
GigaScience, 2022, 11, 1–15

DOI: 10.1093/gigascience/giac080

RESEARCH

Association mapping across a multitude of traits
collected in diverse environments in maize
Ravi V. Mural 1,2, Guangchao Sun 1,2, Marcin Grzybowski 1,2, Michael C. Tross 1,2, Hongyu Jin 1,2, Christine Smith 1,

Linsey Newton 3, Carson M. Andorf 4,5, Margaret R. Woodhouse 4, Addie M. Thompson 3, Brandi Sigmon 6 and

James C. Schnable 1,2,*

1Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
2Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
3Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
4USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50010, USA
5Department of Computer Science, Iowa State University, Ames, IA 50011, USA
6Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
∗Correspondence address. James C. Schnable, Beadle Center E207, Lincoln, NE 68583-0660, USA. E-mail: schnable@unl.edu

Abstract

Classical genetic studies have identified many cases of pleiotropy where mutations in individual genes alter many different phe-
notypes. Quantitative genetic studies of natural genetic variants frequently examine one or a few traits, limiting their potential to
identify pleiotropic effects of natural genetic variants. Widely adopted community association panels have been employed by plant
genetics communities to study the genetic basis of naturally occurring phenotypic variation in a wide range of traits. High-density ge-
netic marker data—18M markers—from 2 partially overlapping maize association panels comprising 1,014 unique genotypes grown
in field trials across at least 7 US states and scored for 162 distinct trait data sets enabled the identification of of 2,154 suggestive
marker-trait associations and 697 confident associations in the maize genome using a resampling-based genome-wide association
strategy. The precision of individual marker-trait associations was estimated to be 3 genes based on a reference set of genes with
known phenotypes. Examples were observed of both genetic loci associated with variation in diverse traits (e.g., above-ground and
below-ground traits), as well as individual loci associated with the same or similar traits across diverse environments. Many sig-
nificant signals are located near genes whose functions were previously entirely unknown or estimated purely via functional data
on homologs. This study demonstrates the potential of mining community association panel data using new higher-density genetic
marker sets combined with resampling-based genome-wide association tests to develop testable hypotheses about gene functions,
identify potential pleiotropic effects of natural genetic variants, and study genotype-by-environment interaction.
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Introduction
Association mapping, initially on a gene-by-gene level and later at
a genome-wide scale, has been widely adopted as a tool to iden-
tify natural genetic variants controlling variation in both quan-
titative and qualitative traits. In the plant genetics community,
logistical and scientific constraints have driven the development
and widespread adoption of community association panels com-
prising sets of distinct plant genotypes that can be propagated
and shared, whether through the use of homozygous inbred lines
or clonal propagation. In the earlier era where association map-
ping was conducted on a gene-by-gene level, the use of commu-
nity association panels allowed the work of estimating population
structure within the population to be conducted once rather than
for each independent study. In the later era of genome-wide as-
sociation studies, the use of community association panels again
provided substantial practical benefits: the time-consuming and
expensive process of genotyping hundreds of thousands or mil-
lions of genetic markers across hundreds of individuals had to be
undertaken only once to enable an effectively infinite number of
studies on the genes controlling different traits by different re-
search groups.

The use of community association panels by many indepen-
dent research groups to investigate diverse research questions
results in data on a wide range of individual traits for geneti-
cally identical individuals across 1 or more environments. This
provides significant opportunities to investigate both pleiotropy,
the effect of a single genetic locus on multiple phenotypes, and
genotype-by-environment interactions, where the same allele in-
fluences the same phenotype in different ways in different envi-
ronments. In addition, associations between a given genetic locus
and a particular trait that are only marginally significant in sev-
eral individual studies can often be assigned a higher degree of
confidence when the same association is identified across multi-
ple studies. Finally, marginal statistical signals from genome-wide
association studies can assist in the interpretation of later mutant
mapping, gene expression, or selection scans, but only if the ini-
tial studies results are made available in a method that is easy to
capture and cross-reference.

In maize, an early widely adopted community association
panel was the Maize Association Panel (MAP), also referred to var-
iously as the maize 282 panel and the Buckler–Goodman Asso-
ciation panel (Supplementary Table S1). MAP initially consisted
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of 302 diverse inbreds estimated to represent 80% of the genetic
diversity within maize, although several of these were dropped
in later years based on poor seed increasability or other factors
[1, 2]. Slow decreases in population size over time are a common
feature of many community association panels. Two challenges
were observed with the initial maize association panel. First, while
the MAP panel captured a large proportion of total maize genetic
diversity, it consisted primarily of older public-sector lines with
limited representation of current temperate elite germplasm. Sec-
ond, many of the MAP lines were difficult to grow and increase in
the northern US corn belt. As a result, 2 additional panels were
generated for use in the temperate United States: (i) the Shoot
Apical Meristem association panel (SAM panel), which included
many of the MAP genotypes augmented with expired Plant Variety
Patent lines generated by the major seed companies in the United
States [3], and (ii) the Wisconsin Diversity Panel (WiDiv), developed
by selecting nonredundant and diverse genotypes that were able
to complete their life cycle and produce significant amounts of
seed when grown in Madison, Wisconsin [4]. In parallel, region-
specific community association panels have been developed in
other major corn-producing regions of the world, including the
AM508 panel incorporating lines from CIMMYT and both tropi-
cal and temperate maize breeding programs in China [5] and the
CornFed panel assembled with the goal of representing the ge-
netic diversity in the flint and dent heterotic groups widely em-
ployed for hybrid maize production in Europe [6].

As sequencing technologies have improved, new sets of genetic
markers have been deployed for existing community association
panels with increasing degrees of genetic resolution. The MAP was
initially genotyped with a modest number of (<100) Simple Se-
quence Repeat (SSR) markers to estimate population structure
as a potential confounder for single-gene association tests [2].
The WiDiv panel was initially genotyped with 1,536 microarray-
based markers [4]. The SAM panel was initially genotyped using
sequencing of messenger RNA (mRNA) samples from each line,
enabling the identification and scoring of 1.2M segregating single-
nucleotide polymorphism (SNP) markers [3]. A new high-density
marker set for the WiDiv panel was also generated by sequencing
mRNA samples, providing a set of 900k segregating genetic mark-
ers in this population [7, 8]. The original MAP population, which
shares many genotypes with both the SAM and WiDiv panels, was
resequenced as part of the Maize HapMap3 project, increasing the
number of segregating genetic markers to 83M [9]. A subset of
lines from the WiDiv panel was resequenced, resulting in a set
of 3.1M SNPs scored across 511 genotypes [10].

Substantial barriers to the comparison, reuse, and meta-
analysis of previously published genome-wide association study
(GWAS) results are created by differences in genetic marker data
sets as well as the use of different reference genome versions. In
this study, we sought to generate a single common genetic marker
set spanning multiple association panels with a high marker den-
sity. Specifically, we employed a combination of published RNA
sequencing (RNA-seq) and resequencing data to generate a com-
mon set of 18M genetic markers scored across the union of 1,014
genotypes present in the SAM and/or WiDiv association panels.
Given the expected complexity of the genetic architectures con-
trolling many quantitative traits in maize, we employed the Fixed
and random model Circulating Probability Unification (FarmCPU)
algorithm for genome-wide association [11]. While the FarmCPU
algorithm provides greater power to detect true-positive signals,
the set of positive associated signals identified by the algorithm
can vary significantly based on moderately sized changes in the
composition of the studied population [12, 13]. The relative sta-

bility of GWAS signals identified via the FarmCPU algorithm can
be assessed by evaluating the resample model inclusion proba-
bility (RMIP) of individual signals across multiple bootstraps [14],
and this approach has been employed by a number of research
groups working in different crop species [13, 15, 16]. Resampling
provides greater confidence in associations by quantifying the sta-
bility of signals, but also provides the opportunity to identify com-
paratively strong signals (e.g., those identified in 20–50% of to-
tal bootstraps), which will frequently be missed in a single anal-
ysis of the entire data set. We assemble a set of 162 trait data
sets that have been scored across different subsets of these 1,014
genotypes, including both previously published studies conducted
across seve7states and new trait data collected from field trials
conducted in Lincoln, Nebraska. We employ these trait data, com-
bining the genetic marker data set and genome-wide association
approach described above, to evaluate both mapping resolution—
the distance between significant marker trait associations and
known or likely causal genes—and the incidence and patterns of
quantitative pleiotropy across related and dissimilar traits. In this
study, we generate and release data on genomic intervals contain-
ing 2,154 confident or suggestive marker trait associations across
these 162 trait data sets to aid in the reuse of these trait data in fu-
ture genomic and genetic studies, including suggestive signatures
of pleiotropic effects for a number of genetic loci.

Results
Properties of widely studied maize association
panels
Three maize association panels were identified in the literature:
the Maize Association Panel (MAP) [2], the Shoot Apical Meristem
(SAM) panel (369 lines) [3], and the Wisconsin Diversity (WiDiv)
panel consisting of either 627 or 942 lines [4, 8]. The latter 2 popu-
lations are largely supersets of MAP, with SAM excluding 10 MAP
lines present in the WiDiv panel and WiDiv excluding 67 lines re-
tained in both the SAM and MAP populations (Fig. 1A). The SAM
and WiDiv populations also share 95 lines not present in the MAP
population that served as a partial progenitor for both. These are
predominantly more recently released lines developed in the pri-
vate plant breeding sector and released when the associated plant
variety parents expired (expired Plant Variety Patents or exPVPs).
The total overlap between the SAM and WiDiv populations was
297, sufficient to enable joint analyses of trait data sets collected
in these 2 populations. The union of the SAM and WiDiv popu-
lations included 1,014 unique maize genotypes with both genetic
marker information for at least 1 phenotypic record. An additional
35 unique maize genotypes were included in 1 or both popula-
tions, had at least 1 source of genetic marker data but no pheno-
typic records, and so were excluded from downstream analyses.

The set of approximately 200 papers citing either the SAM panel
[3] or either iteration of the WiDiv panel [4, 8] was screened to
identify studies that conducted GWAS and published trait data
sets collected from 1 or both of these populations. A total of 21 pa-
pers were identified that included GWAS results generated from
these populations. After excluding studies where we were unable
to locate trait data for individual maize lines, excluding traits that
failed initial quality control, and condensing studies that utilized
previously published data, 133 unique trait data sets drawn from
16 separate published studies remained (Table 1). This included
55 trait data sets collected from the SAM panel, 67 trait data
sets collected from the WiDiv panel, and 11 trait data sets col-
lected from an even larger population of 2,815 maize lines with
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Figure 1: Characteristics of Maize Association Panel trait data sets. (A) Number of accessions that are represented in any of the 3 diversity panels. (B)
Representation of 8 broad phenotypic categories among the 162 traits collected here. Category assignments for individual traits are provided in
Supplementary Table S3. (C) Geographic distribution of trials where trait data sets were collected. Size of circles indicates number of traits collected at
a specific geographic location. Colors of circles indicate types of trait data sets collected at that location. Labels for which colors correspond to which
types of traits are given in panel B. (D) Distribution of the number of genotypes scored for a given trait. (E) Distributions of narrow-sense heritability
values, across the same 8 broad phenotypic categories shown in panel B. Colors corresponding to the color key for phenotype classes are provided in
panel B. (F) Correlations among the 162 trait data sets analyzed in this study. Trait data sets are clustered based upon absolute Spearman correlation
value. Phenotype classes are indicated with color bar on top the x-axis with colors corresponding to the color key for phenotype classes provided in
panel B.

substantial overlap with these 2 populations [17]. An additional
29 phenotypes scored in Lincoln, Nebraska, in 2020 were included
for a final set of 162 trait data sets employed for downstream anal-
yses (Supplementary Table S3). Individual trait data sets included
data values for between 222 and 817 maize lines (Fig. 1B) and
were collected from field or controlled environment studies con-
ducted in 7 states (Fig. 1C). Measurements related to inflorescence
architecture were the most abundant category among these 162
trait data sets (Fig. 1D). SNP-based estimates of narrow-sense her-
itability for individual trait data sets were variable, with a median
value of 0.527 and a mean value of 0.523 across all traits. Traits
related to flowering time (e.g., timing of anthesis, timing of silk-
ing, or anthesis-silking interval) was the category that exhibited
the highest median heritability of 0.762 (Fig. 1E and Supplemen-
tary Table S3). Flowering time traits collected in different environ-
ments were correlated with each other and also exhibited notable
correlations with a subset of both above-ground vegetative and
below-ground root-related traits (Fig. 1F).

The total number of unique maize line names observed across
these 162 trait data sets was 1,118, which was modestly more
than the set of 1,014 unique genotypes present across the WiDiv
and SAM mapping populations. We speculate that this differ-
ence may result from the inclusion of local checks or lines of
interest or changes in naming convention or transcription er-
rors that we were unable to resolve. For the 1,014 unique geno-
types named as part of the SAM population [3] or WiDiv popu-
lation [8], raw whole-genome sequencing or RNA-seq sequence
data were aggregated from a number of sources (Supplementary

Table S2) [8, 9, 18] as described in Sun et al. [13]. Alignment of pub-
lished sequence data from these sources to the maize reference
genome (B73_RefGen_V4) [19, 20], scoring of a priori segregating
SNPs from HapMap3 [9], imputation, and filtering resulted in a set
of 17,717,568 with minor allele frequency >0.01 and heterozygos-
ity rate of <0.1, leading to an average of 1 SNP per 120 bp (see
Materials and Methods).

The 17,717,568 polymorphic markers chosen for downstream
analysis were distributed roughly evenly across the 10 chromo-
somes of maize, with local reductions in SNP density around cen-
tromeres/pericentromeric regions of each chromosome (Supple-
mentary Fig. S3A). Rare SNPs with minor allele frequencies <0.1
were modestly more abundant than common SNPs (Fig. 2A). Link-
age disequilibrium decayed rapidly, with the average r2 between 2
SNPs separated by 10 kilobases being approximately 0.18 (Fig. 2B),
similar to previous reports [21, 22]. The first 3 principal compo-
nents of variation explained approximately 10% of total variance
among genotypes (Supplementary Fig. S3B). Principal coordinate
(PCo) analysis using this SNP set separated lines with known as-
signments to major heterotic groups (Fig. 2C, D). The same set of
PCo analyses did not identify obvious biases in the distribution
of lines present in different association panels (Supplementary
Fig. S3C).

Unified marker-trait analyses
Genome-wide association studies conducted using FarmCPU with
the 162 traits and about 18M markers described in the previous
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Table 1: Studies from which maize trait data sets were drawn

Reference Study type
Phenotypes

scoreda
Accessions
evaluatedb Panel

Peiffer et al. 2014 [23] Reproductive & Vegetative 11 737 Ames Panel
Hirsch et al. 2014 [7] Reproductive & Vegetative 3 427 WiDiv-503
Leiboff et al. 2015 [3] Agronomic, Cellular/Biochemical, & Vegetative 9 378 SAM
Lin et al. 2017 [24] Cellular/Biochemical, Root, & Vegetative 16 363 SAM
Gustafson et al. 2018 [25] Disease 7 447 WiDiv-503
Gage et al. 2018 [26] Reproductive 16 817 WiDiv-942
Mazaheri et al. 2019 [8] Cellular/Biochemical & Vegetative 5 788 WiDiv-942
Qiao et al. 2019 [27] Cellular/Biochemical 4 429 WiDiv-503
Sekhon et al. 2019 [28] Agronomic 3 364 WiDiv-503
Zheng et al. 2019 [29] Agronomic, Root 13 359 SAM
Azodi et al. 2020 [30] Reproductive & Vegetative 3 388 WiDiv-503
Lin et al. 2020 [31] Cellular/Biochemical & Reproductive 8 439 WiDiv-503
Renk et al. 2021 [32] Seed Composition 16 499 WiDiv-503
Schneider et al. 2021 [33] Root 1 599 WiDiv-503
Zhou et al. 2021 [34] Reproductive 17 339 SAM
Sun et al. 2021 [13] Disease 1 687 WiDiv-942
Previously unpublished Agronomic, Disease, Reproductive, & Vegetative 29 752 WiDiv-942

aPhenotypes used in this study from the phenotypes scored in respective studies (after removing exact same phenotype values if used in another study).
bThe highest number of accessions with phenotype data used in this study from the respective publication.

Figure 2: Characteristics of Maize Association Panel Marker data sets. (A) Genotype frequency and minor allele frequency of the marker data set. (B)
The genome-wide LD decay with maximum distance of 600 kilobases between 2 SNPs. (C) Genetic relationship among the accessions used in this
study and visualized using multidimensional scaling/principal coordinate analysis of the distance matrix. The x- and y-axes represent first and
second principal component coordinates. Each point is color coded by the heterotic group each accession belongs to. (D) Genetic relationship among
the accessions used in this study and visualized using multidimensional scaling/principal coordinate analysis of the distance matrix. The x- and
y-axes represent first and third principal component coordinates. Each point is color coded by the heterotic group each accession belongs to.
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Figure 3: GWAS summary: multitrait peaks detected across phenotypic categories. (A) Combined Manhattan plot for GWAS using all 1,014 individuals
screened using 18M markers. Dashed gray and red lines indicate the cutoff of 5% and 10% for statistical significance calculated based on RMIP value.
Each chromosome is shown in the x-axis. The y-axis is the RMIP values ranging from 0 to 1. (B) An upset plot showing number of shared GWAS hits
between various phenotypic categories. (C) Percent representation of GWAS hits for the number of trait data sets analyzed. Number on top of each pair
of bars in each phenotypic category corresponds to the ratio of GWAS hits/number of trait data sets analyzed in each category. Note: The ratio was
higher for the disease traits, but the traits in this category are essentially the same trait analyzed at different time points in a time-series manner;
thus, most of the hits overlap among the traits, leading to an inflated ratio.

section and employing an RMIP cutoff of 5 for a suggestive asso-
ciation identified 2,154 signals across 151 traits (Fig. 3A). Among
traits with 1 or more suggestively significant hits, the median
number of hits was 12 (mean 12.57), the maximum was 33, and
the minimum was 1.

Consolidation of 2,154 SNPs with at least suggestive statisti-
cally significant associations with phenotypes (≥5 RMIP) into dis-
tinct peaks based on physical distance and linkage disequilibrium
(LD) (see Materials and Methods) reduced the number of associa-
tions to 1,466 peaks distributed across phenotypes assigned to 8
categories (Table 2). Of these 1,466 peaks, 161 peaks were associ-
ated with 11 agronomic traits, 92 peaks were associated with 17 of
the 21 total cellular/biochemical traits, 72 peaks were associated
with 8 disease traits, 176 peaks were associated with 15 flowering
time traits, 459 peaks were associated with 41 of 47 total inflo-
rescence traits, and 113 peaks were associated with 15 root traits,
128 with 16 seed composition traits, and 295 with 28 of 29 total
vegetative traits (Fig. 3B and Table 2).

A wide range of approaches are employed in the literature to
define the set of annotated gene models adjacent to a significant
GWAS peak, which should be labeled as “candidate genes.” These
can include both fixed windows around the peak, examining an ar-

bitrary number of the closest annotated gene models to the peak,
or adaptive windows defined based on local levels of linkage dis-
equilibrium or haplotype blocks. To assess the precision provided
by the peaks identified in this study, we utilized a set of 604 gene
models recorded in the MaizeGDB database [35] as associated with
1 or more phenotypes. These gene models constituted 1.5% of the
total set of 39,498 annotated gene models present on the B73_v4
reference genome [20]. The first 3 genes closest to GWAS peaks
identified above were more likely to be associated with reports
of phenotypes in MaizeGDB than the expected background rate,
and this pattern became stronger at more stringent RMIP cutoffs
(Fig. 4A). When employing physical distance rather than rank or-
der, the greatest enrichment of genes with reported phenotypes
in the MaizeGDB database was observed in the categories “within
gene,” “closer than 10 kilobases,” and “10–40 kilobases,” although
noticeable enrichment remained observable at greater distances
from the GWAS peak (Fig. 4B).

Flowering time trait data sets tended to identify a dispropor-
tionately high number of independent GWAS peaks (Fig. 3C), po-
tentially as a result of the greater proportion of variance among
these traits explained by genetic factors (Fig. 1E). Overall, in 1,252
cases (85.4%), a peak was identified only in the analysis of a
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Table 2: Summary of unique associations with RMIP ≥5 within each of the 8 phenotypic groups analyzed

Phenotype group

No. of
phenotypes

analyzed

No. of
phenotypes with

hits No. of peaks
No. of single trait

peaks
No. of multitrait

peaks

No. of multitrait
peaks within

each categorya

No. of peaks
associated
across each

category

Agronomic 11 11 161 155 6 4 2
Cellular/Biochemical 21 17 92 69 23 20 3
Disease 8 8 72 44 28 28 0
Flowering Time 15 15 176 128 48 32 16
Inflorescence 47 41 459 420 39 32 7
Root 15 15 113 81 32 25 7
Seed Composition 16 16 128 108 20 19 1
Vegetative 29 28 295 247 48 28 20
Total Unique 162 151 1,466b 1,252 214b 188 26b

aExcluding 26 peaks that overlap between 2 or more phenotype groups/categories. Of these 26 peaks, 22 are associated with traits belonging to 2 phenotype categories
and 4 peaks are associated with phenotype traits belonging to 3 phenotype categories.
bThe total unique value is less than the sum of all values in respective columns because some of the peaks were associated with phenotypes in multiple categories
and they are depicted in each category they show significance.

Figure 4: Probability of genes at different distances from peak SNP from GWAS is linked to phenotypes. (A) Gene positions of unique trait associations.
First 7 genes closest to the GWAS peaks were selected and shown on the x-axis. (B) Gene order of unique trait associations. The distance of the genes
from the trait-associated markers is shown on the x-axis.

single trait data set (Table 2). The remaining 214 peaks were iden-
tified in analyses of 2 or more separate trait data sets. In 188 cases,
the same peak was identified in the analysis of 2 or more pheno-
types belonging to the same general category. For example, a peak
consisting of 4 SNPs in high LD with each other on chromosome 6
spanning from 108,211,603 to 108,213,234 bp, with the single high-
est RMIP SNP located at 108,212,338 bp, was identified in analy-
sis of both kernel starch abundance (Starch_K) (RMIP = 52) and
kernel fat abundance (Fat_K) (RMIP = 23) within the overall cate-
gory of “seed composition” traits [32]. The peak spans the 5′ end
of the gene model Zm00001d036982 (108,212,462 to 108,219,350
on chromosome 6), which encodes DGAT1-2 (diacylglycerol O-
acyltransferase 1-2)/ln1 (linoleic acid1). DGAT1-2 substantially in-
creases the seed oil and oleic acid contents [36]. Largely, oils are
stored in the form of triacylglycerol (TAG), and DGAT catalyzes
the final step of TAG biosynthesis by transferring an acyl group
from acyl-CoA to the sn-3 position of 1,2-diacylglycerol (DAG),
thus acting as the rate-limiting enzymes for TAG biosynthesis
[37, 38] (Fig. 5A, B). The rarer allele (“T”) is associated with an
increase in seed fat and decreases in seed starch (Fig. 5C). The
starch-promoting allele was more abundant in iodent subpopu-
lations and less abundant in sweet corn subpopulations (Supple-
mentary Fig. S4). The original analysis of these 2 data sets em-

ployed the FarmCPU algorithm, but without resampling [32], and
did not identify these 2 associations, consistent with observed
RMIP values, which suggest only a 1 in 2 chance of detecting the
DGAT/starch association and only a 1 in 4 chance of detecting the
DGAT/fat association in a single round of GWAS.

In the remaining 26 cases where the same genomic interval was
identified in the analysis of multiple trait data sets (Fig. 6A–D, Sup-
plementary Figs. S5–S26), the trait data sets involved spanned 2
or more categories, with 22 peaks associated with trait data sets
spanning 2 categories and 4 peaks associated with trait data sets
spanning 3 categories (Fig. 3B). Genomic intervals associated with
flowering time were disproportionately more likely to be associ-
ated with phenotypes from at least 1 other category. Sixteen of
176 unique peaks identified for flowering time were also associ-
ated with 1 or more phenotypes from other categories (9%), while
only 10 of 1,290 unique peaks (0.8%) identified for nonflowering
time traits were associated with traits from 2 or more of the re-
maining 7 categories (Fig. 3B).

An illustrative example of the potential for genes influencing
flowering time to be identified in genome-wide association studies
for other traits is the case of ZmMADS69. ZmMADS69 (syn Zmm22)
(Zm00001d042315) is a MADS-box transcription factor located be-
tween 160,564,021 bp and 160,591,933 bp on maize chromosome
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Figure 5: Combined GWAS identifies peak associated with seed starch and fat. (A) View of resampling marker inclusion probability values for markers
in a window from 108,211,603 to 108,213,234 on chromosome 6 spanning 200 kilobases upstream and downstream of the pleiotropic peak identified
for seed starch and oil content. Only markers with resampling marker inclusion probability values ≥0.01 are shown. (B) The LD relationships between
the significant SNPs within the peak. (C) Distributions of observed oil and starch content values reported in [32] for lines carrying either allele of the
peak SNP located at position 108,212,338 bp.

3, which has been shown to function as a flowering activator,
with a derived allele conferring earlier flowering in many maize
lines relative to its wild progenitor teosinte [8, 39]. A peak con-
sisting of 26 SNPs in high LD with each other was consistently
identified for multiple flowering time–related traits, including 7
measurements of anthesis (male flowering) in different environ-
ments (Anthesis_A, Anthesis_G, Anthesis1_L, Anthesis4_H, An-
thesis6_H, Anthesis7_H, Anthesis_J) and 3 measures of silking in
different environments (Silking_A, Silking_L, Silking_J). The same
peak was also identified in the analysis of multiple vegetative
traits, including measurements of plant height in 2 environments
(PlantHeight_D, PlantHeight_G), extant leaf number, stalk diam-
eter, and biomass yield (Fig. 6A). ZmMADS69 has been shown to
downregulate the expression of ZmRap2.7, which relieves repres-
sion of the florigen gene ZCN8, causing/resulting in early flower-
ing [39]. Both ZmRap2.7 and ZCN8 are located on chromosome 8
[40–42], and both of these genes are also associated with GWAS
peaks. A peak on chromosome 8 consisting of 4 SNPs between
126,884,534 bp and 126,891,234 bp was separated by only 2 kilo-
bases from the gene model encoding ZCN8 (Zm00001d010752,
located between 126,880,531 and 126,882,389 bp) and was as-
sociated with anthesis in 3 environments (Anthesis_G, Anthe-
sis7_H, Anthesis_J). ZmRap2.7 (Zm00001d010987) is located ap-
proximately 10 megabases away from ZCN8 on chromosome 8

(between 136,009,216 and 136,012,084 bp) and is associated with a
peak consisting of 13 SNPs that was detected for 7 measurements
of anthesis (Anthesis_A, Anthesis_G, Anthesis1_L, Anthesis5_H,
Anthesis6_H, Anthesis7_H, Anthesis_J), 2 approaches to measur-
ing silking in the same environment (Silking_L, SilkingGDD_L), and
a number of vegetative traits, including extant leaf number (Ex-
tantLeafNumber1_J), leaf width (LeafWidth_J), and plant height
(PlantHeight_D).

In addition to the 3 peaks discussed above, 13 other peaks
were also associated with both flowering time traits and traits
from other categories (Fig. 3A, B and Supplementary Table S4).
In 2 cases, a significant signal for flowering time was colo-
cated with significant signals for inflorescence architecture traits.
The first, located on chromosome 1 between 102,077,749 and
102,120,437 bp, consists of 2 SNPs in high LD with each other and
is significantly associated with both date of silking (Silking_J) and
ear length (EarLength_O) in separate environments (Supplemen-
tary Table S4 and Supplementary Fig. S5). The second, located on
chromosome 4 between 78,020,118 and 78,451,569 bp, consists of
2 SNPs and showed significant associations with both male flow-
ering in one environment (Anthesis5_H) and the length of the cen-
tral spike of the tassel in another environment (SpikeLength1_C)
(Supplementary Table S4 and Supplementary Fig. S14). In 11
cases, a significant association for flowering time was colocated
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Figure 6: GWAS peaks associated with multiple traits. (A) Local Manhattan plot with ±200 kilobases of pleiotropic peak on chromosome 3 from
160,559,294 to 160,989,691 bp. This peak is associated with MADS69 (Zm00001d042315). The phenotypes associated with this peak belongs to
Flowering Time and Vegetative categories. The phenotypes associated with this peak are Anthesis1_L, Anthesis4_H, Anthesis6_H, Anthesis7_H,
Anthesis_A, Anthesis_G, Anthesis_J, BiomassYield_G, ExtantLeafNumber1_J, ExtantLeafNumber2_J, PlantHeight_D, PlantHeight_G, Silking_A, Silking_J,
Silking_L, and StalkDiameter_D. The vertical dashed lines show the peak boundary. (B) Local Manhattan plot with ±200 kilobases of pleiotropic peak
on chromosome 8 from 135,928,821 to 136,325,345 bp. This peak is associated with Rap2.7 (Zm00001d010987). The phenotypes associated with this
peak belong to Flowering Time and Vegetative categories. The phenotypes associated with this peak are Anthesis1_L, Anthesis5_H, Anthesis6_H,
Anthesis7_H, Anthesis_A, Anthesis_G, Anthesis_J, ExtantLeafNumber1_J, LeafWidth_J, PlantHeight_D, SilkingGDD_L, and Silking_L. The vertical dashed
lines show the peak boundary. (C) Local Manhattan plot with ±200 kilobases of pleiotropic peak on chromosome 8 from 126,884,534 to 126,891,234 bp.
This peak is associated with ZCN8 (Zm00001d010752). The phenotypes associated with this peak belong to Flowering Time and Vegetative categories.
The phenotypes associated with this peak are Anthesis7_H, Anthesis_G, Anthesis_J, ExtantLeafNumber1_J, and ExtantLeafNumber2_J. The vertical
dashed lines show the peak boundary. (D) Local Manhattan plot with ±200 kilobases of pleiotropic peak on chromosome 8 from 134,706,389 to
134,759,977 bp. This peak is associated with lg4 (Zm00001d010948). The phenotypes associated with this peak belong to Flowering Time, Root, and
Vegetative categories. The phenotypes associated with this peak are Anthesis4_H, Anthesis7_H, Anthesis_A, Anthesis_G, Anthesis_J,
ExtantLeafNumber1_J, ExtantLeafNumber2_J, RootArea1_O, RootArea2_O, RootArea4_O, RootWidth3_O, Silking_A, and Silking_J. The vertical dashed
lines show the peak boundary.

in the genome with a signal for an above-ground vegetative
trait data set. These were typically vegetative traits with known
links to flowering time, including leaf/node number and plant or
ear height (Supplementary Table S4, Fig. 6D, and Supplementary
Figs. S6, S12, S16–S20, S22, S24, and S26).

The potential pleiotropy of genes linked to flowering time was
not confined to above-ground traits. In 3 cases, a significant sig-
nal for flowering time was also associated with 1 or more data
sets describing variation in root phenotypes. A signal on chro-
mosome 5 between 94,710,702 and 94,712,951 bp was associated
with flowering time across a wide range of environments (Anthe-
sis_A, Anthesis1_L, Anthesis7_H, Anthesis_J, Silking_J, Silking_L,
SilkingGDD_L), with other above-ground vegetative traits (Lea-
fAreaIndex_J, LeafLength_J) and with many root architecture traits
(RootArea1_O, RootArea2_O, RootArea4_O, RootWidth4_O) (Sup-

plementary Table S4 and Supplementary Fig. S19). The specific
SNPs that define the peak are all located within Zm00001d015513,
which encodes a cinnamoyl-CoA reductase expressed primar-
ily in leaves and leaf meristems [43]. A signal on chromo-
some 8 between 28,727,658 and 28,769,198 bp was associated
with both male and female flowering time in Nebraska (An-
thesis_J, Silking_J) and variation in root depth in Iowa (Root-
Depth1_O, RootDepth2_O) (Supplementary Table S4 and Supple-
mentary Fig. S22). The last of the 3 signals associated with flower-
ing time (Anthesis_A, Anthesis_G, Anthesis4_H, Anthesis7_H, An-
thesis_J, Silking_A, Silking_J), leaf number, and root (RootArea1_O,
RootArea2_O, RootArea4_O, RootWidth3_O) traits is also located
on chromosome 8, between 134,706,389 and 134,759,977 bp. This
54-kilobase interval is entirely free of annotated genes but ends
600 bp upstream of classical mutant liguleless4 (Zm00001d010948)
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(Fig. 6D). Liguleless4 (synonym knox11) encodes a knox transcrip-
tion factor that is highly expressed in the SAM, seed radicle, in-
ternode tissues, crown roots, pericarp of seed, and the endosperm
of maize [43]. A dominant allele of liguleless4 abolishes the ligule
and alters the sheath-blade boundary in maize leaves [44] likely
via ectopic expression [45], but phenotype of loss of function alle-
les, if any, remains uncharacterized.

Discussion
The widespread adoption of diverse association panels in plant
biology has enabled a wide range of research and discovery by re-
searchers working on diverse phenotypes, species, and research
questions [46]. Beyond lists of specific candidate genes identified
in the main text or supplemental figures, the reuse of GWAS re-
sults can sometimes be challenging. Changes in genome versions,
gene model annotations, or genetic marker data sets, as well as
changes in best practices and algorithms for conducting genome-
wide association tests, can all hinder comparisons with and/or
reuse of previously published GWAS results. In the field of hu-
man genetics where the release of individual-level trait and ge-
netic data could raise privacy and ethics concerns, the field has
converged on a standard of releasing summary statistics but not
individual-level trait and genetic data [47]. Working with plant
data, privacy concerns do not typically preclude the release of
individual-level data, and the reuse of the same genotypes across
independent studies increases the potential value of individual-
level data.

We identified 21 published papers describing phenotypes or
GWAS conducted using 1 or more of 2 widely adopted associa-
tion panels in maize [3, 4]. In 18 cases (85%) it was possible to
locate raw trait values for individual lines used in the published
analyses, including the 16 studies summarized in Table 1 and the
2 additional papers not included in our analyses. The high fre-
quency with which trait data are being released for published
GWAS studies is encouraging as it indicates the maize quantita-
tive genetics community is adopting similar norms and practices
to the genomics community, which has long been a leader in pro-
moting strong best practices for raw data deposition and dissem-
ination [48]. Unlike the genomics community, the plant quantita-
tive genetics community does not have access to widely used and
standardized data repositories. Challenges in integration of these
data included inconsistent naming, extra lines that were not part
of the panel, repeated traits across papers, and data distributed
across supplemental files or Figshare. Metadata for how and when
individual traits were collected typically were present but often
needed to be manually extracted from reading the manuscript
text. Information that would further increase the value of released
trait data such as the GPS coordinates and planting dates of in-
dividual field trials was provided in some cases but not others.
The identification of a single common repository, standards for
metadata on individual field trials, and for the preservation of a
single unique identifier for each genotype included in a commu-
nity association population would all lower barriers to the reuse
of trait data sets. However, despite these current challenges, both
the overall consistency and quality of data release and documen-
tation was exceptional, enabling the investigation of multienvi-
ronment and multitrait genetic associations.

One desirable outcome of having access to raw trait data is that
it enables reanalysis of existing trait data sets, each of which rep-
resents a substantial investment of both finance resources and
human effort/suffering, as new higher-resolution genetic marker
data sets and new analysis algorithms become available. Here we

employed a RMIP-based filter to the FarmCPU GWAS algorithm
[11, 14, 49] and were able to identify 2,154 suggestive associa-
tions (RMIP ≥5) and 697 confident associations (RMIP ≥10) across
162 traits collected in 33 environments spanning at least 7 states.
These signals included new associations identified as a result of
either new genetic marker data and/or the FarmCPU/RMIP ap-
proach (Fig. 5). Overall, 1,466 and 468 unique sites in the genome
were tagged with a suggestive or confident association, respec-
tively. These associations were enriched near genes with previ-
ously reported phenotypic effects (Fig. 4). However, many of these
signals are located near genes whose functions were previously
entirely unknown or estimated purely via functional data on ho-
mologs, which is typically useful for inferring molecular function
of a protein encoded by a given gene but can produce misleading
information on the specific biological processes a given gene is
involved in [50]. Many traits, particularly flowering time, were col-
lected repeatedly in different studies conducted in different envi-
ronments. While some signals were consistently identified for the
same trait across multiple independently collections, others were
statistically significant in only a single environment. This second
class of association likely includes loci with significant genotype-
by-environment interactions, loci with modestly smaller effect
sizes and/or minor allele frequencies that will sometimes fall
above the threshold for statistical significance and sometimes
below, and false-positive associations. Ultimately, distinguishing
between these categories, as well as further characterizing pat-
terns of genotype-by-environment interaction, would further in-
crease the value of this data set. However, simply including data
from multiple environments and experiments already enables the
community to evaluate which trait-associated loci produce con-
sistent and stable results and are likely to be more amenable to
detailed genetic characterization. These new layers of functional
data will be most useful if they can be integrated into commu-
nity genomics repositories. In this case, the functional data gener-
ated as part of this project have been integrated as browser tracks
and downloads at the maize community repository MaizeGDB [35]
to enable maize researchers to quickly access these data, cross-
reference them with other data types, and compare with mutant
or QTL mapping results.

A straightforward way to increase power and utility of rean-
alyzing data from community association panels is through the
integration of data from additional widely employed community
association panels. The AM508 panel discussed above [5, 51] has
been employed in studies of seed composition [51–54], morpho-
logical and yield-related traits [55], biomass accumulations [56],
and both biotic [57, 58] and abiotic stress tolerance [59]. Many
studies of this population employed a set of markers generated
through a combination of microarray and RNA-seq–based geno-
typing and anchored to the B73_RefGen_V2 reference genome [51].
However, several years ago, this panel was resequenced to an av-
erage depth of 20× [60], creating the potential to generate unified
genetic marker data sets incorporating both the 500 maize inbreds
of the AM508 panel and the 1,000 maize inbreds present in the
union of the SAM and WiDiv panels. One analytical challenge ex-
tension to the AM508 association panel or other maize association
panels is the lack of the large intersection set of shared genotypes
present between the SAM and WiDiv panels as a result of the role
the MAP panel played in the origin of both of these populations.

The significant signals identified for flowering time and both
above-ground and below-ground plant architectural traits adja-
cent to liguleless4/knox11 are an example of an intermediate case
between confirmation of known functions and assigning poten-
tial functions to previously uncharacterized genes or regions of
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the genome. Liguleless4 belongs to the knox class I gene family
[45], a family of genes involved in regulating plant development
via expression in apical meristems [61]. The liguleless4 gene it-
self was identified via a dominant allele Lg4-O, which alters de-
velopment at the leaf blade/sheath boundary [44] and is associ-
ated with ectopic expression [45]. Loss-of-function alleles of the
liguleless3 gene, a paralog of liguleless4, do not exhibit any obvi-
ous phenotype [45]. A role for liguleless4 in determining flower-
ing time and above/below-ground plant architecture is consis-
tent with the reported expression pattern of the wild-type al-
lele in tissues, including the shoot apex, root tips, and develop-
ing inflorescence [45]. The MADS69 gene was previously spec-
ulated to be pleiotropic for multiple traits [39] and indeed ex-
hibited pleiotropic associations with variation in multiple traits
in our study. Similarly, the well-characterized genes ZCN8 and
Rap2.7, which also play a role in determining flowering time in
maize, exhibited pleiotropic associations in this study. This study
identified a number of genes associated with both above- and
below-ground traits. These include liguleless4, Zm00001d015513
(Chr5:94710702..94712951), which was associated with variation
in anthesis, silking, leaf area index, leaf length, and various traits
related to root architecture. The other potential gene for future
characterization is Zm00001d008987 (Chr8:28727658..28769198),
a previously uncharacterized putative costunolide 3-hydroxylase
associated with both flowering time and root depth traits.

One striking observation from the colocalization of association
signals across multiple trait data sets was how common the rei-
dentification of shared signals was. In total, 14.5% (214/1,466) of
all suggestive associations and 16.2% (76/468) of all confident as-
sociations were identified in at least 2 trait data sets. One util-
ity of reanalyzing published trait data sets is that variants with
consistent but moderate effects across many studies can be dis-
tinguished from, and assigned higher confidence, than signals of
equivalent statistical significance, which are identified in only a
single study in a single environment. Another lesson to take away
from the same colocalization data is how common it was for the
same locus to be identified for traits belonging to separate cate-
gories of phenotypes. The interpretation of a genetic locus with
a significant association with root area will be quite different de-
pending on whether that same locus is also associated with flow-
ering time [62] (Fig. 6D and Supplementary Figs. S19 and S22). In
both cases, the key takeaway is that researchers do not have to
analyze or interpret GWAS in a vacuum but instead are able to
interpret their results in the context of the rich data sets of pre-
viously scored phenotypes and previous GWAS analyses. Our un-
derstandings of genetics, genotype-by-environment interactions,
and pleiotropy will all benefit from the broad use of these rich
data sets.

Potential implications
Logistical and financial limitations often constrain quantitative
genetic analyses of plant populations to collecting data on a sin-
gle phenotype or a small suite of related phenotypes, limiting our
capacity to identify and study the ways individual genetic vari-
ants can control multiple phenotypic outcomes. The data set de-
scribed in this article, including 162 traits scored across different
subsets of 1,014 immortalized maize inbred genotypes and associ-
ated with a high-density marker set of 18M segregating markers,
dramatically lowers the barriers for further quantitative genetic
studies of both pleiotropy and genotype-by-environment interac-
tions in maize. In addition, by identifying more than 2,000 confi-
dent or suggestive genetic associations in the maize genome, this

data set means researchers do not have to analyze or interpret
GWAS in a vacuum but instead can interpret their results in the
context of the rich data sets of previously scored phenotypes and
previous GWAS analyses.

Materials and Methods
Collection of published trait data
Papers publishing maize analyses were identified by searching pa-
pers citing the initial description of the first iteration of the WiDiv
panel [4], the initial description of the SAM diversity panel [3],
or the expanded WiDiv panel [8]. Screening of studies citing 1
or more of these papers concluded on 25 June 2021. Published
studies were excluded if we were unable to locate de-anonymized
trait values for individual accessions or if fewer than 200 total ac-
cessions were phenotyped. If 2 studies indicated that the same
trait was collected from the same lines in the same location in
the same year, only 1 version of the data was retained. If a study
published both data from individual environments and aggre-
gated estimates across environments (e.g., averages, best linear
unbiased predictions [BLUPs], or best linear unbiased estimates),
only individual environment trait data were retained. If only ag-
gregate estimates across environments were published, aggre-
gated traits were employed. After preliminary analysis with MLM-
based GWAS, several other trait data sets were discarded when it
proved impossible to effectively control false discoveries across
the genome. The final data file of all accession-level trait values
employed in this study is provided as Supplementary Table S2.

Trait data not previously published
A set of 752 maize genotypes, which were a strict subset of the
WiDiv panel and included 254 of 369 genotypes from the SAM di-
versity panel, was evaluated in a field experiment conducted in
Lincoln, Nebraska, in the summer of 2020. The experimental de-
sign of this field experiment has been previously described [13].
Briefly, the field was laid out in a randomized complete block de-
sign with 2 blocks of 840 plots, including a repeated check geno-
type (B97). Each plot was 2 rows, 7.5 feet (approximately 2.3 me-
ters) long with 30-inch row spacing (approximately 0.76 meters),
4.5-inch spacing between sequential plants (approximately 11.5
centimeters), and 30-inch alleyways between sequential plots (ap-
proximately 0.76 meters). The field was planted on 6 May 2020
and was located at the University of Nebraska–Lincoln’s Havelock
Farm (40.852 N, 96.616 W).

Tassel architecture phenotypes were collected once tassels had
fully emerged for 3 randomly selected plants per plot, avoiding
edge plants. Tassel lengths were measured from the basal primary
tassel branch to the tip of the tassel spike. Branch zone length
was defined as the length from the basal primary tassel branch
to the top primary tassel branch. Tassel spike length was defined
as the length from the top primary tassel branch to the tip of the
tassel spike. The total number of primary tassel branches was also
counted as well as the number of these primary tassel branches
that were initiated but later aborted (Supplementary Fig. S1).

Male and female flowering times for each plot were scored on
the first day that 50% of plants had visible pollen shed or visi-
ble silks, respectively. Root and stalk lodging were scored at the
end of the growing season as a percentage of extant plants in the
plot, following the published Genomes to Fields phenotyping pro-
tocol for both traits [63]. Leaf phenotypes—leaf length, leaf width,
and leaf angle—were measured for 2 plants per plot and collected
from each plot after anthesis and silking. One plant was randomly
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selected from each of the 2 rows for measurement, avoiding edge
plants when possible. Leaf length was measured from the leaf
ligule to the leaf tip on the adaxial surface of the first leaf above
the top ear of the plant. Leaf width was measured on the same leaf
at the midpoint between the ligule and the leaf tip. Extant leaf
number was determined by counting the number of visible leaf
collars on the same 2 plants. Plant height was measured between
the soil surface and the flag leaf collar using a marked pole. Leaf
Area Index values were estimated using a LAI-2200C Plant Canopy
analyzer (LI-COR, Inc. Lincoln, Nebraska, USA). For each plot, 1
above-canopy and 3 below-canopy measurements were collected
using the LAI-2200C’s 270-degree view cap. The 3 below-canopy
measurements were collected diagonally in the space between
the 2 rows of the plot. The first measure was adjacent to 1 row,
the second equidistant between the rows, and the third adjacent
to the second row. Leaf Area Index measurements were collected
between 28 July and 12 August 2020.

All ears were harvested from 8 semi-randomly selected plants
per plot with edge plants being excluded when possible. Ear
length, ear width, length of fill, kernel row number, and num-
ber of kernels per row were hand measured or hand counted for
6 ears per plot or all ears when fewer than 6 ears were present
(Supplementary Fig. S2). The average of individual ears was used
to calculate plot-level values. All harvested ears were weighed
and shelled, and the resulting pooled grain was also weighed.
Cob weight was calculated as the difference between ear weight
and grain weight. Initial hundred kernel weight was calculated
by counting and weighing 100 kernels per plot after shelling and
pooling of grain. Grain moisture was measured using a Dickey-
John GAC® 2500-AGRI Grain Analysis Computer (Dickey-John®
Corporation, Auburn, IL, USA). Total grain weight and hundred
kernel weight were recalculated to a standardized 15.5% moisture
content. When insufficient grain was harvested to collect accurate
grain moisture data using the GAC® 2500-AGRI, a default value
of 8.25% moisture, corresponding to the approximate median of
all grain moisture values, was employed to calculate moisture-
standardized grain weight and hundred kernel weight. Further,
the BLUPs for each phenotype were calculated by fitting a linear
mixed model using R package lme4 [64] with genotypes fit as the
random variable for the traits with data from 2020.

Unified genetic marker data
A single set of markers scored across 1,049 accessions was
employed for downstream analyses. These genotypes were de-
termined based on marker data aggregated from 3 published
sources: resequencing data for the WiDiv-503 panel (454 individ-
uals) [18], resequencing data generated as part of the HapMap3
project (141 individuals) [9], and RNA-seq data for the WiDiv-942
panel (399 individuals) [7, 8]. The specific NCBI SRA ID numbers of
the files used to call SNPs for each of the accessions are provided
in Supplementary Table S2.

Both genome resequencing data and RNA-seq data were qual-
ity trimmed using Trimmomatic (v0.33) [65]. BWA-MEM (v0.7) with
default parameter settings [66] was employed to align the result-
ing trimmed resequencing data to v4 of the B73 maize reference
genome [19, 20]. STAR (v2.7) [67] was used to align the trimmed
RNA-seq reads to v4 of the B73 maize reference genome in 2
rounds as described in Sun et al. [68]. Apparent polymerase chain
reaction duplicates were marked within the resulting BAM align-
ments using picard (v2.22) [69]. A priori segregating genetic mark-
ers identified in maize HapMap3 [9, 13] were scored for each indi-
vidual using the GATK toolkit (v5.1) [70]. Missing values were im-

puted using beagle/5.01 with the HapMap3 population treated as
a reference panel and the following parameter settings: window =
1, overlap = 0.1, ne = 1200 [71]. The imputed genetic marker data
set was filtered to remove markers with a minor allele frequency
less than 0.01 or proportion of site heterozygous calls greater
than 0.1 to produce the final set of 17,717,568 SNP markers.

Quantitative genetic analysis of trait data
A kinship matrix for the complete set of 1,049 genotyped acces-
sions, including all maize lines included in the SAM or WiDiv pan-
els and 35 additional maize lines for which sequence data were
generated and released as part of Mazaheri et al. [8], was calcu-
lated using the first method described by VanRaden [72] as imple-
mented in rMVP (v1.0.5) [73]. Narrow-sense heritability for each
trait was calculated using this kinship matrix and the R package
sommer (v4.1.1) [74]. Multidimensional scaling or the PCo analysis
was performed with –mds-plot 2 and –cluster options within plink
v1.90 [75]. Genome-wide patterns of linkage disequilibrium decay
were estimated by calculating (LD/r2) for all pairs of genetic mark-
ers where both genetic markers exhibited minor allele frequency
greater than 0.05 and were separated up to a physical distance of
less than 600 kilobases using PopLDdecay (v3.41) [76].

Marker-trait associations were identified using 100 iterations
of the FarmCPU algorithm as implemented in the R package
rMVP v1.0.5 with parameter settings maxLoop = 10; method.bin =
“FaST-LMM” [11, 73]. For each iteration, the first 3 principal com-
ponents calculated from the genetic marker data set were used
as a fixed effect, and the kinship matrix calculated internally by
the FarmCPU algorithm was fitted as a random effect. As differ-
ent trait data sets contained missing data for different individuals,
analyses for each trait data set were conducted by subsetting the
marker file separately for each trait analyzed to generate a new file
containing only marker data for the individuals with nonmissing
phenotypic values, and analyses of different traits included data
from a different number of individuals with nonmissing pheno-
typic values. The overall marker file was filtered on a per-GWAS
basis to retain only those markers with a minor allele frequency
>0.05 among the lines phenotyped for a given trait prior to as-
sociation testing for that trait. For each trait, 100 analyses were
run, each incorporating data from a different randomly selected
subset of phenotyped lines [14]. In each resampling analysis, the
overall threshold for statistical significance was the Bonferroni
corrected P value at 5%. RMIP values for each marker were calcu-
lated as the proportion of the 100 analyses in which that marker
was significantly associated with the target trait [14, 49, 77–79].

Linkage disequilibrium was calculated among all genetic mark-
ers with RMIP values ≥5 for at least 1 trait. Genetic markers with
linkage disequilibrium >0.5 were merged into single peaks for
downstream analyses, unless the markers were separated by >1
Mb. When 2 or more markers were merged into a single peak, the
marker with the greatest RMIP value was selected as representa-
tive of the entire peak.

Availability of Supporting Data and
Materials
Phenotypic values for all trait data sets employed in this study for
all maize accessions evaluated are provided in Supplementary Ta-
bles S2 and S3. The sources of sequence data used to call genetic
marker genotypes for each maize accession were NCBI BioPro-
jects PRJNA661271, PRJNA189400, and PRJNA437324 [7, 8, 10]. The
specific SRA IDs for individual maize accessions are indicated in
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Supplementary Table S2. The locations of GWAS peaks, the traits
associated with each peak, and the genes adjacent to each peak
are provided in Supplementary Tables S4 and S5. The VCF file used
for genetic analyses has been deposited at FigShare [80]. Scripts
and code used to implement various analyses described in the
methods section above have been deposited in GitHub [81]. All
supporting data and materials are available in the GigaScience
GigaDB database [82].

Additional Files
Supplementary Fig. S1. Phenotyping of tassel architecture. (A)
Tassel lengths were measured from the bottom-most primary tas-
sel branch to the tip of the tassel spike (red bars). (B) The branch
zone length was defined as the length from the bottom-most pri-
mary tassel branch to the upper-most primary tassel branch (red
left-facing bracket). (C) The tassel spike length was defined as the
length from the upper-most primary tassel branch to the tip of
the tassel spike (red right-facing bracket). (D) The total number
of primary tassel branches was also counted (example arrowed)
as well as the number of these primary tassel branches that were
initiated but later aborted (not pictured).
Supplementary Fig. S2. Phenotyping of cob traits. (A) Ear lengths
were measured as distance from base to the tip of each cob in
centimeters, highlighted in green. (B) Ear fill was measured as dis-
tance on the cob from base to the tip where the seeds were set,
highlighted in red. (C) Ear width was measured as distance of di-
agonal of the cob, highlighted by blue. (D) Kernels per row corre-
spond to the number of kernels on each line when cobs were set
vertically, highlighted in pink. (E) Kernel row number corresponds
to the number of rows, highlighted in brown.
Supplementary Fig. S3. Multidimension scaling or principal co-
ordinate analysis. (A) Distribution of SNP density across the
sorghum genome in 1-megabase sliding windows. (B) Scree plot
of eigenvalues for the principal components estimated from the
marker data used in this study. (C) Genetic relationship among the
accessions used in this study and visualized using multidimen-
sional scaling/principal coordinate analysis of the distance ma-
trix. The x- and y-axes represent first and second principal com-
ponent coordinates. Each point is color coded by the community
association panels each accession belongs to.
Supplementary Fig. S4. Allele frequencies of the top SNPs associ-
ated with the DGAT-2 gene. (A) The allele frequency for the starch
content in each subpopulation of top SNPs associated with the
DGAT gene. (B) The allele frequency for the fat content in each
subpopulation of top SNPs associated with the DGAT gene. (C) Per-
centage of alleles in each subpopulation: the starch-promoting al-
lele was more abundant in iodent subpopulations and less abun-
dant in sweet corn subpopulations.
Supplementary Fig. S5. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 1 from 102,077,749 to
102,120,437 bp. This peak is associated with the phenotypes be-
longing to Inflorescence and Flowering Time categories. The phe-
notypes associated with this group are EarLength_O and Silking_J.
Supplementary Fig. S6. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 1 from 276,657,865 to
277,120,054 bp. This peak is associated with the phenotypes be-
longing to Flowering Time and Vegetative categories. The phe-
notypes associated with this group are Anthesis1_L, Anthesis_J,
ExtantLeafNumber1_J, ExtantLeafNumber2_J, Nodes_M, and Silk-
ing_J.
Supplementary Fig. S7. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 1 from 280,994,269 to

281,039,919 bp. This peak is associated with the phenotypes be-
longing to Root and Vegetative categories. The phenotypes asso-
ciated with this group are EarHeight_M and RootAngle2_O.
Supplementary Fig. S8. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 2 from 82,811,901 to
82,811,901 bp. This peak is associated with the phenotypes be-
longing to Agronomic and Inflorescence categories. The pheno-
types associated with this group are BushelAcreEquivalent_J and
KernelsPerRow_J.
Supplementary Fig. S9. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 2 from 88,191,911 to
88,201,317 bp. This peak is associated with the phenotypes be-
longing to Agronomic and Inflorescence categories. The phe-
notypes associated with this group are BushelAcreEquivalent_J,
EarFilledLength_J, KernelsPerRow_J, and TotalGrainMassGrams_J.
Supplementary Fig. S10. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 3 from 157,317,263 to
157,318,194 bp. This peak is associated with the phenotypes be-
longing to Root and Vegetative categories. The phenotypes as-
sociated with this group are EarHeight_M, RootAngle2_O, and
RootWidth1_O.
Supplementary Fig. S11. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 3 from 168,948,681
to 168,998,142 bp. This peak is associated with the pheno-
types belonging to Cellular/Biochemical, Inflorescence, and Veg-
etative categories. The phenotypes associated with this group
are BranchZoneLength_C, LeafCuticularConductance6_H, Spike-
Proportion_C, StalkDiamThin_N, and peri_N.
Supplementary Fig. S12. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 3 from 218,796,811 to
218,832,925 bp. This peak is associated with the phenotypes be-
longing to Flowering Time and Vegetative categories. The pheno-
types associated with this group are ExtantLeafNumber1_J and
Silking_J.
Supplementary Fig. S13. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 4 from 28,148,396 to
28,163,192 bp. This peak is associated with the phenotypes belong-
ing to Inflorescence and Vegetative categories. The phenotypes as-
sociated with this group are Nodes_M and SkeletonLength_C.
Supplementary Fig. S14. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 4 from 78,020,118 to
78,451,569 bp. This peak is associated with the phenotypes be-
longing to Flowering Time and Inflorescence categories. The phe-
notypes associated with this group are Anthesis5_H and Spike-
Length1_C.
Supplementary Fig. S15. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 4 from 190,332,784 to
190,410,017 bp. This peak is associated with the phenotypes be-
longing to Seed Composition and Vegetative categories. The phe-
notypes associated with this group are CrudeAsh_K, EarHeight_L,
Ncombustion_K, Nkjeltec_K, PlantHeight_L, and Protein_K.
Supplementary Fig. S16. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 5 from 4,615,668 to
4,617,726 bp. This peak is associated with the phenotypes be-
longing to Flowering Time and Vegetative categories. The phe-
notypes associated with this group are Anthesis1_L, EarHeight_L,
and PlantHeight_L.
Supplementary Fig. S17. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 5 from 32,944,052 to
32,957,580 bp. This peak is associated with the phenotypes be-
longing to Flowering Time and Vegetative categories. The pheno-
types associated with this group are Anthesis4_H, Anthesis7_H,
and ExtantLeafNumber2_J.
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Supplementary Fig. S18. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 5 from 39,053,843 to
39,077,552 bp. This peak is associated with the phenotypes belong-
ing to Flowering Time and Vegetative categories. The phenotypes
associated with this group are Anthesis_J and PlantHeight_G.
Supplementary Fig. S19. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 5 from 94,710,702
to 94,712,951 bp. This peak is associated with the phenotypes
belonging to Flowering Time, Root, and Vegetative categories.
The phenotypes associated with this group are Anthesis1_L, An-
thesis7_H, Anthesis_A, Anthesis_J, LeafAreaIndex_J, LeafLength_J,
RootArea1_O, RootArea2_O, RootArea4_O, RootWidth4_O, Silking-
GDD_L, Silking_J, and Silking_L.
Supplementary Fig. S20. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 7 from 164,238,577 to
164,238,577 bp. This peak is associated with the phenotypes be-
longing to Flowering Time and Vegetative categories. The phe-
notypes associated with this group are Anthesis5_H and Plan-
tHeight_J.
Supplementary Fig. S21. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 7 from 167,280,764 to
167,280,878 bp. This peak is associated with the phenotypes be-
longing to Cellular/Biochemical and Root categories. The phe-
notypes associated with this group are LeafCuticularConduc-
tance6_H and RootAngle2_O.
Supplementary Fig. S22. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 8 from 28,727,658 to
28,769,198 bp. This peak is associated with the phenotypes belong-
ing to Flowering Time and Root categories. The phenotypes associ-
ated with this group are Anthesis_J, RootDepth1_O, RootDepth2_O,
and Silking_J.
Supplementary Fig. S23. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 8 from 86,775,550 to
87,443,426 bp. This peak is associated with the phenotypes be-
longing to Cellular/Biochemical and Vegetative categories. The
phenotypes associated with this group are BiomassYield_G, Ex-
tantLeafNumber1_J, PH-EH_L, PlantHeight_G, and VascularBun-
dleDensity_D.
Supplementary Fig. S24. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 8 from 126,593,834 to
126,796,503 bp. This peak is associated with the phenotypes be-
longing to Flowering Time and Vegetative categories. The pheno-
types associated with this group are Anthesis4_H, Anthesis_A, An-
thesis_J, LeafAngle_J, Silking_A, and Silking_J.
Supplementary Fig. S25. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 8 from 135,045,240
to 135,071,381 bp. This peak is associated with the pheno-
types belonging to Inflorescence, Root, and Vegetative categories.
The phenotypes associated with this group are LowestBran-
chAngleAuto_P, PlantHeight_J, RootAngle1_O, and RootWidth4_O.
Supplementary Fig. S26. Local Manhattan plot with ±200 kilo-
bases of pleiotropic peak on chromosome 8 from 139,924,627 to
139,925,379 bp. This peak is associated with the phenotypes be-
longing to Flowering Time and Vegetative categories. The pheno-
types associated with this group are ExtantLeafNumber1_J, Ex-
tantLeafNumber2_J, PlantHeight_J, and Silking_A.
Supplementary Table S1. Widely used maize community associ-
ation panels.
Supplementary Table S2. Trait values for all phenotypes per ac-
cession and associated information per accession. Provided as in-
cluded Excel file.
Supplementary Table S3. Phenotypes and associated informa-
tion. Provided as included Excel file.

Supplementary Table S4. The locations of GWAS peaks, the traits
associated with each peak, and the genes adjacent to each peak.
Provided as included Excel file.
Supplementary Table S5. Individual GWAS hits. Provided as in-
cluded Excel file.
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