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Abstract

Neoantigens play a key role in the recognition of tumor cells by T cells. However, only 

a small proportion of neoantigens truly elicit T cell responses, and fewer clues exist as to 

which neoantigens are recognized by which T cell receptors (TCRs). We built a transfer 

learning-based model, named pMHC-TCR binding prediction network (pMTnet), to predict TCR-

binding specificities of neoantigens, and T cell antigens in general, presented by class I major 

histocompatibility complexes (pMHCs). pMTnet was comprehensively validated by a series of 
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analyses, and showed advance over previous work by a large margin. By applying pMTnet in 

human tumor genomics data, we discovered that neoantigens were generally more immunogenic 

than self-antigens, but HERV-E, a special type of self-antigen that is re-activated in kidney cancer, 

is more immunogenic than neoantigens. We further discovered that patients with more clonally 

expanded T cells exhibiting better affinity against truncal, rather than subclonal, neoantigens, had 

more favorable prognosis and treatment response to immunotherapy, in melanoma and lung cancer 

but not in kidney cancer. Predicting TCR-neoantigen/antigen pairs is one of the most daunting 

challenges in modern immunology. However, we achieved an accurate prediction of the pairing 

only using the TCR sequence (CDR3β), antigen sequence, and class I MHC allele, and our work 

revealed unique insights into the interactions of TCRs and pMHCs in human tumors using pMTnet 

as a discovery tool.
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INTRODUCTION

Neoantigens are short peptides presented by MHC proteins on the surface of tumor 

cells, which are transcribed and translated from somatically mutated genes. Neoantigens 

serve as targets for cytotoxic T cells via their interactions with T cell receptors 

(TCRs) and are therefore key players in immunoediting1. Immunotherapies, while having 

transformed cancer patient care, benefit only a small subset of patients2-5. Importantly, 

these immunotherapies have highlighted the role of neoantigens in checkpoint inhibitor-

induced immune responses6. Therefore, an accurate and comprehensive characterization of 

the interactions between neoantigens/antigens and TCRs is central to understanding cancer 

progression, prognosis, and responsiveness to immunotherapy.

One of the most fundamental and unsolved questions regarding neoantigens and antigen 

biology in general is the lack of understanding of why not all neoantigens elicit T cell 

responses (immunogenic)78, notwithstanding that they are expressed and presented on 

the cell surface. Even less is known about the TCR binding specificity to immunogenic 

neoantigens presented by MHC molecules (pMHCs). The ability to link pMHCs to TCR 

sequences is essential for monitoring the interactions between the immune system and 

tumors, and critical for enhancing the design or implementation of various immunotherapies. 

For example, selection of neoantigen vaccine candidates could be informed by pre-existence 

of compatible TCRs in the patient’s circulation. Accordingly, a number of experimental 

approaches, such as tetramer analysis9, TetTCR-seq10 and T-scan11, have been developed 

to detect pairing of TCRs and pMHCs. However, these methods are time-consuming, 

technically challenging, and costly. Furthermore, each technique has its caveats. Ito el al12 

examined multiple studies involving such techniques and found their validation rates to be 

as low as 1%. However, this is likely an underestimation due to many factors, including 

the rarity of matching TCRs in the patient’s sampled T cell repertoire. These deficiencies 

call for the development of state-of-the-art bioinformatics algorithms to predict TCR binding 
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specificity of neoantigens, which will significantly reduce the time and cost of identifying 

the pairings, and will greatly complement experimental approaches.

In this work, we employed transfer learning, a newer branch of deep learning, to train a 

model, named pMTnet, that can predict the TCR binding specificity of class I pMHCs. We 

systematically validated pMTnet using a large number of independent validation data and 

demonstrated the advance of our model over previous works. We applied pMTnet in human 

tumor sequencing data and made a series of novel observations regarding the sources of 

immunogenicity, prognosis and treatment response to immunotherapies. Overall, pMTnet 

addressed the long-standing TCR-pMHC pairing prediction problem, revealed biological 

insights on the genome-wide scale, and could serve as a basis for constructing biomarkers 

for predicting immunotherapeutic response.

RESULTS

Deep learning TCR-antigen binding specificity

Conceptually, we employed a staged approach of dividing the goal of learning the TCR-

binding specificity of antigens (pMHCs) into three steps, to lower the difficulty level of the 

prediction task. First, we trained a numeric embedding of pMHCs (class I only) using Long 

short-term memory (LSTM) network so the protein sequences of antigens and MHCs could 

be represented numerically. Second, we trained an embedding of TCR sequences using 

stacked auto-encoders, which again encoded text strings of TCR sequences numerically. 

These two steps create numeric vectors that are manageable for mathematical operations and 

set the stage for the final pairing prediction. At the final stage, we created a deep neural 

network on top of these two embeddings to combine the knowledge from TCRs, antigenic 

peptide sequences and MHC alleles in a biologically meaningful way. We employed fine-

tuning to finalize the prediction model for the pairing between TCRs and pMHCs.

To numerically embed TCRs, we focused on the CDR3 regions of TCRβ chains, which is 

the key determinant of specificity in antigen recognition13. We first encoded amino acid 

symbols using Atchley factors14, which use five numbers to comprehensively represent 

the physicochemical nature of each amino acid. We then built a stacked autoencoder (Fig. 

1a) to learn a small numeric embedding of TCRs with the “Atchley” version of TCRs 

as input from 243,747 unique human TCRβ CDR3 sequences. Details of these data are 

shown in Supplementary Information. Auto-encoders are capable of capturing key features 

of complex input through an unsupervised decompose-reconstruction process and embed 

the captured features of the input in the form of a short numeric vector. Although we only 

used CDR3β sequences, these CDR3s were composed of V, D and J genes allowing their 

identities to be indirectly infused into the embedding. We validated this auto-encoder by 

comparing the input TCRs and reconstructed TCRs. Our analyses show that CDR3s can be 

reconstructed via CDR3 embeddings in a highly faithful manner (Fig. 1b), demonstrating 

the successful training of this auto-encoder. More examples are shown in Extended Data 

Figure 1a,b. The Pearson correlations between the original TCR CDR3 Atchley matrices 

and the reconstructed matrices were generally larger than 0.95 (Extended Data Figure 1c). 

The validity of this TCR auto-encoder was also supported by our recent publication15 where 
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we built a statistical model called Tessa, on top of this auto-encoder, which successfully 

interpreted the functional significance of TCR repertoire from single cell sequencing data.

For embedding of pMHCs, we first re-implemented the netMHCpan model using a deep 

LSTM neural network (Fig. 1c). This was done so that the internal layers of the netMHCpan 

model were available for integration with the other parts of our model. The input of this 

model is the MHC sequence (class I only) and the antigen protein sequence. The output, at 

this stage of training, is whether the antigens bind to the MHC molecule or not. Although 

this output layer is dedicated to predicting antigen and MHC binding, the layers prior 

to it should contain important information regarding the overall structure of the pMHC 

complex. The same data used for training netMHCpan were used to re-train our model, 

which consist of 172,422 measurements of peptide-MHC binding affinity covering 130 

types of class I MHC from humans. The Pearson Correlation of the predicted binding 

probability and true binding strength in the independent testing dataset reached 0.781 (Fig. 

1d), which is comparable with the Pearson Correlation of 0.76 from the original netMHCpan 

publication16. For the next stage of learning the pairing between TCR and pMHCs, we 

extracted the immediate layer (a numeric vector) before the final output layer, as the numeric 

embedding of pMHCs.

Finally, we leveraged the trained numeric vector encodings of TCRs and pMHCs for 

learning the pairing between them. We constructed a fully connected deep learning network 

based on the output of these two sub-models, leading to a final layer with a single neuron 

for predicting the pairing (Fig. 1e). Based on this integrated model, we innovatively 

employed a differential learning schema, where this model is fed a true binding pair of 

TCR and pMHC and another negative pair with the same pMHC in each training cycle. We 

collected a total of 32,607 pairs of binding TCR-pMHCs from a series of peer-reviewed 

publications10,17-23 (N=13,388), and four Chromium Single Cell Immune Profiling Solution 

datasets (N=19,219). The details of these data are shown in Supplementary Information. 

Some databases provided quality metrics, which we used to filter the records to keep only 

pairs with high confidence. For example, in the VDJdb data, we only included records with 

vdj.score>0, as is also done in TCRGP24. Duplicated records were removed. We created 

10 times more negative pairs, by random mismatching TCR and pMHC of these 32,607 

pairs. The training was performed for 150 epochs (Fig. 1f). We named the final model, 

pMTnet for pMHC-TCR binding prediction network. Following our differential training, the 

prediction output was also generated in a comparative manner. pMTnet outputs a continuous 

variable between 0 and 1, reflecting the percentile rank of the predicted binding strength 

between the TCR and the pMHC, with respect to a pool of 10,000 randomly sampled TCRs 

(as a background distribution) against the same pMHC. We use a smaller rank to denote 

a stronger binding, similar to netMHCpan. Importantly, as we always bundle antigen and 

MHC together and let the model focus on discerning binding or non-binding TCRs, all 

validations are specific for distinguishing TCR binding specificity, rather than antigen-MHC 

binding or the overall immunogenicity.
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pMTnet predicts TCR-pMHC pairing in independent experimental data

We performed a series of validation analyses with a large number of known TCR-pMHC 

binding pairs collected from independent studies. First, we collected 619 experimentally 

validated TCR-pMHC binding pairs (Supplementary Information). Compared with the 

training cohort, which is mainly constructed from bulk export from databases like VDJdb 

and high throughput experiments, the binding pairs that comprise the test cohort have mostly 

been subjected to stringent interrogation by the original reports on an individual basis. In 

this and all following validation analyses, TCR-pMHC pairs that appeared in the training 

dataset were removed, so the testing sets were completely independent of the training set. 

10 times negative pairs were generated by random mismatching. We used two metrics, 

Area Under the Curve (AUC) of Receiver Operating Characteristic (ROC) and Precision-

Recall (PR). Strikingly, the AUC of ROC reached 0.827 in this cohort and AUC of PR 

reached 0.565 (Fig. 2a). To test whether pMTnet truly “learned” the features that determine 

binding, or is simply “remembering” pairing cases, we looked at the prediction performance 

for TCRs with different degrees of similarity to the training TCRs (Fig. 2b, left group). 

For calculating “similarity”, we calculated the minimum of each testing TCR’s Euclidean 

Distances to all the training TCRs based on the TCR embeddings (representative examples 

shown in Supplementary Information). The AUCs of ROC and PR are shown for the subset 

of the testing TCRs with minimum distances over each cutoff, and the performance of 

pMTnet is relatively robust with respect to increasing levels of TCR dissimilarities. For 

pMHC, we performed the same analyses, and made similar observations (Fig. 2b, right 

group).

We also compared the performance of pMTnet with other software developed to predict 

TCR/epitope pairing, including netTCR25, TCRex26, and TCRGP24. Unlike pMTnet, all 

three softwares were limited by the type of epitopes/MHCs/TCRs that can be used for 

prediction. For example, netTCR only accommodates for the HLA-A:0201 allele, epitopes 

shorter than 10 amino acids, and CDR3s shorter than 10 amino acids. When tested on 

the same epitopes/MHCs/TCRs that satisfy the criterion of these three software, pMTnet 

demonstrates a large margin of improvement over each one (Supplementary Information). 

We also validated pMTnet on additional high quality pairing data from VDJdb and Gee et 
al27 that are not used during the training (Supplementary Information), and showed that the 

AUROC of pMTnet achieved >0.8 on them, and out-performed competing software.

Next, we validated the predicted binding between TCRs and pMHCs via the expected 

impact of the binding on the T cells, i.e., T cells with higher pMHC affinity should be more 

clonally expanded. The 10x Genomics Chromium Single Cell Immune Profiling platform 

generates single cell 5' libraries and V(D)J enriched libraries in combination with highly 

multiplexed pMHC multimer reagents. The antigen specificity between the TCR of one T 

cell and each tested pMHC is profiled by counting the number of barcodes sequenced for 

that particular pMHC in this cell. We examined four single-cell datasets, which profiled the 

antigen specificities of 44 pMHCs for CD8+ T cells from four healthy donors. For each TCR 

clone, we recorded the pMHC with the strongest predicted binding strength, by pMTnet, 

among all 44 pMHCs. Interestingly, we found the clone sizes and predicted ranks for T 

cell clonotypes were negatively correlated with statistical significance achieved (Fig. 2c). 
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In other words, T cells with TCRs whose predicted pMHC binding strengths were stronger 

were also much more expanded than others without a strong binding partner. This is more 

clearly demonstrated by the odds ratios (Supplementary Information) testing enrichment of 

the expanded T cell clonotypes with high affinity binding antigens. Conversely, we observed 

some TCRs with small clone sizes having small predicted binding ranks to pMHC, which 

was likely caused by the stochastic nature of binding between TCRs and pMHC, and 

possibly the constantly incoming new clones whose expansion had not happened yet.

We further analyzed whether pMTnet is capable of distinguishing the impact of the fine 

details of peptide sequences on TCR binding specificity. We acquired 186 pMHC-TCR 

pairs from Liu et al28, Cole et al29, and Tran et al30. In Liu et al, LPEP peptide analogs 

with single amino acid substitutions were tested for specificity towards three distinct TCRs 

with different CDR3βs. Out of all 94 analogs, 36 were determined to be stronger binders 

(<100pM of peptide needed to induce cytotoxic lysis by T cell) with the others deemed 

weaker binders. In Cole’s study, alanine-substituted MART-1 peptides were tested for the 

affinity to TCR MEL5 and ILA1. 15 out of 70 peptides had interactions with TCRs (KD 

value<500mM). In Tran’s study, 11 out of all 22 analog peptides activated T cells validated 

by IFN-γ ELISPOT. pMTnet generated predictions for each peptide analog (in complex 

with MHC) and the stronger binding analogs were indeed predicted to have stronger binding 

strength than their analogs (Fig. 2d, AUC=0.726).

We further validated pMTnet in prospective experimental data. We performed bulk TCR-

sequencing and HLA allele typing for one donor seropositive for prior Influenza, EBV 

and HCMV infections. The experiments were performed in the blood and the in vitro 
expanded T cells from this donor’s lung tumor. We analyzed the bulk TCR-sequencing data 

and predicted the binding between TCRs and four viral pMHCs, including Influenza M 

(GILGFVFTL), Influenza A (FMYSDFHFI), EBV BMLF1 (GLCTLVAML), and HCMV 

pp65 (NLVPMVATV). We found that TCRs predicted to have stronger binding (smaller 

ranks) to any of these peptides exhibited higher clonal proportions than the other TCRs (Fig. 

3a), in both the blood (left panel) and in vitro expanded T cells (right panel). We calculated 

the odds ratios for the enrichment of highly expanded TCRs with stronger predicted binding, 

where a higher odds ratio referred to a higher positive enrichment. We observed a stronger 

enrichment in both the blood and expanded T cells, while we performed permutations of 

the predicted binding ranks and observed much smaller odds ratios (Fig. 3b). Then we 

treated the expanded T cells with each of the viral peptides and performed scRNA-seq with 

paired TCR-seq, and we also performed vehicle treatment. We identified TCRs captured 

in each of the treatment groups and the vehicle treatment group, and used pMTnet to 

predict the binding of the TCRs to each peptide. We selected the top TCRs (predicted 

rank<2% by pMTnet) from each experiment, and first examined the gene expression of 

the T cells of these top binding TCR clonotypes. By comparing T cells with predicted top 

binding TCRs and the other T cells, we observed differentially expressed genes enriched in 

pathways essential for T cell proliferation, migration, survival, and cytotoxicity (results for 

GLCTLVAML shown in Fig. 3c as an example). We also calculated the clonal sizes of these 

top TCR clonotypes, and found that the majority of these TCR clonotypes exhibited larger 

clonal fractions in the treatment group than the vehicle group (Fig. 3d, clonal size ratio >1).
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Structural analyses support predicted TCR-pMHC interactions

We performed in silico mutational analyses to look for structural evidence for the CDR3 

residues whose mutations led to dramatic changes in the predicted binding between TCR 

and pMHCs. For each CDR3 residue, we mutated its numeric embedding to a vector of 

all 0s (“0-setting”). This is similar to but different from the alanine scanning technique 

in biophysics studies31. We first performed residue-wise mutations for all the TCRs of 

the 619 testing cohort, and recorded the differences in the predicted binding ranks (rank 

difference) between the wild type TCRs and the mutated TCRs. We divided each TCR 

CDR3 into six segments of equal lengths (Fig. 4a), and as expected, residues in the middle 

segments of CDR3s, which bulge out and are in closer contact with pMHCs, were more 

likely to induce larger changes in predicted binding affinity, when compared with the 

outer segments (T-test P-value between the third or fourth segment and any other segment 

is <0.00001). Furthermore, we extracted a total of 13 TCR-pMHC pairs from the IEDB 

cohort (Supplementary Information), with 3D crystal structures available in Protein Data 

Bank (PDB) and whose predicted binding affinity rank was less than 2%. According to the 

structures, we grouped CDR3 residues by whether or not they formed any direct contact 

with pMHCs residues within 4Å. We found that the contact residues were more likely to 

induce larger changes in predicted pMHC binding strength than non-contact residues (Fig. 

4b, P value=0.036). We also performed in silico alanine scanning and found a similar trend 

(Fig. 4c). The alanine scan was not as significant as for the “0-setting” scan, which could 

be attributed to the fact that, in the alanine scan, all alanines are presumed to have no effect 

after mutation (alanine->alanine). However, replacing one alanine with other residues with 

large side chains could affect the overall structural integrity of the protein complex, which 

may actually lead to a change in binding affinity. In Fig. 4a-c, we showed the absolute 

changes in rank percentiles (change to either stronger or weaker binding). But examination 

of the direction of the changes in rank percentiles showed that the in silico mutations mainly 

resulted in weaker binding.

In Fig. 4de, we showed an example TCR-pMHC structure with the PDB id of 5hhm, 

generated by Valkenburg et al32. Overall, we found that R98 and S99 had the biggest 

differences in predicted ranks after the “0-setting” scan (Fig. 4d, upper panel) and alanine 

scan (Fig. 4d, lower panel), which were the residues located in the middle of the CDR3 

and had the most contacts with pMHC. The other two amino acids with relatively high rank 

changes could be explained by their crucial role in formation and stabilization of the CDR3 

loop. We observed that S95 formed intra-chain contacts with the small loop formed by Q103 

and the side chains of E102 and Y104.

Characterizing the TCR-pMHC interactions in human tumors

To further validate pMTnet and demonstrate the value of pMTnet as a knowledge discovery 

tool, we characterized the TCR and pMHC interactions in several of the most immunogenic 

tumor types, where the tumor antigen presentation machinery is more likely to be active33. 

We analyzed the genomics data of The Cancer Genome Atlas (TCGA) and the in-house 

Renal Cell Carcinoma (RCC) data from our prior publication33. TCGA patients included 

lung adenocarcinoma patients (LUAD)34, lung squamous cell carcinoma patients (LUSC)35, 

clear cell renal cell carcinoma patients (KIRC)36 and melanoma patients (SKCM)37.

Lu et al. Page 7

Nat Mach Intell. Author manuscript; available in PMC 2022 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We investigated several classes of antigens that could affect T cell populations in the tumor 

microenvironment. The first class of antigens that could affect T cell retention and expansion 

is tumor neoantigens. The other class of antigens is tumor self-antigens (also referred to 

as tumor associated antigens, TAAs), such as CAIX38. In kidney cancer, in particular, 

Cherkasova et al discovered the re-activation of a special class of self-antigens, HERV-E 

retrovirus, which encodes several immunogenic peptides that have been experimentally 

validated39. The rest T cell infiltration may be explained by prior virus infection, or may 

simply be bystanders. The field has been debating for a long time which of these factors 

is most potent in shaping the landscape of the T cell repertoire in tumors. To answer 

this question, we identified candidate neoantigens and self-antigens from the genomic 

data (Materials and Methods). For RCCs, we profiled the expression of this very well 

characterized HERV-E found by Cherkasova et al (Materials and Methods). This pipeline 

also examined all other HERVs, but Extended Data Figure 2 shows that the tumor-over-

normal expression ratios of the other top HERVs were much smaller than that of HERV-E, 

and reports are lacking regarding whether these HERVs encode immunogenic peptides like 

this HERV-E does. In each patient sample, we assigned each TCR to one of the antigens 

(neoantigen and self-antigens) with the lowest predicted binding ranking, and also satisfying 

the criterion that this binding rank has to be lower than each one of a series of cutoffs 

between 0.00% and 2% (otherwise, this TCR will be unassigned).

For each patient sample, we calculated the percentages of neoantigens or self-antigens 

predicted to bind at least one TCR (defined as immunogenic antigen) for each class of 

antigens. Fig. 5a shows the total and immunogenic antigen numbers for one example 

RCC patient. Then for all patients of all cancer types, we calculated the proportion of 

immunogenic antigens for neoantigen, self-antigen (excluding HERV-E), and HERV-E 

(kidney cancer only) for each patient, and averaged them across all patients. We observed 

that neoantigens were generally more immunogenic than self-antigens (higher proportions 

of neoantigens are predicted to bind TCRs) (Fig. 5b). This is fitting because neoantigens, 

unlike self-antigens, are mutated peptides that have not been encountered by T cells during 

the developmental process. However, we observed that HERV-E antigens were more likely 

to be immunogenic than both neoantigens and the other self-antigens in RCCs, confirming 

prior reports on the importance of HERV-E in inducing immune responses in kidney 

cancers39.

Next we examined the impact of TCR-pMHC interactions on the clonal expansion of T cells. 

For each patient, we compared the clonal fractions of TCRs (#specific TCR clonotype/#all 

TCRs) that were predicted to be binding to any of the neoantigens and self-antigens, and 

also the clonal fractions of the other non-binding T cells. In an example patient (Fig. 5c), we 

showed the average clonal fraction of TCRs that can bind or that cannot bind to any antigen 

in this patient (1% binding rank cutoff). This patient’s binding T cells had a higher average 

clonal fraction than non-binding T cells. For each of the four cancer types, we calculated 

the number of patients with binding T cells having a higher average clone fraction, divided 

by the number of patients with non-binding T cells having a higher average clone fraction. 

Strikingly, we observed that more and more patients demonstrated clonal expansion of their 

antigen-targeting T cells compared to other T cells (Fig. 5d), with smaller and smaller rank 

percentile cutoffs (stronger affinity) to define antigen-TCR pairing. Consistent with Fig. 2c 
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and Fig. 3, this result also shows that more immunogenic tumor antigens induce stronger T 

cell clonal expansion in human tumors.

Finally, we tested the TCR binding affinity of neoantigens generated by missense 

mutations and frameshift mutations. Frameshift mutations usually generate epitopes that 

are completely new and not similar to any epitope from the normal human proteome, 

while missense neoantigens differ from the normal epitopes by one mismatch. Therefore, 

frameshift neoantigens are likely more potent in inducing strongly reactive T cells/TCRs. 

Indeed, the neoantigens generated by frameshift mutations exhibited significantly stronger 

binding to TCRs (average rank=0.81%) than neoantigens generated by missense mutations 

(average rank=0.92%) (P=8.1E-9).

TCR-neoantigen interactions impact tumor progression and immunotherapy treatment 
response

We evaluated whether the TCR-pMHC interactions profiled by pMTnet are physiologically 

important. We focused on tumor neoantigens, as they are associated with somatic mutations, 

which can be directly linked to tumor clone fitness. In a given tumor, some neoantigens may 

bind TCRs of T cells that are more clonally expanded while others may bind T cells that are 

less expanded. Conversely, some neoantigens arise from truncal mutations (higher variant 

allele frequency), while others arise from subclonal mutations. When truncal neoantigens are 

bound by clonally-expanded TCRs, the distribution of neoantigens and T cells may favor 

the elimination of tumor cells, which could be beneficial for prognosis and immunotherapy 

treatment response42,43. To quantitatively measure this effect, we developed a neoantigen 

immunogenicity effectiveness score (NIES), which is based on the product of the variant 

allele frequency (VAF) of the neoantigen’s corresponding mutation and the clonal fraction 

of the TCRs that bind the same neoantigen (details in Supplementary Information). Proper 

normalizations were carried out to remove the confounding effect of tumor purity and total 

T cell infiltration. The higher the NIES score, the more expanded TCRs are specific against 

truncal neoantigens, which is generally favorable for clinical outcomes42,43.

We examined the association between NIES and prognosis in the LUAD, LUSC, SKCM, 

and RCC cohorts. We first focused on patients with high levels of total T cell infiltration. 

We speculated that the neoantigen-T cell axis is more likely to be functionally active when 

there is sufficient T cell infiltration. Interestingly, in lung cancer and melanoma patients, 

higher NIES scores were associated with better survival (Fig. 6a, LUAD, P=1.74E-3; 

Fig. 6b, LUSC, P=0.0238; Fig. 6c, SKCM, P=6.65E-4). In comparison, NIES was not 

prognostic in kidney cancer (Fig. 6d). For all four cohorts, overall survival of patients 

with low T cell infiltration was unrelated to the levels of NIES, further supporting our 

hypothesis. Interestingly, the difference between kidney cancer and other cancer types may 

have reflected the unique features of kidney cancers such as low mutational load and 

HERV-E reactivation. We next combined lung cancer and melanoma patients with high T 

cell infiltration, and the survival analysis of this integrated cohort revealed that patients with 

higher NIES had a better overall prognosis (P=1.12E-6, Fig. 6e). Multivariate analysis was 

performed adjusting for disease type, stage, gender, age, and TCR repertoire diversity44 

in the combined cohort and the association between survival rate and NIES still held 
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(P<0.001, Fig. 6f). Analyses shown in Fig. 6a-f were carried out using a binding ranking 

cutoff of 1%. Using a series of different cutoffs, we obtained similar results (Fig. 6g). As a 

benchmark, we dichotomized patients by the median neoantigen load, T cell infiltration, or 

TCR diversity and performed the same analyses. We observed that NIES was much more 

strongly prognostic than other candidate biomarkers (Fig. 6g).

Similarly, we evaluated the implication of TCR-neoantigen interaction efficiency for 

treatment response prediction. We analyzed a total of 139 melanoma patients on immune 

checkpoint inhibitor treatment from Liu et al45, Van Allen et al46 and Hugo et al47. Patients 

were divided into two groups based on the median NIES and we demonstrated that patients 

with higher NIES had better overall survival (Extended Data Figure 3a, P=2.44E-3, binding 

affinity cutoff at 1%). We also analyzed a cohort of anti-PD-L1-treated metastatic gastric 

cancer patients, of which more than one-third were found to harbor high mutation loads48. 

For this cohort, survival information was unavailable so we analyzed RECIST responses, 

and found that patients with better responses had higher NIES (Extended Data Figure 3b, 

P=9.9E-3). Results of other binding rank cutoffs are shown in Extended Data Figure 4ab. 

In comparison, we analyzed a cohort of ccRCC patients on anti-PD1/anti-PD-L1 from Miao 

et al49. As expected, no significant association was observed between NIES and survival 

rate (Extended Data Figure 4c). NIES was then benchmarked against total neoantigen load, 

T cell infiltration, and TCR repertoire diversity and demonstrated an advantage over these 

three other biomarkers (Extended Data Figure 5, 1% cutoff). To systematically assess the 

significance of these comparisons, we leveraged the bootstrap technique and confirmed that 

the advances were statistically significant (Extended Data Figure 3c).

DISCUSSION

Our work enabled prediction of the TCR-binding specificity of class I pMHCs, just given the 

TCR sequence, (neo)antigen sequence, and MHC type, which has not been achieved before 

to our knowledge. This is enabled by several innovative algorithmic designs, including 

transfer learning to take advantage of a large amount of related TCR and pMHC data 

without pairing information, and the differential training paradigm that allows pMTnet to 

focus on differentiating binding vs. non-binding TCRs. Although TCRs directly interact 

with the epitopes, MHC proteins restrict the spatial locations of the anchor positions of the 

epitopes, which further limits the possible conformations of the epitopes and influences their 

interactions with TCRs. This led us to incorporate MHC protein sequences in pMTnet. In 

our work, we showed that pMTnet significantly outperforms competing software such as 

netTCR. Other methods such as GLIPH18 and TCRdist50 were developed to group TCR 

sequences profiled in a given sample into clusters, with each cluster of TCRs assumed to be 

specific to a single epitope. However, such methods still cannot pinpoint the exact sequence 

of neoantigens or antigens without prior knowledge.

Furthermore, a suite of genome-wide analyses was now enabled by pMTnet, which has 

revealed interesting biological discoveries. Our work provided a large scale and unbiased 

estimate of the immunogenicity potential of neoantigens and self-antigens (including 

HERV-E). Recently, Gee et al carried out yeast-display screening in two HLA-A*02:01 

homozygous patients with colorectal adenocarcinoma and identified four TCRs and their 
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peptide targets27. Surprisingly, three of the four receptors recognized unmutated self-

antigens. Consistent with the observations of Gee et al in a limited number of patients, 

we confirmed in several large cohorts that self-antigens do have immunogenic potential, 

though neoantigens are still more likely to be immunogenic. But HERVs, a special class of 

self antigens in kidney cancer, seems to be more immunogenic than neoantigens.

Our work demonstrated the potential of leveraging pMTnet to enhance the care of cancer 

patients, such as generating prognostic tools and predictive tools for immunotherapy 

treatment response. Yost el al51 discovered dramatic clonal replacement of T cells in cancer 

patients after anti-PD-1 therapy. pMTnet could make it more feasible, both in terms of time 

and cost, to closely monitor the patients’ TCR repertoire after immunotherapy treatment, 

and to achieve the most informative treatment decisions in real-time. pMTnet could also 

be used for designing TCR-T or neoantigen vaccine therapies, where pMTnet can generate 

a narrowed down list of candidate TCRs or neoantigens for engineering. We showed that 

NIES is prognostic and predictive for checkpoint inhibitor treatment, though not in kidney 

cancer, perhaps due to the re-activation of HERVs and its low mutational load.

One caveat of the current study is the potential problem caused by the biased representation 

of certain epitopes and their clonally expanded pairing TCRs in our training dataset. 

Admittedly, our training dataset collection has many common epitopes such as those well 

studied ones from CMV. In the future, we expect more training TCR-pMHC pairing data 

to be accumulated by the field, especially given the advent of high-throughput technologies 

such as T-scan and 10X Immune Profiling. These data will more accurately represent the 

whole space of possible epitopes for training pMTnet, and will be powerful for helping 

move the field forward.

Overall, we proved that the pairing between TCRs and pMHCs, just given the TCR, the 

antigen, and the MHC sequences, is “machine learnable”, which sets a foundation for future 

studies based on our work. We expect pMTnet to propel tumor immunogenomics research 

and also to enhance the design and implementation of immunotherapy in the modern era of 

personalized medicine.

METHODS

Embedding TCR CDR3β sequences

We encoded the TCR CDR3β sequences by the “Atchley factor”14, which represents each 

amino acid with 5 numeric values. These 5 values can comprehensively characterize the 

biochemical properties of each amino acid. The resulting numeric matrix has the number 

of rows being the number of Atchley factors and the number of columns being 80. Then 

the “Atchley matrices” of TCR sequences were fed into a stacked auto-encoder, which is 

a powerful algorithm capable of learning sophisticated signals in an unsupervised manner. 

Atchley matrices of TCR sequences are input into a 2D convolutional layer with 30 5x2 

kernels and activated with the ‘SELU’ function, followed by a batch normalization layer and 

a 2D average pooling layer with 4x1 kernels. The pooling layer is followed by another 2D 

convolutional layer with 20 4x2 kernels, and the same batch normalization layer and a 2D 

average pooling layer as previously described. After pooling, the matrices are converted into 
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a flattened layer, followed by a 30-neuron dense layer activated with the ‘SELU’ function, 

and a dropout layer with a dropout rate 0.01, and another 30-neuron dense layer activated 

with the ‘SELU’ function, which is the ‘bottleneck’ layer of the auto-encoder model. Layers 

before the bottleneck layer are reversed to create the decoder part of the model. The input 

of the encoder and output of decoder are exactly the same – the Atchley matrices. The 

training process instructed the auto-encoder to reconstruct the input data and capture their 

inherent structure using a simple numeric vector. After training is finished, the smallest fully 

connected layer in the middle of the auto-encoder (bottleneck) forms a 30-neuron numeric 

vector embedding of the original CDR3s. The TCR CDR3β sequences were padded to 80 

amino acids long for several reasons. We leave room here for potentially adding CDR3 of 

the α chains in the future. CDR1 and CDR2 may also be added. This could be convenient as 

the structure of the auto-encoder does not need to be changed, or just needs to be minimally 

changed, even when the other CDRs are added.

Embedding pMHCs

The embedding of pMHCs mostly follows the netMHCpan algorithm. The netMHCpan 

algorithm uses a pseudo sequence method to encode the MHC proteins52. The pseudo-

sequences consist of amino acids in contact with the peptide and only 34 polymorphic 

residues were included. Then the BLOSUM50 matrix is used to encode these 34 residues. 

On the other hand, the (neo)antigens were also encoded by the BLOSUM50 matrix as in 

netMHCpan. We constructed a deep learning model with the HLA pseudo sequence and 

the antigen sequence as the input. Here, we used the MHC sequence rather than type as 

the input, so the use can be extended to unknown MHC types not seen in the training 

cohort. The major difference of our implementation from the original netMHCpan model is 

that, instead of simple feed-forward neural networks, we used a Long short-term memory 

(LSTM) layer with the output size of 16 on top of the antigen input, and an LSTM layer 

with the output size of 16 on top of the MHC input. We found this change to seem to have 

increased the speed of reaching model convergence on our hand. The LSTM outputs for 

antigen and MHC are concatenated to form a 32-dimensional vector in the same layer. This 

layer is followed by a dense layer with 60 neurons activated by “tanh” and a-single-neuron 

dense layer as the last output layer. We trained this network with the exact data that were 

used to train the netMHCpan model. After training is completed, we extracted the immediate 

60-dimensional fully connected layer before the single-neuron output layer (again a short 

numeric vector), as the embedding of pMHCs.

Learning TCR binding specificity of pMHCs

We employed transfer learning to leverage the trained numeric encodings of TCRs and 

pMHCs. These pre-trained models were fixed and incorporated into the final prediction 

model as early layers (save parameters needed for training). The two encodings both yield 

the final output layers in the form of numeric vectors. We concatenated the two numerical 

vectors into a single layer, added a dense layer with 300 neurons activated by “RELU”, a 

dropout layer with dropout rate of 0.2, a dense layer with 200 neurons activated by “RELU”, 

a dense layer with 100 neurons activated by “RELU”, and the last layer with a single neuron 

with tanh activation. Mathematically, the output prediction for a given pMHC, p*, towards 

a given TCR, T*, can be written as f(p*,T*). For the training process, known interactions 

Lu et al. Page 12

Nat Mach Intell. Author manuscript; available in PMC 2022 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between pMHCs and TCRs were treated as positive data. And we randomly mismatched 

these TCRs and pMHCs to create 10 times more negative data.

Differential loss function

Rather than directly learning the positive and negative labels of the training data, we 

developed a novel differential training method to instruct pMTnet to distinguish binding 

TCRs from non-binding TCRs through comparison. To implement this, we created two 

duplicates of the above-described networks, always sharing weights throughout the training 

process. During one training step, one positive (known interaction) training point (p,T+) is 

fed into the first network, and a negative training point (p,T−) is fed into the second network. 

A loss function of

Loss = Relu(f(p, T−) − f(p, T+)) + 0.03[f2(p, T−) + f2(p, T+)]

is defined. In other words, the learning process focuses on the same pMHC each time and 

tries to identify the TCRs that truly bind to it, out of other TCRs. The second item in the loss 

function serves the purpose of a regularization term to reduce overfitting and also to push the 

output of the network to be closer to 0. This helps make sure the model parameters stay in a 

dynamic range where gradients are neither too small nor too large.

In accordance with this differential training method, the output of pMTnet is also not the 

direct output of the deep learning network. In fact, for each pMHC, p*, we sample 10,000 

TCR sequences randomly from our databases to form a background distribution, {Tb}. We 

will calculate the percentile of f(p*,T*) in the whole distribution of {f(p*,Tb)}, where T* is 

the TCR of interest. The larger this value, the stronger we predict the binding is between p* 
and T*. In line with how netMHCpan generates the ranked prediction of the binding strength 

between antigens and HLA proteins (percentile_rank), we also inverted this rank. Therefore, 

in our final output, a smaller rank between a pMHC and a TCR refers to a stronger binding 

prediction between them.

Defining self-antigens

To detect self-antigens in tumor samples, we focused on genes that are lowly expressed 

(<0.01 RPKM) in all normal tissue types according to the GTEx project (https://

www.gtexportal.org/home/datasets), and are expressed at >1RPKM in each tumor sample. 

There are a total of 52 normal tissue types collected by GTEx. We translated the protein 

sequences from such genes and also used the netMHCpan to detect 8-11 mers that will bind 

to the same patient’s class I HLA alleles.

To detect HERV expression levels in bulk RNA sequencing data from patient samples, 

we built a pipeline named ‘HERVranger’, available at: https://github.com/jcao89757/

HERVranger. Description is provided at this link regarding how it detects HERV expression 

from genomic sequencing data.
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Generation of in-house validation data

The donor of this study was enrolled in the MDACC Immunogenomic Profiling of Non-

Small Cell Lung Cancer (ICON) project. The ICON study was approved by MDACC’s 

institutional review board, and patients were consented before enrollment. This donor 

expressed HLA-A*02. We extracted the peripheral blood and tumor infiltrating T cell 

specimens from this donor. Bulk sequencing of the CDR3 regions of human TCRβ chains 

was performed using the immunoSEQ Assay (Adaptive Biotechnologies, Seattle, WA) 

following the manufacturer's protocol. The expanded T cells (IL2 plus anti-CD3 treatment) 

from the tumor were seeded on 96-well plates at the density of 100,000 cells per well. The 

T cells were co-cultured with 10ug/ml individual HLA-matched viral peptides, including 

Influenza M (GILGFVFTL), Influenza A (FMYSDFHFI), EBV BMLF1 (GLCTLVAML), 

and HCMV pp65 (NLVPMVATV) (GenScript, Piscataway, NJ, USA) or AIM-V medium 

alone overnight. The T cells were harvested and submitted for library preparation of 10X 

Single Cell 5’ Gene Expression and Immune Profiling at MedGenome (Foster City, CA, 

USA). Sequencing was conducted with an Illumina NovaSeq6000 with 150-bp paired-end 

reads (Illumina, San Diego, CA, USA) following the manufacturer’s protocol. The 10X 

sequencing data was analyzed using the 10X CellRanger software.

Statistical analyses

All computations and statistical analyses were carried out in the R computing environment. 

All P values are two-way unless otherwise noted. The AUC of ROC and Precision-Recall 

was calculated by the ‘RPPROC’ R package. The GOrilla webserver was used to detect 

enriched gene ontology pathways from single-cell expression analysis71. For analysis of 

neoantigens in the tumor, we used the QBRC mutation calling and neoantigen calling 

pipelines43. For correlating NIES with survival, the NIES scores were split on the median 

within each patient cohort, and we employed the log-rank test for evaluating whether 

patients with higher NIES scores had better survival. For the metastatic gastric cancer 

cohort, we employed the ordinal Jonckheere test for investigating whether there is an overall 

trend of patients with better responses (CR->PR->SD->PD) having higher NIES scores. The 

same criterion was applied for neoantigen load, T cell infiltration, and TCR diversity. T cell 

infiltration was profiled by our recently published eTME gene signature33 using the ssGSEA 

method72. For model comparison, 5,000 bootstrap resamples of the original cohorts were 

generated, and each resample was used to evaluate the performance of the NIES scores (or 

neoantigen load or T cell infiltration or TCR diversity). The P values of 5,000 bootstraps of 

each approach were compared using the two-sided Wilcoxon signed-rank test.
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Extended Data

Extended Data Figure 1. 
More examples showing the successful embedding of TCRs by the auto-encoder. (a) 

Heatmaps of the original TCR CDR3β sequences, embedded by the “Atchley factors” and 

all padded with zeros to the length of 80 amino acids. (b) Heatmaps of the re-constructed 

TCR CDR3β sequences for the same TCRs. (c) Scatterplots showing the consistency 

between ‘Atchley factor’ values of the original and re-constructed TCRs. Blue points 

represent tiles in the heatmaps in (a) and (b). The red dashed lines are for y=x.
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Extended Data Figure 2. 
Differential analysis of the expression levels of HERVs between tumor samples and normal 

samples in different RCC cancer types and data cohorts. In addition to EU137846.2 (the 

known HERV-E), the HERVs whose tumor-over-normal expression ratio is >3 in any of the 

type/cohort, and whose normal tissue expression is <3 are also shown. There are five such 

HERVs.

Extended Data Figure 3. 
Efficiencies of TCR-neoantigen interactions impact response to immunotherapies. (a) 

Association between NIES and overall survival of melanoma patients on immunotherapies. 

The patients were split by the median of NIES in each cohort and then combined. The 

P-value for the log-rank test is shown. (b) Association between NIES and the response of 

metastatic gastric cancer patients. The overall survival or progression-free survival data are 

not made available from the original publication, so we used the RECIST response variables. 
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Complete response (CR), partial response (PR), stable disease (SD), and progressive disease 

(PD). There are 40 gastric cancer patients. An ordinal Jonckheere test is employed to 

investigate whether patients with better response to immunotherapies also have higher 

NIES scores. In this test, all categories are compared together to investigate whether an 

overall trend exists across all categories. (c) Boxplots of bootstrap P values evaluating 

the robustness of comparison between NIES, neoantigen load, T cell infiltration level, and 

TCR diversity. One P-value is generated from one bootstrap resample of each cohort, and 

the two-sided Wilcoxon signed-rank test was carried out for the bootstrap P values to 

assess whether differences are significant between different biomarkers. NS: P>0.01, *: 

P=0.01-0.05, **: P=0.001-0.01, ***: P=0.0001-0.001, ****:P<0.0001. For boxplots in (b) 

and (c), box boundaries represent interquartile ranges, whiskers extend to the most extreme 

data point which is no more than 1.5 times the interquartile range, and the line in the middle 

of the box represents the median.

Extended Data Figure 4. 
Association of NIES with treatment response of (a) melanoma, (b) metastatic gastric cancer, 

and (c) kidney cancer patients on checkpoint-inhibitor treatment. There are 33 kidney cancer 

patients from the Miao cohort. The same analyses as in Extended Data Figure 3 were carried 
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out, except that the binding affinity cutoffs for assigning TCRs to neoantigens were varied at 

several possible values.

Extended Data Figure 5. 
Association of neoantigen load, T cell infiltration level, and TCR repertoire diversity with 

treatment response of (a) melanoma, (b) metastatic gastric cancer, and (c) kidney cancer 

patients on checkpoint-inhibitor treatment. The same analyses as in Extended Data Figure 3 

were carried out for these biomarkers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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size and role in the machine learning process, are shown in Supplementary Information. 

The training and testing datasets are shared on our github repository: https://github.com/

tianshilu/pMTnet. The processed TCR-seq and scRNA-seq data generated from the in-house 

patient donor are archived on the https://github.com/tianshilu/pMTnet link as well. The raw 

scRNA-seq plus TCR-seq data have been archived on NIH GEO with the accession number 

of GSE173165.

For the NIES analyses, the public patient sequencing datasets are from TCGA, Liu et al45, 

Van Allen et al46 and Hugo et al47. The raw RNA-Seq and exome-seq data of the in-house 

IL2 cohort patients can be downloaded from the European Genome Phenome Archive with 

accession number EGAS00001003605 through controlled access.
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Fig. 1. 
Deep learning the TCR binding specificity of neoantigens. (a) The structure of the stacked 

auto-encoder for learning TCR embeddings. (b) Original TCRs and reconstructed TCRs 

are almost the same. Original TCRs (amino acid sequences), Atchley factor-encoded TCRs 

(Atchley matrices of numbers), reconstructed TCRs (in the form of reconstructed Atchley 

matrices), and reconstructed TCR sequences (amino acid symbols determined by means of 

closest Euclidean distance) are shown. (c) The structure of the re-implemented netMHCpan 

model. (d) Validation of the predicted binding between (neo)antigens and MHC proteins 

generated by the pMHC embedding model, by the experimentally obtained data. The 

increase in the Pearson Correlation over training cycles (epochs) is shown. (e) Structure 

of the final pMTnet model. (f) The loss function of pMTnet over training time, in the units 

of epochs. The performances on both the internal validation subset that is split within the 

training cohort (red) and the independent validation cohort (green) are shown.
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Fig. 2. 
Validation of pMTnet. (a) AUCs of Receiver operating characteristic (ROC) and precision-

recall (PR) of the predicted binding ranks (smaller ranks refer to stronger binding) were 

shown for the 619 experimentally validated TCR-pMHC binding pairs and 10 times more 

randomly shuffled negative pairs. (b) AUCs of ROC and PR for different cutoffs of 

euclidean distances of the 30-dimension PCs for embeddings were shown, where the cutoffs 

were used for subsetting TCRs (left group) and pMHCs (right group) of the 619 testing 

cohort. The AUCs were shown in light pink and green. The proportions of the selected TCRs 

and pMHCs out of the total 619 testing cohort, chosen by these cutoffs, were shown in blue. 

(c) The expansion of TCR clonotype is associated with their binding strength to pMHCs 

in the 10x Genomics Chromium Single Cell Immune Profiling datasets. The portion of this 

10X Genomics dataset that was used in the validation phase is totally independent of the 

portion used in the training phase (see Supplementary Information for details). Y-axis shows 

the percentage of each clonotype in the whole pool of TCRs. The P values were calculated 

by the Spearman correlation test. (d) Peptide analogs that were experimentally validated as 

having stronger affinity towards the target TCR are predicted as having stronger affinity by 

pMTnet. An ROC plot was shown correlating the predictions (continuous variable) against 

the ground truth (binary variable). The Liu study dataset was shown.
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Fig. 3. 
Prospective validation of pMTnet predictions. (a) TCR CDR3s predicted to have smaller 

binding ranks have higher clonal sizes. Blood cells: left panel and in vitro expanded T 

cells: right panel. X-axis shows the minimum of the binding ranks to any of the four viral 

pMHCs. Y-axis shows the clonal proportions of each TCR CDR3 clonatype in each sample. 

(b) Odds ratios for enrichment of highly expanded T cells with smaller binding rank for 

blood/expanded-T cells. We extracted the #CDR3s with clonal proportions>0.1% and with 

predicted rank<2% (HB); #CDR3s with clonal proportions<0.1% and predicted rank>2% 

(Ls); #CDR3 with clonal proportions>0.1% and predicted rank>2% (LB); #CDR3 with 

clonal proportions<0.1% and predicted rank<2% (Hs). Odds ratios are calculated as (HB 

*Ls)/(LB *Hs). Permutation of predicted ranks were performed, and the odds ratios were 

calculated again for control purposes. (c) Genes differentially expressed in T cells with 

predicted binding to viral pMHC (EBV BMLF1 as an example, rank cutoff=0.1) and T cells 

without binding are enriched in pathways essential for T cell functions. Right part of the 

circos plot shows differentially expressed genes and they are enriched in the corresponding 

pathways with the same colors on the left. (d) Ratios of clonal proportions in the viral 

pMHC treatment group vs. the vehicle treatment group. The red horizontal line (ratio=1) 

indicates no change.
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Fig. 4. 
Structural analyses support the predicted TCR-pMHC interactions. (a) Residues in the 

middle segments of CDR3s are more likely to induce larger changes in predicted binding 

affinity. We divided each TCR CDR3 into six segments of equal lengths, and plotted the 

normalized changes in predicted binding ranks of residues in each segment of all CDR3s 

investigated. The absolute value of rank changes for each amino acid of a peptide are 

normalized by the maximal absolute value of rank changes for that peptide. (b) Residues 

with direct contacts are more likely to induce larger changes in the predicted pMHC binding 

strength than non-contacted residues. According to the 3D crystal structures, the CDR3 

residues were grouped by whether or not they formed any direct contacts with any residues 

of pMHCs. P value is calculated by one-way Wilcoxon Signed Rank Test. (c) Same analysis 

done as in (a) and (b) except for using alanine scan. For boxplots in (a)-(c), box boundaries 

represent interquartile ranges, whiskers extend to the most extreme data point which is no 

more than 1.5 times the interquartile range, and the line in the middle of the box represents 

the median. (d) Predicted rank changes of amino acid residues in the CDR3 of one example 

TCR-pMHC structure (PDB id:5hhm). The top panel shows the results for 0-setting and the 

bottom panel shows the results for alanine scan. (e) 3D structure of 5hhm. Blue: CDR3 of 

TCRβ chain; yellow: TCRα chain; tints: other regions of the TCRβ chain; magenta: antigen; 

green: HLA.

Lu et al. Page 26

Nat Mach Intell. Author manuscript; available in PMC 2022 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Characterizing the TCR-pMHC interactions in human tumors. (a) The number of 

immunogenic and non-immunogenic antigens of different classes for one example ccRCC 

patient (percentile rank cutoff=1%). The lower table shows the immunogenic percentage 

calculation process for this patient, which is applied to every patient in Fig. 4b. (b) The 

average percentage of immunogenic neoantigens, self-antigens (excluding HERV-E), and 

HERV-E peptides in each patient cohort. A series of binding cutoffs on the predicted pairing 

strength is applied. And with each cutoff, the immunogenic percentage is calculated for 

each patient and averaged within each cohort. (c) TCR clonal fractions of binding and non-

binding TCRs identified in one example patient. “Binding” refers to the predicted binding 

of TCRs to any of the neoantigens, self-antigens, or HERV-Es, with the binding rank cutoff 

being 1%. The box boundaries represent interquartile ranges, and the line in the middle of 

the box represents the median. (d) The ratio of the number of patients with binding T cells 

having a higher average clonal fraction over the number of patients with non-binding T cells 

having a larger average clonal fraction. This ratio is calculated with a series of binding rank 

cutoffs. The dashed horizontal line indicates the ratio of 1.
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Fig. 6. 
Efficiencies of TCR-neoantigen interactions impact tumor progression. (a-e) Kaplan-Meier 

estimator was used to visualize patient overall survival for each cohort. P values for log-rank 

tests are shown for testing the separation of the survival curves of high NIES and low NIES 

patients within the high T cell infiltration subsets. Patients were split on the median of T 

cell infiltration and median of NIES. (a) LUAD (b) LUSC, (c) SKCM, (d) RCC, and (e) 

combined cohort of LUAD, LUSC, and SKCM. There are 427, 389, 401, and 366 patients 

in LUAD, LUSC, SKCM, and RCC cohort respectively. (f) Multivariate analysis for the 

cohort in (e) with adjustment of several important covariates. The results shown in (a-f) 

use the cutoff of 1%. (g) The prognosis power of NIES calculated with TCRs assigned 

to neoantigens with a series of cutoffs on predicted binding ranks. The same analyses for 

neoantigen loads, T cell infiltrations and TCR diversity were also carried out as the control.
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