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Membrane growth requires lipid supply, which is usually accomplished 
by lipid synthesis or vesicular trafficking. In the case of autophagosomes, 
these principles do not apply. Ghanbarpour et al. postulate that 
autophagosome expansion relies on non-vesicular lipid delivery from 
the ER, whereby the activity of a lipid transfer protein (LTP) is directly 
coupled to scramblase activities in the donor and acceptor bilayers1. 
This new concept opens the possibility that lipid traffic is controlled 
by scramblases that provide not only specific docking sites for LTPs, 
thereby directing lipid flow, but also support their activity by overcoming 
barriers for lipid extraction and deposition.
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Background

Lipid transport within cells is an essential process, 
not least because lipids must be distributed to various  
cellular membranes from their principal biosynthetic  
source, the endoplasmic reticulum (ER). Because  
lipids are amphipathic, they are generally unable to  
flip spontaneously across a hydrophobic membrane  
bilayer or cross the aqueous cytoplasm from one mem-
brane compartment to another at an appreciable rate. 
Yet a fast and specific distribution of lipids is crucial 
for cell survival as well as the ability of cells to respond 
to various stimuli. For this, lipid transport catalysts  
are needed.

Ghanbarpour et al.1 focus on the biogenesis of  
autophagosomes, cup-shaped organelles that are 
formed by the cell to capture cellular material for deg-
radation. The mechanism by which the autophagosome  
grows from a Golgi-derived seeding vesicle is  
unclear. However, vesicle-mediated supply of mem-
brane lipids is unlikely, as membrane surface expansion 
is not accompanied by expansion of luminal volume.  
Recent work indicates that autophagosome expansion 
relies on the lipid transfer protein ATG22–4, which  
operates between the ER and autophagosome mem-
brane, providing a hydrophobic slide for lipid move-
ment, whereby lipid tails engage the slide while their  
headgroups remain in the aqueous cytoplasm5. How-
ever, ATG2-mediated lipid transfer from the cytoplas-
mic face of the donor to the acceptor bilayer would 
create imbalances in the transbilayer distribution of  
lipids, eventually stalling the process unless correct-
ed. The ER is equipped with scramblases, membrane 
proteins that facilitate bidirectional flip-flop of lipids 
across a bilayer and which are therefore capable of  
normalizing the lipid number between the two leaflets 
of its bilayer6. However, the autophagosome has only a 
few membrane proteins, including ATG9. Ghanbarpour  
et al.1 show that ATG9 is a scramblase and identify 

TMEM41B and/or VMP1 as the corresponding  
scramblases in the ER.

Main contributions and importance

Ghanbarpour et al. conceptualize the action of the 
LTP ATG2 in the context of scramblases located in the 
ER and nascent autophagosome. Here, we highlight  
their two main contributions.

First, the identification of TMEM41B/VMP1 and  
ATG9A as scramblases in this1 and related papers7–11 
is highly significant. The molecular identity of an ER 
phospholipid scramblase(s) has been the target of sci-
entific investigations for more than three decades  
due to the importance of scramblase activity for  
growth of the ER membrane bilayer12,13. Biochemi-
cal reconstitution studies indicated that at least two ER 
proteins are independently responsible for scrambling, 
based on selective inhibition by protein modification  
reagents14,15, but stopped short of identifying the pro-
teins. TMEM41B/VMP1 are therefore the first pro-
teins of the ER to be unambiguously identified as 
constitutive scramblases via both in vitro and in vivo  
assays1,8. Found in metazoan cells, they are necessary 
for autophagy but are unlikely to be the only phospho-
lipid scramblases in the ER. As TMEM41B/VMP1 
belong to a protein superfamily sharing the DedA  
domain, predicted to contain two enigmatic re-entrant 
loops suggestive of transport function, more proteins 
from this family might exhibit scramblase activity16–19. 
Thus, the identification of TMEM41B / VMP1 adds 
to the collection of known phospholipid scrambla-
ses which now includes the ER protein CLPTM1L20, 
G protein-coupled receptors21, and members of the  
TMEM16 and Xkr protein families22.

Second, Ghanbarpour et al. establish that scrambla-
ses in the ER and autophagosome provide docking 
sites for ATG2, which serves as a bridge over which  
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lipids flow between the two organelles1. The  
proposed physical association and functional synergy 
between these two classes of lipid transporters, scram-
blases and LTPs, is a new paradigm (Figure 1) with the  
following implications:

1) Scramblases recruit LTPs to target membranes

ATG2 physically interacts with both sets of scram-
blases as seen in co-immunoprecipitation experi-
ments. Furthermore, an N-terminal fragment of ATG2  
(mini-ATG2), associates with TMEM41B/VMP1-
containing liposomes, but not with empty liposomes 
or those containing ATG9. Thus, the N-terminus of 
ATG2 docks onto vesicles containing ER scramblases.  
The generality of LTP-scramblase association is high-
lighted by recent data7 indicating that VPS13, an 
LTP in the same family as ATG2, also interacts with  
scramblases.

2) Scramblases re-equilibrate membrane leaflets after  
lipids are extracted or inserted by LTPs

The number of lipids on the two sides of a membrane 
bilayer changes as LTPs extract or introduce lipids at 

the cytoplasmic face. Development of a lipid num-
ber asymmetry could stall lipid flow and membrane  
expansion. By exchanging lipids across the bilayer, 
scramblases would prevent build-up of transbilayer  
lipid number asymmetry, hence facilitating unrestrained  
lipid flow during membrane expansion.

3) Scramblases channel lipids into or from LTPs

The desorption of lipids from a membrane bilayer is  
energetically costly23,24. LTPs overcome this energy 
barrier by directly extracting lipids from membranes 
into a shielded environment. They also facilitate the 
reverse process, whereby lipids are deposited into  
membranes25. Scramblases may promote LTP-mediated 
lipid extraction/deposition by locally destabilizing/ 
thinning the bilayer19,26. A specific contribution of  
scramblases to LTP activity would rationalize the 
need for a direct interaction between these two classes  
of lipid transporters.

4) Discovery of new scramblases.

The membrane protein interactome of bridging LTPs 
such as ATG2 and VPS13 may yield the molecular 

Figure 1. Proposed cooperation between scramblases in the ER (TMEM41B, VMP1) and nascent autophagosomal membrane (ATG9), 
and the bridging lipid transport protein ATG2

The membrane bilayers are shown as coloured slabs (a white line separates the two halves of each bilayer). Phospholipids are shown generically 
with a red headgroup and orange acyl chains. Docking of ATG2 to the scramblases is indicated by the dotted lines. The transport proteins are shown 
according to the credit card model27, with a polar groove in the case of scramblases to accommodate lipid headgroups, and a hydrophobic groove in 
ATG2 to accommodate lipid tails. Bidirectional flow of lipids is shown by double-headed arrows so that lipids in both leaflets of both membranes 
are equilibrated by the scramblases and inter-bilayer exchange across the cytoplasm. Lipid transport may be effectively one-directional, with lipids 
being synthesized in the ER (‘source’) and consumed through expansion of the autophagosomal membrane (‘sink’) (see ‘Open Questions’ section 
‘What drives lipids to move towards the acceptor membrane, i.e., the newly forming autophagosome membrane’ for details).
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identity of additional scramblases in different sub-
cellular compartments. As noted above, VPS13 also  
interacts physically with scramblases28,29.

Open questions

The proposed interaction between LTPs and  
scramblases raises several questions.

1) How does the physical interaction between an  
LTP and scramblases promote function?

In addition to acting as LTP docking sites, and equili-
brating phospholipids across the respective bilayers, 
scramblases may have a non-canonical role in  
facilitating lipid movement into and out of the LTP,  
thereby influencing the kinetics of LTP-mediated  
lipid transport. Specifically, does the geometry of the 
LTP-scramblase docking site enable lipid hand-off  
between the two transport systems?

2) What drives lipids to move towards the acceptor 
membrane, i.e., the newly forming autophagosome  
membrane?

The LTP-scramblase system allows lipids to flow in 
both directions (Figure 1), yet unidirectional trans-
port is needed to expand the autophagosome mem-
brane. The observation that newly synthesized 
phospholipids are preferentially incorporated into  
autophagosomes11 hints at a possible mechanism 
by which this could be accomplished. Suppose that 
TMEM41B/VMP1 proteins are localized to a specialized  
region of the ER that is enriched in phospholipid  
biosynthetic enzymes (analogous to the mitochondria- 
associated membrane30) and surrounded by a lateral 
diffusion barrier that slows lipid escape into the bulk 
ER. The resulting build-up of newly synthesized  
phospholipids in this region would drive their export 
to the autophagosome via ATG2. According to this 
scenario, binding of TMEM41B/VMP1 would pro-
mote lipid entry into the proximal (ER) end of the  

ATG2 groove. ATG9 bound at the distal end of the 
groove would facilitate incorporation of the trans-
ported lipids into the autophagosomal membrane and 
mediate lipid equilibration across the bilayer to allow  
membrane expansion.

3) Is the coupling between LTPs and scramblases  
required for autophagosome biogenesis?

An ATG2 variant that cannot interact with ATG9 was 
sufficient to rescue the phenotype of ATG2 depleted 
cells1,3. This could mean that the interaction can  
either be complemented by other factors, the lipid 
transport efficiency can be affected outside of the 
experiment’s detection limitation, or the scramblase 
has no detectable influence on the inter-membrane 
lipid transport function of ATG2 in resting cells 
but becomes important under certain physiological  
conditions.

4) Is the LTP-scramblase interaction model broadly  
important?

Ghanbarpour et al.1 describe the alliance of an LTP 
and scramblases in the context of autophagosome  
biogenesis. Recent work indicates that VPS13 also 
interacts with scramblases28,29. LTP-scramblase  
interaction would be important for the expansion of  
any cellular membrane system that is not reliably  
served by vesicular transport, and where LTP  
efficiency is improved by docking onto a scramblase 
that acts as a cofactor in lipid handling. Ghanbarpour  
et al.1 speculate that LTP-scramblase partnerships  
may play a role in the formation of prospores,  
acrosomes, lipoprotein particles and viral replication  
centers.

Conclusion

Ghanbarpour et al. provide a new conceptual frame-
work whereby docking of the ends of an LTP onto  
scramblases serves to maintain a balanced lipid  
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distribution across the bilayers as non-vesicular lipid 
transport between membranes occurs. Whether the  
scramblases are simply LTP docking sites or whether 
they are functionally important when connected to 
LTPs remains to be seen. It would not be necessary 
to position a bilayer-normalizing scramblase right at 

the site of lipid extraction and deposition by an LTP  
unless the scramblase also facilitates LTP action. Future 
research will address these questions while evaluating  
the importance of scramblases for efficient inter- 
membrane lipid transport in autophagosome biogenesis  
and beyond.
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