Ghosh, K. K., Ahmed, S., Singh, P. K., Geem, Z. W., & Sarkar, R. (2020). Improved
binary sailfish optimizer based on adaptive 𝛽-hill climbing for feature selection.
IEEE Access, 8, 83548–83560. http://dx.doi.org/10.1109/access.2020.2991543.

hosh, M., Guha, R., Sarkar, R., & Abraham, A. (2019). A wrapper-filter feature
selection technique based on ant colony optimization. Neural Computing and
Applications, 32(12), 7839–7857. http://dx.doi.org/10.1007/s00521-019-04171-3.

Ghosh, M., Kundu, T., Ghosh, D., & Sarkar, R. (2019). Feature selection for facial
emotion recognition using late hill-climbing based memetic algorithm. Multimedia
Tools and Applications, 78(18), 25753–25779. http://dx.doi.org/10.1007/s11042-
019-07811-x.

Ghosh, M., Malakar, S., Bhowmik, S., Sarkar, R., & Nasipuri, M. (2018). Feature
selection for handwritten word recognition using memetic algorithm. In Studies
in computational intelligence (pp. 103–124). Springer Singapore, http://dx.doi.org/
10.1007/978-981-10-8974-9_6.

lover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial optimization
(pp. 2093–2229). Springer.

uha, R., Ghosh, M., Mutsuddi, S., Sarkar, R., & Mirjalili, S. (2020). Embedded chaotic
whale survival algorithm for filter-wrapper feature selection. Soft Computing, 24(17),
12821–12843. http://dx.doi.org/10.1007/s00500-020-05183-1.

an, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
atamlou, A. (2013). Black hole: A new heuristic optimization approach for data clus-

tering. Information Sciences, 222, 175–184. http://dx.doi.org/10.1016/j.ins.2012.08.
023.

e, X., Cai, D., & Niyogi, P. (2006). Laplacian score for feature selection. In Advances
in neural information processing systems (pp. 507–514).

Hillis, W. (1990). Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D: Nonlinear Phenomena, 42(1–3), 228–234. http://dx.doi.org/
10.1016/0167-2789(90)90076-2.

smael, A. M., & Şengür, A. (2021). Deep learning approaches for COVID-19 detection
based on chest X-ray images. Expert Systems with Applications, 164, Article 114054.
http://dx.doi.org/10.1016/j.eswa.2020.114054.

ain, M., Singh, V., & Rani, A. (2019). A novel nature-inspired algorithm for optimiza-
tion: Squirrel search algorithm. Swarm and Evolutionary Computation, 44, 148–175.
http://dx.doi.org/10.1016/j.swevo.2018.02.013.

araboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of Global
Optimization, 39(3), 459–471. http://dx.doi.org/10.1007/s10898-007-9149-x.

Karbhari, Y., Basu, A., Geem, Z. W., Han, G.-T., & Sarkar, R. (2021). Generation of
synthetic chest X-ray images and detection of COVID-19: A deep learning based
approach. Diagnostics, 11(5), 895. http://dx.doi.org/10.3390/diagnostics11050895.

Kashan, A. H., Tavakkoli-Moghaddam, R., & Gen, M. (2019). Find-fix-finish-exploit-
analyze (F3EA) meta-heuristic algorithm: An effective algorithm with new
evolutionary operators for global optimization. Computers & Industrial Engineering,
128, 192–218. http://dx.doi.org/10.1016/j.cie.2018.12.033.

ennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
ICNN’95-international conference on neural networks, Vol. 4 (pp. 1942–1948). IEEE.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598), 671–680. http://dx.doi.org/10.1126/science.220.
4598.671.

Koza, J. (1994). Genetic programming as a means for programming computers
by natural selection. Statistics and Computing, 4(2), http://dx.doi.org/10.1007/
bf00175355.

Kundu, R., Basak, H., Singh, P. K., Ahmadian, A., Ferrara, M., & Sarkar, R. (2021). Fuzzy
rank-based fusion of CNN models using gompertz function for screening COVID-19
CT-scans. Scientific Reports, 11(1), http://dx.doi.org/10.1038/s41598-021-93658-y.

Kurtuluş, E., Yıldız, A. R., Sait, S. M., & Bureerat, S. (2020). A novel hybrid
harris hawks-simulated annealing algorithm and RBF-based metamodel for design
optimization of highway guardrails. Materials Testing, 62(3), 251–260. http://dx.
doi.org/10.3139/120.111478.

ai, C., Reinders, M. J., & Wessels, L. (2006). Random subspace method for multivariate
feature selection. Pattern Recognition Letters, 27(10), 1067–1076. http://dx.doi.org/
10.1016/j.patrec.2005.12.018.

iu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining,
Vol. 454. Springer Science & Business Media.

afarja, M. M., & Mirjalili, S. (2017). Hybrid whale optimization algorithm with
simulated annealing for feature selection. Neurocomputing, 260, 302–312. http:
//dx.doi.org/10.1016/j.neucom.2017.04.053.

afarja, M., Qasem, A., Heidari, A. A., Aljarah, I., Faris, H., & Mirjalili, S. (2019).
Efficient hybrid nature-inspired binary optimizers for feature selection. Cognitive
Computation, 12(1), 150–175. http://dx.doi.org/10.1007/s12559-019-09668-6.

Mirjalili, S. (2016). SCA: A Sine cosine algorithm for solving optimization problems.
Knowledge-Based Systems, 96, 120–133. http://dx.doi.org/10.1016/j.knosys.2015.
12.022.

irjalili, S., & Lewis, A. (2013). S-shaped versus V-shaped transfer functions for
binary particle swarm optimization. Swarm and Evolutionary Computation, 9, 1–14.
http://dx.doi.org/10.1016/j.swevo.2012.09.002.
12
Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in
Engineering Software, 95, 51–67. http://dx.doi.org/10.1016/j.advengsoft.2016.01.
008.

Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2015). Multi-verse optimizer: a nature-
inspired algorithm for global optimization. Neural Computing and Applications, 27(2),
495–513. http://dx.doi.org/10.1007/s00521-015-1870-7.

irjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in
Engineering Software, 69, 46–61. http://dx.doi.org/10.1016/j.advengsoft.2013.12.
007.

ematollahi, A. F., Rahiminejad, A., & Vahidi, B. (2019). A novel meta-heuristic
optimization method based on golden ratio in nature. Soft Computing, 24(2),
1117–1151. http://dx.doi.org/10.1007/s00500-019-03949-w.

igam, B., Nigam, A., Jain, R., Dodia, S., Arora, N., & Annappa, B. (2021). COVID-19:
Automatic detection from X-ray images by utilizing deep learning methods. Expert
Systems with Applications, 176, Article 114883. http://dx.doi.org/10.1016/j.eswa.
2021.114883.

assino, K. (2002). Biomimicry of bacterial foraging for distributed optimization and
control. IEEE Control Systems, 22(3), 52–67. http://dx.doi.org/10.1109/mcs.2002.
1004010.

aul, S., Magdon-Ismail, M., & Drineas, P. (2016). Feature selection for linear SVM
with provable guarantees. Pattern Recognition, 60, 205–214. http://dx.doi.org/10.
1016/j.patcog.2016.05.018.

Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating search methods in feature
selection. Pattern Recognition Letters, 15(11), 1119–1125. http://dx.doi.org/10.
1016/0167-8655(94)90127-9.

Rao, R., Savsani, V., & Vakharia, D. (2011). Teaching–learning-based optimiza-
tion: A novel method for constrained mechanical design optimization problems.
Computer-Aided Design, 43(3), 303–315. http://dx.doi.org/10.1016/j.cad.2010.12.
015.

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A gravitational search
algorithm. Information Sciences, 179(13), 2232–2248. http://dx.doi.org/10.1016/j.
ins.2009.03.004.

Ray, T., & Liew, K. (2003). Society and civilization: an optimization algorithm based
on the simulation of social behavior. IEEE Transactions on Evolutionary Computation,
7(4), 386–396. http://dx.doi.org/10.1109/tevc.2003.814902.

yan, C., Collins, J., & Neill, M. O. (1998). Grammatical evolution: Evolving programs
for an arbitrary language. In Lecture notes in computer science (pp. 83–96). Springer
Berlin Heidelberg, http://dx.doi.org/10.1007/bfb0055930.

aremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory
and application. Advances in Engineering Software, 105, 30–47. http://dx.doi.org/10.
1016/j.advengsoft.2017.01.004.

Sheikh, K. H., Ahmed, S., Mukhopadhyay, K., Singh, P. K., Yoon, J. H., Geem, Z.
W., & Sarkar, R. (2020). EHHM: Electrical harmony based hybrid meta-heuristic
for feature selection. IEEE Access, 8, 158125–158141. http://dx.doi.org/10.1109/
access.2020.3019809.

Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary
Computation, 12(6), 702–713. http://dx.doi.org/10.1109/tevc.2008.919004.

Talbi, E.-G. (2009). Metaheuristics: From design to implementation, Vol. 74. John Wiley
& Sons.

Tan, Y., & Zhu, Y. (2010). Fireworks algorithm for optimization. In Lecture notes in
computer science (pp. 355–364). Springer Berlin Heidelberg, http://dx.doi.org/10.
1007/978-3-642-13495-1_44.

Tripathi, R., & Reza, A. (2020). A subset selection based approach to structural
reducibility of complex networks. Physica A: Statistical Mechanics and its Applications,
540, Article 123214. http://dx.doi.org/10.1016/j.physa.2019.123214.

Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of
phase transition in a system of self-driven particles. Physical Review Letters, 75,
1226–1229. http://dx.doi.org/10.1103/PhysRevLett.75.1226, URL: https://link.aps.
org/doi/10.1103/PhysRevLett.75.1226.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Springer series
in statistics (pp. 196–202). Springer New York, http://dx.doi.org/10.1007/978-1-
4612-4380-9_16.

Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), 67–82. http://dx.doi.org/10.1109/
4235.585893.

Xue, X., Yao, M., & Cheng, R. (2011). A novel selection operator of cultural algorithm.
In Advances in Intelligent and Soft Computing (pp. 71–77). Springer Berlin Heidelberg,
http://dx.doi.org/10.1007/978-3-642-25661-5_10.

Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In Stochastic
algorithms: foundations and applications (pp. 169–178). Springer Berlin Heidelberg,
http://dx.doi.org/10.1007/978-3-642-04944-6_14.

Zhang, Y., Jin, Z., & Mirjalili, S. (2020). Generalized normal distribution optimization
and its applications in parameter extraction of photovoltaic models. Energy Conver-
sion and Management, 224, Article 113301. http://dx.doi.org/10.1016/j.enconman.
2020.113301.

Zheng, Z., Wu, X., & Srihari, R. (2004). Feature selection for text categorization on
imbalanced data. ACM SIGKDD Explorations Newsletter, 6(1), 80–89. http://dx.doi.
org/10.1145/1007730.1007741.

http://dx.doi.org/10.1109/access.2020.2991543
http://dx.doi.org/10.1007/s00521-019-04171-3
http://dx.doi.org/10.1007/s11042-019-07811-x
http://dx.doi.org/10.1007/s11042-019-07811-x
http://dx.doi.org/10.1007/s11042-019-07811-x
http://dx.doi.org/10.1007/978-981-10-8974-9_6
http://dx.doi.org/10.1007/978-981-10-8974-9_6
http://dx.doi.org/10.1007/978-981-10-8974-9_6
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb32
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb32
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb32
http://dx.doi.org/10.1007/s00500-020-05183-1
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb34
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb36
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb36
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb36
http://dx.doi.org/10.1016/0167-2789(90)90076-2
http://dx.doi.org/10.1016/0167-2789(90)90076-2
http://dx.doi.org/10.1016/0167-2789(90)90076-2
http://dx.doi.org/10.1016/j.eswa.2020.114054
http://dx.doi.org/10.1016/j.swevo.2018.02.013
http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.3390/diagnostics11050895
http://dx.doi.org/10.1016/j.cie.2018.12.033
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb43
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb43
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb43
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/bf00175355
http://dx.doi.org/10.1007/bf00175355
http://dx.doi.org/10.1007/bf00175355
http://dx.doi.org/10.1038/s41598-021-93658-y
http://dx.doi.org/10.3139/120.111478
http://dx.doi.org/10.3139/120.111478
http://dx.doi.org/10.3139/120.111478
http://dx.doi.org/10.1016/j.patrec.2005.12.018
http://dx.doi.org/10.1016/j.patrec.2005.12.018
http://dx.doi.org/10.1016/j.patrec.2005.12.018
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb49
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb49
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb49
http://dx.doi.org/10.1016/j.neucom.2017.04.053
http://dx.doi.org/10.1016/j.neucom.2017.04.053
http://dx.doi.org/10.1016/j.neucom.2017.04.053
http://dx.doi.org/10.1007/s12559-019-09668-6
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.swevo.2012.09.002
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1007/s00521-015-1870-7
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/s00500-019-03949-w
http://dx.doi.org/10.1016/j.eswa.2021.114883
http://dx.doi.org/10.1016/j.eswa.2021.114883
http://dx.doi.org/10.1016/j.eswa.2021.114883
http://dx.doi.org/10.1109/mcs.2002.1004010
http://dx.doi.org/10.1109/mcs.2002.1004010
http://dx.doi.org/10.1109/mcs.2002.1004010
http://dx.doi.org/10.1016/j.patcog.2016.05.018
http://dx.doi.org/10.1016/j.patcog.2016.05.018
http://dx.doi.org/10.1016/j.patcog.2016.05.018
http://dx.doi.org/10.1016/0167-8655(94)90127-9
http://dx.doi.org/10.1016/0167-8655(94)90127-9
http://dx.doi.org/10.1016/0167-8655(94)90127-9
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1109/tevc.2003.814902
http://dx.doi.org/10.1007/bfb0055930
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1109/access.2020.3019809
http://dx.doi.org/10.1109/access.2020.3019809
http://dx.doi.org/10.1109/access.2020.3019809
http://dx.doi.org/10.1109/tevc.2008.919004
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb69
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb69
http://refhub.elsevier.com/S0957-4174(22)00287-1/sb69
http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://dx.doi.org/10.1007/978-3-642-13495-1_44
http://dx.doi.org/10.1016/j.physa.2019.123214
http://dx.doi.org/10.1103/PhysRevLett.75.1226
https://link.aps.org/doi/10.1103/PhysRevLett.75.1226
https://link.aps.org/doi/10.1103/PhysRevLett.75.1226
https://link.aps.org/doi/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1007/978-1-4612-4380-9_16
http://dx.doi.org/10.1007/978-1-4612-4380-9_16
http://dx.doi.org/10.1007/978-1-4612-4380-9_16
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/978-3-642-25661-5_10
http://dx.doi.org/10.1007/978-3-642-04944-6_14
http://dx.doi.org/10.1016/j.enconman.2020.113301
http://dx.doi.org/10.1016/j.enconman.2020.113301
http://dx.doi.org/10.1016/j.enconman.2020.113301
http://dx.doi.org/10.1145/1007730.1007741
http://dx.doi.org/10.1145/1007730.1007741
http://dx.doi.org/10.1145/1007730.1007741

	Binary Simulated Normal Distribution Optimizer for feature selection: Theory and application in COVID-19 datasets
	Introduction
	Related work
	Motivation and contributions
	Preliminaries
	Generalized normal distribution optimizer
	Simulated annealing

	Proposed method
	Fitness function
	Transfer function
	Computational complexity

	Experiments
	Dataset details
	Parameter settings
	Result and discussion
	Comparison

	Additional testing on microarray datasets
	Testing on COVID-19 dataset
	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


