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We present here data showing that the Avr proteins HrmA and AvrPto are secreted in culture via the native
Hrp pathways from Pseudomonas syringae pathovars that produce these proteins. Moreover, their secretion is
strongly affected by the temperature and pH of the culture medium. Both HrmA and AvrPto were secreted at
their highest amounts when the temperature was between 18 and 22°C and when the culture medium was pH
6.0. In contrast, temperature did not affect the secretion of HrpZ. pH did affect HrpZ secretion, but not as
strongly as it affected the secretion of HrmA. This finding suggests that there are at least two classes of proteins
that travel the P. syringae pathway: putative secretion system accessory proteins, such as HrpZ, which are
readily secreted in culture; and effector proteins, such as HrmA and AvrPto, which apparently are delivered
inside plant cells and are detected in lower amounts in culture supernatants under the appropriate conditions.
Because HrmA was shown to be a Hrp-secreted protein, we have changed the name of hrmA to hopPsyA to
reflect that it encodes a Hrp outer protein from P. syringae pv. syringae. The functional P. syringae Hrp cluster
encoded by cosmid pHIR11 conferred upon P. fluorescens but not Escherichia coli the ability to secrete HopPsyA
in culture. The use of these optimized conditions should facilitate the identification of additional proteins
traveling the Hrp pathway and the signals that regulate this protein traffic.

The hrp and hrc genes of plant-pathogenic bacteria belong-
ing to the genera Erwinia, Pseudomonas, Ralstonia, and Xan-
thomonas encode a type III (Hrp) protein secretion system that
is required for bacterial pathogenicity in host plants by com-
patible pathogens and elicitation of the hypersensitive re-
sponse (HR) and other plant defenses in nonhost plants by
incompatible pathogens (pathogens that can cause disease on
different plants) (3). The HR is a programmed death of plant
cells at the site of pathogen invasion and is associated with
plant defense. Because this protein secretion system is re-
quired for pathogenicity, essential virulence proteins appar-
ently travel this secretion pathway. Moreover, because nonhost
plants often respond to pathogens with a functional Hrp sys-
tem by inducing the HR, some of the proteins that travel this
pathway can also act as elicitors of the defense response in-
stead of contributing to disease.

The defense responses induced by an incompatible pathogen
are at least partly due to the presence of avirulence (avr) genes
in the pathogens that encode gene products that are recog-
nized by the resistance (R) proteins present in the resistant
plant (26). Many bacterial avr genes have been isolated from
DNA libraries made from avirulent pathogens on the basis of
their ability to convert a virulent pathogen to avirulence on a
specific plant cultivar that contains the cognate R gene (13, 30).
Within the last few years, it has been shown indirectly that
many Avr proteins are delivered to the interior of the plant cell
via the Hrp protein secretion system, and recognition of these

proteins by plant R proteins occurs inside the plant cell (2, 42).
There are examples where avr genes contribute significantly to
virulence (13, 30). However, most mutants defective in specific
avr genes show no detectable decrease in virulence, indicating
either that they do not significantly contribute to disease or
that their contribution is masked by genes that encode proteins
that have similar functions. A current model predicts that Avr
proteins are actually virulence proteins that collectively con-
tribute to parasitism, but if the plant has coevolved the appro-
priate R gene product to recognize a specific virulence protein
then that protein acts as an Avr protein (2, 26, 30).

The hrp and hrc genes of Pseudomonas syringae are clustered
in a 25-kb region within the chromosome. A functional cluster
of these genes from P. syringae pv. syringae 61 has been cloned
onto cosmid pHIR11, and this cosmid enables nonpathogenic
bacteria such as Escherichia coli and P. fluorescens to elicit an
HR on tobacco (24). pHIR11 is capable of eliciting an HR in
tobacco (and certain other plants) because it contains a func-
tional set of hrp and hrc genes and at least one avr gene, hrmA
(1). hrmA was not isolated as an avr gene in a screen for
avirulence; rather, it was discovered because it flanks the hrp
cluster carried on pHIR11 and is strictly required for a
pHIR11-dependent HR on tobacco (21, 23). hrmA shares char-
acteristics with classically isolated avr genes in that hrmA is
sporadically present in different P. syringae pathovars, and an
avr gene, avrPphE, resides in P. syringae pv. phaseolicola race 4
strain 1302A in the same location as hrmA in P. syringae pv.
syringae (1, 31). Transient expression of hrmA in tobacco sus-
pension cells is lethal to these cells in a manner consistent with
HrmA traveling the Hrp pathway and having avirulence activ-
ity inside plant cells (4).

The Avr proteins AvrB and AvrPto can apparently be de-
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livered into plant cells by the pHIR11 delivery system, as in-
dicated by their dependence on a functional Hrp secretion
system (16, 33). Moreover, the avirulence activity occurs inside
plant cells when either transiently or transgenically expressed
in plants containing the corresponding R genes (16, 40, 41).
Furthermore, AvrPto has been shown to directly interact in the
yeast two-hybrid system with its cognate R protein, Pto (40,
41).

Even though there is mounting indirect evidence that many
Avr proteins are apparently delivered by the P. syringae Hrp
secretion system to the interior of plant cells, none of these
proteins have been shown to be secreted by P. syringae patho-
vars or by the heterologous P. syringae Hrp secretion system
encoded by pHIR11. Similarly, AvrPphB was shown not to be
secreted in culture by P. syringae pv. phaseolicola (35). How-
ever, both AvrB and AvrPto have been shown to be secreted in
culture, using a Hrp secretion system from Erwinia chrysan-
themi EC16 encoded by a cosmid in E. coli (18). The fact that
an E. chrysanthemi Hrp system was capable of secreting these
proteins in culture demonstrated that they are secreted via the
Hrp secretion system and suggested that the E. chrysanthemi
Hrp system was somehow more promiscuous in its secretion
properties than the P. syringae Hrp system carried by pHIR11.

In this report, we demonstrate that HrmA and AvrPto can
be detected in culture supernatants from different P. syringae
pathovars, and pH and temperature were determined to be
important factors for the Hrp-dependent secretion of these
proteins. In addition, we detect secretion of HrmA from P.
fluorescens(pHIR11) but not from E. coli(pHIR11), indicating
that the heterologous Hrp system encoded by pHIR11 is suf-
ficient to secrete Avr proteins in culture. Finally, we observed
that P. syringae pv. glycinea also secretes heterologously ex-
pressed AvrPto while failing to secrete its native AvrB, dem-
onstrating that Avr proteins differ in the ability to be secreted
in culture. As described in Discussion, the name of HrmA has
been changed to HopPsyA to reflect that this protein is a type
III-secreted protein.

MATERIALS AND METHODS

Bacterial strains, plasmids, and media. Bacterial strains and plasmids used in
this work are listed in Table 1. E. coli strains were grown at 37°C in either LM
or Terrific broth (39) unless otherwise noted. P. syringae pv. syringae 61, P.
syringae pv. tomato DC3000, and P. syringae pv. glycinea race 0 were grown in
King’s B broth at 30°C (28). For detection of the in vitro Hrp secretion of HrmA,
AvrPto, AvrB, and HrpZ, P. syringae pathovars, P. fluorescens(pHIR11), and E.
coli MC4100(pHIR11) were grown in hrp-derepressing fructose minimal medium
at several different temperatures ranging from 22 to 28°C (25). Antibiotics were
used at concentration of 100 (ampicillin), 20 (chloramphenicol), 10 (gentamicin),
50 (kanamycin), 100 (rifampin), 50 (spectinomycin), and 20 (tetracycline) mg/ml.
Standard procedures (39) were used for DNA manipulations.

To generate anti-HrmA and anti-AvrPto antibodies. HrmA-Flag was purified
from E. coli DH5a by affinity chromatography as described by Gopalan et al.
(16). Fractions containing HrmA-Flag were pooled and concentrated in Cen-
triprep-10 and Centricon-10 ultrafiltrations units (Amicon, Inc., Beverly, Mass.).
N-terminally His6-tagged AvrPto was prepared from E. coli DH5a(pQE31::
avrPto) essentially as described elsewhere (1). The samples were injected into
different rabbits to generate anti-HrmA and anti-AvrPto polyclonal antibodies at
the University of Illinois Immunological Resource Center. The crude antisera
raised to both proteins were separately delipified and preabsorbed against E. coli
DH5a extracts as described by Ham et al. (18).

Preparation of protein samples from cell-bound and supernatant fractions.
Pseudomonas spp. were grown overnight on King’s B plates at 30°C. Cells were
washed and resuspended in hrp-derepressing fructose minimal medium to an
initial optical density at 600 nm (OD600) of 0.15 and grown routinely at 22°C,
unless otherwise noted, in a rotary shaking incubator at 220 rpm to an OD600 of
0.3 (25). Aliquots (80 ml) of the cultures were separated into cell-bound and
supernatant fractions by centrifugation at 4°C. When protein samples were
prepared from E. coli MC4100(pHIR11), bacterial cells were grown overnight on
LM plates at 37°C, washed, resuspended in hrp-derepressing fructose minimal
medium to an initial OD600 of 0.4, and cultured at 22°C (unless otherwise noted)
in a rotary shaking incubator at 220 rpm to an OD600 of 0.500. When samples
were prepared from P. fluorescens(pHIR11) cells, cultures were routinely inoc-
ulated in hrp-derepressing medium such that the initial OD600 was 0.3, and the
cultures were harvested at an OD600 of 0.5. The cell-bound and supernatant
fractions were separated by centrifugation at 4°C, and protein samples were
prepared as described by Ham et al. (18). The total protein present in the
cell-bound fractions was determined by the method of Bradford (8).

Protein analyses to detect in culture type III secretion. Approximately 100 mg
of protein from each cell-bound fraction was loaded onto sodium dodecyl sulfate
(SDS)-polyacrylamide gels. Based on the amount of total protein present in the
cell-bound fraction, the amount of supernatant fractions that was loaded onto
the gels was adjusted to reflect the total protein in each culture. Proteins were
separated by SDS-polyacrylamide gel electrophoresis (PAGE) using standard
procedures (39) and then transferred to Immobilon-P polyvinylidene difluoride
(PVDF) membranes (Millipore Co., Bedford, Mass.). HrmA, AvrPto, AvrB,

TABLE 1. Strains and plasmids used

Designation Relevant characteristics Reference or source

Strains
Escherichia coli

DH5a supE44 DlacU169 (f80 lacZDM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1
Nalr

19; Life Technologies (Grand Island,
N.Y.)

MC4100 F9 araD139 D(argF-lacZYA)U169 rpsL 150 relA1 flb-5301 ptsF25 deoC1 32

Pseudomonas syringae
pv. syringae 61 Wild type, Nalr 24
pv. syringae 61-2089 hrcC::TnphoA 23
pv. tomato DC3000 Wild type, Rifr 12
pv. glycinea race 0 Wild type N. T. Keen, University of California,

Riverside
P. fluorescens 55 Wild type, Nalr 24

Plasmids
pHIR11 pLAFR3 derivative carrying P. syringae pv. syringae 61 hrp/hrc cluster,

Tcr
24

pCPP2318 pCPP30 derivative carrying blaM lacking signal peptide sequences, Tcr 10
pCPP2156 pCPP19 derivative carrying E. chrysanthemi hrp/hrc cluster, Spr 18
pCPP2368 pCPP2156::Tn5Cm that has HR2 phenotype, Spr Cmr 18
pCPP3026 pML123 carrying avrPto-Flag, Gmr David Bauer, Cornell University
pCPP2089 pHIR11 derivative containing TnphoA insert into hrcC, Tcr Kmr 23
pCPP2308 pML122 carrying hrpL from P. syringae pv. syringae 61, Gmr David Bauer
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HrpZ, and b-lactamase were detected with specific polyclonal antibodies raised
to each protein, followed by goat anti-rabbit immunoglobulin G-alkaline phos-
phate conjugate (Sigma Chemical Co., St. Louis, Mo.). Membrane-bound sec-
ondary antibodies were visualized by chemiluminescence using a Western-Light
chemiluminescence detection system (Tropix, Bedford, Mass.) and X-Omat X-
ray film (Eastman Kodak, Rochester, N.Y.). AvrB and HrpZ were detected by
using previously obtained polyclonal antibodies raised against AvrB-Flag and
HrpZ, respectively (18, 20). Anti-b-lactamase polyclonal antibodies used in this
study were purchased from 5 Prime33 Prime Inc. (Boulder, Colo.).

RESULTS

P. syringae pv. syringae 61 secretes HrmA in culture via the
Hrp (type III) protein secretion system. Because the P. syringae
Avr proteins AvrB and AvrPto were found to be secreted by
the type III secretion system encoded by the functional E.
chrysanthemi hrp cluster carried on cosmid pCPP2156 ex-
pressed in E. coli (18), we sought to detect the secretion in
culture of the Avr protein HrmA directly via the native Hrp
system carried in P. syringae pv. syringae 61. P. syringae pv.
syringae cultures grown in hrp-derepressing fructose minimal
medium at 25°C were separated into cell-bound and superna-
tant fractions by centrifugation. Proteins present in the super-
natant fractions were concentrated by trichloroacetic acid pre-
cipitation, and the cell-bound and supernatant samples were
resolved by SDS-PAGE and analyzed by immunoblotting using
anti-HrmA antibodies. A weak HrmA signal was detected in
supernatant fractions from wild-type P. syringae pv. syringae 61
(Fig. 1). Importantly, HrmA was not detected in supernatant
fractions from P. syringae pv. syringae 61-2089, which is defec-
tive in Hrp secretion, indicating that the HrmA signal in the
supernatant was due specifically to type III protein secretion
(Fig. 1). Since the level of HrmA secretion in culture was
relatively low, we included a second control, to distinguish type
III secretion from cell lysis. Both strains contained pCPP2318,
which encodes the mature b-lactamase lacking its N-terminal

signal peptide and provides a marker for cell lysis. The samples
analyzed for HrmA secretion were also subjected to immuno-
blot analysis with anti-b-lactamase antibodies. b-Lactamase
was detected only in the cell-bound fractions of these samples,
clearly showing that cell lysis did not occur at a significant level
(Fig. 1).

Secretion of HrmA by P. syringae pv. syringae is strongly
affected by the growth temperature and pH of the culture
medium. Secretion in culture of HrmA from wild-type P. sy-
ringae pv. syringae was detectable but weak. Therefore, we
wanted to determine whether we could increase the amount of
HrmA secreted in culture by subtly altering the growth condi-
tions. Previously, it was shown that transcription of P. syringae
hrp genes is sensitive to many different environmental factors,
including the temperature and pH of the growth medium (25,
36, 47). To determine if temperature was an important fac-
tor in HrmA secretion, we grew P. syringae pv. syringae
61(pCPP2318) in hrp-derepressing medium at several different
temperatures and assessed the distribution of HrmA between
cell-bound and supernatant fractions. Each culture was grown
to a final OD600 of 0.3 and separated by centrifugation into
cell-bound and supernatant fractions. Total protein concentra-
tions were determined by the method of Bradford (8) to be
similar for all of the cell-bound fractions (data not shown). The
cell-bound and supernatant samples were resolved by SDS-
PAGE and subjected to immunoblot analysis with anti-HrmA
antibodies or anti-b-lactamase antibodies, using the proce-
dures described above. The temperature under which the cul-
ture was grown significantly affected the amount of HrmA
detected in the supernatant. The Hrp secretion of HrmA from
P. syringae pv. syringae was highest at 18 and 22°C (Fig. 2). At
25 and 30°C, the amounts of HrmA in the supernatant were
substantially lower than the amounts detected at 18 and 22°C
(Fig. 2). HrmA was found only in the cell-bound fractions from
cultures of a P. syringae pv. syringae 61 mutant defective in type
III secretion, confirming that the secreted HrmA was depen-
dent on a functional Hrp secretion system (data not shown).
The differences in the amount of HrmA in the supernatant
could not be due to different amounts of cell lysis because the
cytoplasmic marker b-lactamase remained entirely in the cell-
bound fraction for each temperature (Fig. 2). Interestingly, the
total amounts of HrmA produced at the different temperatures

FIG. 1. Distribution of HrmA and b-lactamase in cultures of P. syringae pv.
syringae 61(pCPP2318) or hrp mutant P. syringae pv. syringae 61-
2089(pCPP2318). Bacterial cultures were grown at 25°C in hrp-derepressing
medium and separated into cell-bound (C) and supernatant (S) fractions. The
cell-bound fractions were concentrated 13.4-fold and the supernatant fractions
were concentrated 100-fold relative to the initial culture volumes. The samples
were subjected to SDS-PAGE and immunoblot analysis, and HrmA and b-lac-
tamase were detected with either anti-HrmA or anti-b-lactamase antibodies
followed by secondary antibodies conjugated to alkaline phosphatase as de-
scribed in Materials and Methods. Pss wild-type, P. syringae pv. syringae
61(pCPP2318); Pss hrcC, P. syringae pv. syringae 61-2089(pCPP2318). The image
of the immunoblot was captured using the Bio-Rad Gel Doc 1000 UV fluores-
cent gel documentation system with the accompanying Multi-Analyst PC soft-
ware. For figure construction, the image was manipulated by using Microsoft
PowerPoint 97 and transferred to Adobe Photoshop 4.0 to meet the publisher’s
specifications.

FIG. 2. The secretion in culture of HrmA (HopPsyA) is affected by temper-
ature, whereas the secretion of HrpZ is not. P. syringae pv. syringae
61(pCPP2318) cultures were grown in hrp-derepressing medium at the temper-
atures indicated. Bacterial cultures were separated into cell-bound (C) and
supernatant (S) fractions by centrifugation, and the supernatant fractions were
adjusted to be 7.5 times more concentrated than the cell-bound fractions. After
the samples were separated by SDS-PAGE and transferred to PVDF mem-
branes, HrmA, HrpZ, and b-lactamase were detected by immunoblotting using
anti-HrmA, anti-HrpZ, and anti-b-lactamase antibodies, respectively, followed
by secondary antibodies conjugated to alkaline phosphatase. The image of the
immunoblot was captured by using the Bio-Rad Gel Doc 1000 UV fluorescent
gel documentation system with the accompanying Multi-Analyst PC software.
For figure construction, the image was manipulated by using Microsoft Power-
Point 97 and transferred to Adobe Photoshop 4.0 to meet the publisher’s spec-
ifications.
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appeared to be approximately equal. Therefore, the enhance-
ment of HrmA secretion was not due to greater levels of
HrmA production.

We also assessed whether the HrpZ harpin was found in the
supernatant fraction of these samples to determine if temper-
ature was an important factor in HrpZ secretion. HrpZ was the
first protein determined to be secreted by the P. syringae Hrp
system, is readily secreted in culture, and appears to be tar-
geted to the plant cell wall (1, 9, 20, 22). Even at temperatures
that resulted in less HrmA secreted, HrpZ was secreted in high
amounts in culture, indicating that the temperature range used
here did not affect the Hrp secretion of HrpZ (Fig. 2).

To determine the effect of pH of the culture medium on the
secretion of HrmA, P. syringae pv. syringae 61 was grown in
hrp-derepressing fructose minimal medium that was adjusted
to pH 5.0, 5.5, 6.0, 6.5, and 7.0. P. syringae pv. syringae 61
cultures were grown in these conditions at the optimized tem-
perature for HrmA secretion of 22°C to an OD600 of 0.3.
Cell-bound and supernatant fractions were isolated by centrif-
ugation and analyzed by SDS-PAGE and immunoblotting with
anti-HrmA and anti-b-lactamase antibodies. P. syringae pv.
syringae 61 secretion of HrmA was highest at pH 6.0. At pH
5.5 and 6.5, significantly less HrmA was secreted, and there was
no detectable secretion at pH 5.0 and 7.0 (Fig. 3). HrmA was
found only in the cell fractions of cultures from a P. syringae pv.
syringae 61 mutant defective in type III secretion, indicating
that the HrmA found in the supernatant fraction was due to a
functional type III secretion system (data not shown). As ob-
served with temperature, the increased secretion of HrmA via
the type III protein secretion system at pH 6.0 was apparently
not due to increased production of HrmA because all of the
cell-bound fractions have approximately equal amounts of
HrmA (Fig. 3). pH also affected the secretion in culture of
HrpZ, but not to the same extent that different pH values
affected the Hrp secretion of HrmA. For example, both HrmA
and HrpZ were found in low amounts at pH 5.0 and 7.0.
However, a greater percentage of the total HrpZ than of the
total HrmA produced was found in the supernatant fractions
from cultures grown at pH 5.5 and 6.5 (Fig. 3).

We also investigated whether secretion of HrmA could be
enhanced by other conditions or factors, but we were unable to
find additional conditions. For example, the hrpL gene encodes
an alternate sigma factor required for transcription of many
hrc and hrp genes (45, 46). We tested whether overexpression
of hrpL would lead to increased production and secretion of

HrmA by P. syringae pv. syringae 61. In experiments similar to
those described above, we grew cultures of P. syringae pv.
syringae and P. syringae pv. syringae with hrpL in trans carried
on the construct pCPP2308 in hrp-derepressing media. Immu-
noblot analysis on fractions from these cultures showed the
same levels of HrmA in both the cell-bound and supernatant
fractions, indicating that hrpL in trans did not measurably
affect HrmA secretion (data not shown).

Because HrmA was found conclusively to be a protein that
traveled the Hrp pathway, the name of the hrmA gene was
changed to hopPsyA to indicate that it encodes a protein that
is secreted by the Hrp protein secretion system (see Discus-
sion).

P. syringae pv. tomato DC3000 secretes AvrPto via the Hrp
system in a manner that is affected by temperature and pH.
The ability to detect the secretion in culture of HopPsyA
(HrmA) by P. syringae pv. syringae led us to investigate if we
could detect similar secretion of other Avr proteins from their
native P. syringae pathovars. We chose to determine if the Avr
protein AvrPto was secreted from P. syringae pv. tomato be-
cause there is much indirect evidence that AvrPto is delivered
into plant cells by the Hrp secretion system. We grew P. syrin-
gae pv. tomato DC3000(pCPP2318) in hrp-derepressing me-
dium at temperatures of 20 and 30°C and isolated cell-bound
and supernatant fractions from these cultures. Immunoblot
analysis of these fractions with anti-AvrPto antibodies showed
that AvrPto was secreted at 20°C but not at 30°C, while b-lac-
tamase remained in the cell-bound fraction (Fig. 4). Therefore,
the secretion of AvrPto, like that of HopPsyA, is enhanced at
temperatures below 22°C. AvrPto was not found in the super-
natant fractions of P. syringae pv. tomato mutants defective in
type III secretion, indicating that differential secretion of
AvrPto was type III dependent (data not shown). In contrast to
HopPsyA, AvrPto was not found in high amounts at 30°C in
either the cell-bound or supernatant fractions of P. syringae pv.
tomato.

Since pH was an important factor for the type III secretion
of HopPsyA, we tested whether pH had an effect on the type
III secretion of AvrPto. We grew P. syringae pv. tomato
DC3000(pCPP2318) in hrp-derepressing media that was ad-
justed to pH 6.0 or 7.0. Cell-bound and supernatant fractions
were isolated as described above, and immunoblot analysis of
these samples with anti-AvrPto antibodies showed that AvrPto

FIG. 3. The pH of the growth medium affects the secretion in culture of
HrmA (HopPsyA) and HrpZ via the Hrp secretion system. P. syringae pv. syrin-
gae 61(pCPP2318) cultures were grown at 22°C in hrp-derepressing media dif-
fering only in the pH of the medium. Bacterial cultures were separated into
cell-bound (C) and supernatant (S) fractions by centrifugation, and proteins were
separated by SDS-PAGE. Immunoblot analysis was carried out as described in
Materials and Methods, using anti-HrmA, anti-HrpZ, or anti-b-lactamase anti-
bodies followed by secondary antibodies conjugated to alkaline phosphatase. The
image of the immunoblot was captured by using the Bio-Rad Gel Doc 1000 UV
fluorescent gel documentation system with the accompanying Multi-Analyst PC
software. For figure construction, the image was manipulated by using Microsoft
PowerPoint 97 and transferred to Adobe Photoshop 4.0 to meet the publisher’s
specifications.

FIG. 4. AvrPto is secreted in culture from P. syringae pv. tomato DC3000 via
the Hrp secretion system at 20°C but not at 30°C. P. syringae pv. tomato
DC3000(pCPP2318) cultures were grown in hrp-derepressing medium at 20 and
30°C. The supernatant (S) and cell-bound (C) fractions were isolated as before,
separated by SDS-PAGE, and analyzed by immunoblotting with anti-AvrPto or
anti-b-lactamase antibodies. The preparations of the protein samples resulted in
supernatant fractions that were concentrated 7.5 times more than the cell-bound
fractions. The image of the immunoblot was captured by using the Bio-Rad Gel
Doc 1000 UV fluorescent gel documentation system with the accompanying
Multi-Analyst PC software. For figure construction, the image was manipulated
by using Microsoft PowerPoint 97 and transferred to Adobe Photoshop 4.0 to
meet the publisher’s specifications.
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was secreted at pH 6.0 but not pH 7.0 (Fig. 5). In both samples,
b-lactamase remained in the cell-bound fraction, indicating
that cell lysis did not occur at a significant level. Moreover, the
secretion of AvrPto at pH 6.0 was dependent on type III
secretion because AvrPto was not secreted from a P. syringae
pv. tomato mutant defective in type III secretion (data not
shown). Therefore, as observed for HopPsyA secretion from P.
syringae pv. syringae, the type III secretion of AvrPto from P.
syringae pv. tomato was enhanced at pH 6.0. AvrPto was pro-
duced at pH 7.0 in amounts approximately equal to those
produced at pH 6.0. Therefore, the effect of pH on AvrPto
secretion is not due to the regulation of avrPto at the transcrip-
tional level.

Secretion of AvrB from P. syringae pv. glycinea cannot be
detected in culture, even when heterologously expressed
AvrPto is secreted. Another Avr protein, which based on indi-
rect evidence appears to be translocated into plant cells, is the
Avr protein AvrB. Recently, AvrB was found to be secreted in
culture by the E. chrysanthemi Hrp system expressed in E. coli
(18). However, AvrB has not been reported to be secreted
from its native P. syringae pv. glycinea Hrp system or by P.
fluorescens(pHIR11) (16). To determine if AvrB could be de-
tected in P. syringae pv. glycinea culture supernatants, we grew
P. syringae pv. glycinea race 0(pCPP2318) cultures in the op-
timal conditions described above and prepared the cell-bound
and supernatant fractions in the same manner as used in the
experiments with HopPsyA and AvrPto. The cell-bound and
supernatant fractions were separated by SDS-PAGE and ana-
lyzed by immunoblotting with anti-AvrB antibodies. We were
unable to detect any AvrB secreted in culture in the identical
conditions that were sufficient to promote HopPsyA and
AvrPto secretion (Fig. 6A). To determine if the failure to
detect the type III secretion of AvrB in culture was due to a
difference with the native Hrp system present in P. syringae pv.
glycinea or if it was due directly to the secretion characteristics
of the AvrB protein, we electroporated pCPP3026, which car-
ries avrPto, into P. syringae pv. glycinea race 0. P. syringae pv.
glycinea(pCPP3026, pCPP2318) cultures were grown as before
and separated into cell-bound and supernatant fractions. Im-
munoblot analysis of these cultures detected AvtPto in the
supernatant fractions of P. syringae pv. glycinea, while b-lacta-
mase and AvrB remained in the cell-bound fraction (Fig. 6B).
Therefore, the lack of AvrB in the supernatant fractions of P.
syringae pv. glycinea cultures is not due to a difference in the

Hrp secretion system but rather is apparently due to specific
secretion properties of AvrB.

P. fluorescens(pHIR11) secretes HopPsyA (HrmA) in culture
in a Hrp-dependent manner, but E. coli(pHIR11) cannot se-
crete HrmA in detectable amounts. Previously it was reported
that E. coli carrying cosmid pHIR11 was unable to secrete
detectable amounts of AvrPto or HopPsyA in culture media (4,
18). Since we determined conditions and procedures that al-
lowed for the detection of type III-secretion of HopPsyA in
culture media, we checked if these same conditions would
allow for the detection of HopPsyA secreted by bacteria car-
rying pHIR11. P. fluorescens 55(pHIR11) was grown in condi-
tions similar to those used for the P. syringae secretion exper-
iments described above. Immunoblot analysis with anti-
HopPsyA antibodies revealed that HopPsyA was secreted in
culture by P. fluorescens(pHIR11), while a pHIR11 derivative
that carries a mutation in the hrcC gene and is defective in type
III secretion, pCPP2089, did not secrete HopPsyA in culture

FIG. 5. AvrPto is secreted in culture from P. syringae pv. tomato DC3000 at
pH 6.0 but not at pH 7.0. P. syringae pv. tomato DC3000(pCPP2318) cultures
were grown at 20°C in hrp-derepressing medium adjusted to either pH 6.0 or pH
7.0. Isolated cell-bound (C) and supernatant (S) fractions were separated by
SDS-PAGE and analyzed by immunoblotting using anti-AvrPto or anti-b-lacta-
mase antibodies. Mature b-lactamase encoded by pCPP2318 was included as a
control for cell lysis. The image of the immunoblot was captured by using the
Bio-Rad Gel Doc 1000 UV fluorescent gel documentation system with the
accompanying Multi-Analyst PC software. For figure construction, the image was
manipulated by using Microsoft PowerPoint 97 and transferred to Adobe Pho-
toshop 4.0 to meet the publisher’s specifications.

FIG. 6. Native AvrB cannot be detected in culture supernatants from P.
syringae pv. glycinea race 0, even though heterologously expressed AvrPto is
secreted. (A) P. syringae pv. glycinea (Psg) race 0(pCPP2318) was grown at 20°C
in hrp-derepressing medium and separated into cell-bound (C) and supernatant
(S) fractions. The fractions were separated by SDS-PAGE, transferred to PVDF
membranes, and analyzed by immunoblotting using either anti-AvrPto or anti-
b-lactamase antibodies. (B) P. syringae pv. glycinea race 0(pCPP2318,
pCPP3026) was grown at 20°C in hrp-derepressing medium and separated into
cell-bound (C) and supernatant (S) fractions. pCPP3026 encodes AvrPto from P.
syringae pv. tomato DC3000. After separation of proteins by SDS-PAGE, immu-
noblot analysis was carried out with anti-AvrB, anti-AvrPto, or anti-b-lactamase
antibodies. The image of the immunoblot was captured by using the Bio-Rad Gel
Doc 1000 UV fluorescent gel documentation system with the accompanying
Multi-Analyst PC software. For figure construction, the image was manipulated
by using Microsoft PowerPoint 97 and transferred to Adobe Photoshop 4.0 to
meet the publisher’s specifications.
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(Fig. 7A). These samples were analyzed on Coomassie blue-
stained gels after SDS-PAGE; this analysis did not detect many
protein bands in the supernatant fraction, indicating that cell
lysis did not occur at a significant level (data not shown).
Interestingly, in contrast to the pattern of HopPsyA secretion
from P. syringae, most of the HopPsyA is found in the super-
natant fraction (Fig. 2 and 7). This pattern of HopPsyA secre-
tion has been observed repeatedly. This may suggest that the
native type III secretion system present in P. syringae has a
mechanism to retain some of the HopPsyA in the cell-bound
fraction, while the pHIR11 system may lack this mechanism
and secrete most of the HopPsyA. Because there are reports of
E. coli(pHIR11) being unable to secrete either HopPsyA or
AvrPto in culture, we wanted to determine if HopPsyA could
be secreted from E. coli(pHIR11) under the optimal condi-
tions determined above (4, 18). Using the same conditions as

employed in the P. fluorescens(pHIR11) secretion experiments,
we tested whether E. coli MC4100(pHIR11) could secrete
HopPsyA. Cell-bound and supernatant fractions were analyzed
on immunoblots with anti-HopPsyA antibodies. HopPsyA was
not detected in supernatant fractions, indicating that detect-
able levels of HopPsyA are not secreted in culture from the
heterologous P. syringae pv. syringae type III secretion system
expressed in E. coli (Fig. 7B). Thus, P. fluorescens carrying
pHIR11 did secrete detectable amounts of HopPsyA in cul-
ture, while E. coli carrying pHIR11 did not.

DISCUSSION

We report here conditions that allow the secretion in culture
of the Avr proteins HopPsyA (HrmA) and AvrPto via their
native Hrp (type III) protein secretion systems from the P.
syringae pathovars that normally produce these proteins. We
chose to study the secretion properties of these Avr proteins,
along with the Avr protein AvrB, because they were among the
first Avr proteins from P. syringae indirectly shown to be active
inside plant cells. AvrPto and AvrB were previously shown to
be secreted in culture, but via the E. chrysanthemi Hrp system
encoded by a cosmid expressed in E. coli (18). The Erwinia
amylovora DspA (DspE) protein had been shown previously to
be secreted directly from the pathogen instead of a heterolo-
gous Hrp system (6, 15).

The P. syringae Hrp system appears to secrete at least two
classes of proteins. One class consists of proteins that are
either components of the extracellular secretion apparatus or
may help in the deployment of the apparatus. Examples of
these helper proteins are HrpA, which is the main protein
component of a required pilus (37), and possibly HrpZ and
HrpW (1, 9, 20), both of which probably are targeted to the
plant cell wall. These proteins are readily secreted in culture
via the Hrp pathway. The proteins of the other class are the
actual effector proteins delivered by the Hrp system and con-
sist of Avr proteins such as HopPsyA, AvrB, AvrPto, and
probably other proteins that are not recognized by the R gene
encoded antiparasite surveillance systems present in plants.
Based on indirect evidence, many of these proteins are deliv-
ered directly into plant cells, probably upon contact. The se-
cretion of the effector protein class appears to be more regu-
lated than the secretion of the helper protein class. For
example, HrpZ, HrpW, and HrpA can be detected easily in
culture supernatant fractions separated on SDS-polyacryl-
amide gels stained with Coomassie blue (48). We were suc-
cessful in finding conditions that allowed for the detection of
HopPsyA and AvrPto in culture supernatants by using immu-
noblot analysis, but these proteins were not secreted at a level
high enough to be observed on Coomassie blue-stained gels.

The fact that HrpZ is strongly secreted at temperatures that
permit the secretion of only a low amount of HopPsyA and
AvrPto suggests that these proteins are secreted differently by
the Hrp secretion system. Temperature and pH may reflect
actual cues for the secretion of these proteins that are sensed
by the bacterium in the apoplast, or they may be conditions
that inadvertently trigger the sensor proteins to release type
III-secreted proteins. In the Yersinia type III system, virulence
proteins (i.e., Yops [Yersinia outer proteins]) are secreted at
37°C in media lacking calcium. For many years, this so-called
low-calcium response was thought to be a specific regulatory
response and many genes that were implicated in this were
designated lcr genes (5, 34). It now appears that many of these
responses may be partly artifactual and that the low-calcium
response may actually be due to artificially activating the sen-
sors that would normally activate secretion upon contact with

FIG. 7. HrmA (HopPsyA) is secreted in culture from P. fluorescens
55(pHIR11) via the Hrp pathway but not from E. coli MC4100(pHIR11). (A) P.
fluorescens (Pf) 55 carrying either a functional hrp cluster from P. syringae pv.
syringae (pHIR11) or a defective P. syringae pv. syringae hrp cluster (pCPP2089)
was grown in hrp-derepressing medium at 22°C. Cell-bound (C) and supernatant
(S) fractions were separated by SDS-PAGE and analyzed on immunoblots with
anti-HrmA antibodies. (B) E. coli (Ec) MC4100 carrying either pHIR11 or
pCPP2089 was grown at 25°C in hrp-derepressing medium and separated into
cell-bound (C) and supernatant (S) fractions. After separation of the fractions by
SDS-PAGE, the presence of HrmA from each fraction was determined by
immunoblot analysis with anti-HrmA antibodies. The image of the immunoblot
was captured by using the Bio-Rad Gel Doc 1000 UV fluorescent gel documen-
tation system with the accompanying Multi-Analyst PC software. For figure
construction, the image was manipulated by using Microsoft PowerPoint 97 and
transferred to Adobe Photoshop 4.0 to meet the publisher’s specifications.
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the eucaryotic cell (11, 38). It is premature to conclude that the
effects of temperature and pH on the secretion of HopPsyA
and AvrPto from P. syringae reflect a true regulatory response
or if these conditions somehow artificially induce protein se-
cretion. However, the temperatures these pathogens would
encounter in nature are consistent with the low-temperature
enhancement described in this report. Moreover, Agrobacte-
rium has been shown to increase the production of a pilus
required for its type IV secretion system in response to similar
temperatures (14). Furthermore, the pH values that allowed
for the highest amount of HrpZ, HopPsyA, and AvrPto secre-
tion are within the estimated range of the pH of the apoplast
of plant tissues (17).

E. coli carrying pHIR11 was unable to secrete detectable
amounts of HopPsyA to the supernatant fraction, consistent
with another published report (4). However, P. fluore-
scens(pHIR11) strongly secreted HopPsyA to the supernatant
fraction. A possible explanation for this is that the Hrp secre-
tion system from P. syringae is expressed better in another
pseudomonad rather than an enterobacterium such as E. coli.
This result may help in the interpretation of data from another
recent paper. Ham et al. (18) found that AvrPto was secreted
from E. coli carrying pCPP2156, which encodes the Hrp system
from E. chrysanthemi, but not from E. coli(pHIR11). The data
suggested that the E. chrysanthemi Hrp system may be inher-
ently more promiscuous in its secretion properties than the P.
syringae Hrp system encoded by pHIR11, possibly reflecting a
difference in the pathogenic lifestyles of these contrasting
pathogens.

A new designation for effector proteins that travel the Hrp
pathway should now be helpful because the Avr nomenclature
is not applicable to secreted proteins that are not recognized by
an R gene product in a tester plant’s antiparasite surveillance
system. HopPsyA was originally named HrmA because it was
initially thought to be a regulator that modulated the HR (21).
This name is no longer meaningful because HopPsyA does not
appear to be a regulatory protein. We now know that HopPsyA
is a protein that travels the Hrp pathway of P. syringae. In the
prototypical type III system of Yersinia spp., proteins that
travel the ysc-encoded type III apparatus are named Yops. We
have proposed the adoption of an analogous nomenclatural
system using a similar prefix: Hop (Hrp-dependent outer pro-
tein) (3). Thus, it is intended to be a prefix that could include
proteins from other bacterial plant pathogens, which is consis-
tent with the apparent mobility and functional interchangeabil-
ity of avr-like genes among plant pathogens in different genera
(7, 18, 27). To identify which pathogen a Hop is from, we have
proposed adopting the system that Vivian and Mansfield pro-
posed for avr genes, in which a suffix provides the first initial of
the genus name and the first two initials of the pathovar name
for the source bacterium (43). Using the above naming sys-
tems, we have renamed the hrmA gene as hopPsyA to identify
it as a gene that encodes an Hrp-dependent outer protein that
travels the Hrp pathway of P. syringae pv. syringae.

Based on the apparent abundance of avr genes that can be
identified in single strains of plant pathogens on the basis of
their interaction with R genes in differential cultivars of host or
in nonhost plant species, we can expect that there are many
Hop proteins that have yet to be identified (29, 30, 44). Thus,
the identification of conditions that optimize the secretion of
Hops will likely help in the identification of these cryptic Hops
and will be important in determining how these proteins col-
lectively interact with host plants to enable plant pathogenicity.
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