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A B S T R A C T   

Medical image segmentation is a crucial step in Computer-Aided Diagnosis systems, where accurate segmenta
tion is vital for perfect disease diagnoses. This paper proposes a multilevel thresholding technique for 2D and 3D 
medical image segmentation using Otsu and Kapur’s entropy methods as fitness functions to determine the 
optimum threshold values. The proposed algorithm applies the hybridization concept between the recent 
Coronavirus Optimization Algorithm (COVIDOA) and Harris Hawks Optimization Algorithm (HHOA) to benefit 
from both algorithms’ strengths and overcome their limitations. The improved performance of the proposed 
algorithm over COVIDOA and HHOA algorithms is demonstrated by solving 5 test problems from IEEE CEC 2019 
benchmark problems. Medical image segmentation is tested using two groups of images, including 2D medical 
images and volumetric (3D) medical images, to demonstrate its superior performance. The utilized test images 
are from different modalities such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and X- 
ray images. The proposed algorithm is compared with seven well-known metaheuristic algorithms, where the 
performance is evaluated using four different metrics, including the best fitness values, Peak Signal to Noise 
Ratio (PSNR), Structural Similarity Index (SSIM), and Normalized Correlation Coefficient (NCC). The experi
mental results demonstrate the superior performance of the proposed algorithm in terms of convergence to the 
global optimum and making a good balance between exploration and exploitation properties. Moreover, the 
quality of the segmented images using the proposed algorithm at different threshold levels is better than the 
other methods according to PSNR, SSIM, and NCC values. Additionally, the Wilcoxon rank-sum test is conducted 
to prove the statistical significance of the proposed algorithm.   

1. Introduction 

Computer-Aided Diagnoses (CAD) tools play a critical role in 
healthcare [1]. Medical image segmentation is one of the essential steps 
for disease diagnoses. It refers to extracting objects of interest in medical 
images to analyze these objects’ behavior, which may indicate the ex
istence of a problem or a disease [2]. In the literature, several techniques 
have been proposed for image segmentation, such as edge 
detection-based segmentation [3], clustering-based segmentation [4], 
and thresholding-based segmentation [5]. Image segmentation based on 
thresholding is considered the most popular technique because it has 
simple implementation and high accuracy. 

Despite the importance of image segmentation in extracting the 
objects of interest from medical images, some problems cause errors in 
the medical image segmentation process, such as image acquisition 

artifacts and corruption by noise. Various smoothing techniques can 
reduce error or remove noises, such as developing an algorithm or 
tuning a filter [6]. 

Depending on the number of thresholds used to segment the image, 
thresholding-based segmentation is classified into bi-level and multi
level thresholding [7]. In bi-level thresholding, one threshold is used to 
segment the image into two regions. All pixels with values more sig
nificant than the threshold value are classified as region 1, and the other 
pixels in the image are classified as region 2. On the other hand, 
multilevel thresholding involves using more than one threshold to 
segment the image into several regions. Bi-level thresholding fails to 
correctly identify images containing many objects with colored and 
complex backgrounds because it divides the image into only two classes. 
In such cases, multilevel thresholding is more appropriate [8]. The most 
critical step in the thresholding process is to find the optimum threshold 
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values that efficiently determine the image segments. Over the last few 
decades, several strategies have been developed for determining the 
optimal thresholds; Ostu [9] and Kapur [10] methods are the most 
popular due to their efficiency and simplicity. Otsu’s method maximizes 
the variance between classes, and Kapur’s method maximizes the his
togram entropy to measure homogeneity between segmented regions. 

Image segmentation can be considered an optimization problem in 
which the objective is to find the optimum thresholds that precisely 
determine image classes. Traditional thresholding-based image seg
mentation techniques suffer from several problems, such as exponen
tially increasing the computational cost with the increase in 
thresholding levels which makes these methods suitable only for a small 

number of thresholding levels. This challenge encouraged the authors to 
use metaheuristics-based image segmentation algorithms as an alter
native to the classical methods. Over the last years, several meta
heuristic algorithms have been applied to solve image segmentation 
problems [11]. For multilevel thresholding, several algorithms have 
been used, such as the Genetic Algorithm (GA) [12], which is based on 
the theory of natural evolution; Particle Swarm Optimization (PSO) 
[13], inspired by the behavior of bird flocks and schooling fish; Artificial 
Bee Colony (ABC) [14] that simulates the behavior of bees in finding 
food sources; Harmony Search (HS) [15] inspired in musicians impro
vising new harmonies while playing; Electromagnetism Optimization 
(EO) [16] that mimics the attraction-repulsion mechanism among 

Fig. 1. Bi-level and multilevel thresholding.  

Fig. 2. pseudocode of COVID optimization algorithm.  
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charges; and many others [17–27]. 
Several algorithms have been proposed for medical image segmen

tation, such as Harris Hawks’ optimization algorithm, which is used to 
segment brain MRI images [28,28a]. The results showed that the pro
posed framework outperforms the state-of-the-art methods on the same 
dataset; however, it suffers from some limitations. It consumes more 
time than other metaheuristics. Another algorithm is proposed for 
COVID X-ray image segmentation using ant colony optimization with 
Cauchy and greedy levy mutations [29]. The results demonstrate the 
superior performance of the proposed algorithm in terms of search 
ability and convergence speed. Also, ABD ELAZIZ et al. [30,30a] pro
posed an algorithm for COVID-19 CT image segmentation based on an 
improved marine predators algorithm with fuzzy entropy. The experi
mental results approved the superiority of the proposed algorithm over 
the existing methods. The recently proposed metaheuristics that are 
used for solving multilevel thresholding image segmentation problems 
include the Arithmetic Optimization Algorithm (AOA) [31], which is 
inspired by the distribution behavior of the main arithmetic operators in 
mathematics, Remora Optimization Algorithm (ROA) [32] which 
mimics the parasitic behavior of remora, Black Window Optimization 
algorithm (BWO) [33], and Equilibrium Optimization Algorithm (EOA) 
[34]. These algorithms have proved their good performance; however, 
they may have limitations, such as getting stuck into local optima [35]. 
Some researchers employ hybridization as a way to avoid these 
limitations. 

In image segmentation, many hybrid optimization algorithms have 
been proposed. For example, the Grasshopper Optimization Algorithm 
(GOA) is combined with the Differential Evolution algorithm (DE) for 
multilevel segmentation of satellite images [36]. The experimental re
sults indicate that the proposed algorithm outperforms the standard 
GOA and DE algorithms. Also, a combination of the Gravitational Search 

Algorithm (GSA) and Genetic Algorithm (GA) is proposed for multilevel 
thresholding image segmentation using entropy and between-class 
variance as fitness functions [37]. The experimental results showed 
that the GSA-GA produced superior or comparative segmentation ac
curacy in entropy and between-class variance criteria. Many other 
hybrid algorithms are proposed to solve the image segmentation prob
lem [38,39]. 

This paper proposes a novel hybrid optimization algorithm for 
multilevel thresholding 2D and 3D medical image segmentation based 
on combining the novel Coronavirus Disease Optimization Algorithm 
(COVIDOA) [40] and the Harris Hawks Optimization Algorithm (HHOA) 
[35]. COVIDOA is a recent evolutionary optimization algorithm that 
mimics the replication lifecycle of Coronavirus. COVIDOA has three 
main phases: Virus Entry, Virus Replication, and Virus mutation. Coro
navirus uses frameshifting [41,42] to make new virus copies in the 
Replication phase. Frameshifting produces many viral proteins com
bined to form new virus particles as many new particles are created, and 
many human cells are damaged. In addition, the virus uses mutation 
techniques to escape from the human immunity system. COVIDOA has 
been applied to many benchmark test functions and real-world problems 
and showed superior performance. Its advantages include a good bal
ance between exploration and exploitation and high convergence speed. 

HHOA algorithm is a novel metaheuristic that mimics the chasing 
behavior of Harris hawks. HHOA has been applied to solve many real- 
world problems such as pressure vessel design problems, 3three-bar 
truss design problems, and welded beam design problems. HHOA 
shows good exploitative search ability. 

This paper proposes combining COVIDOA and HHOA to find the 
optimum threshold values using Otsu’s and Kapur’s entropy as fitness 
functions. This hybridization helps benefit from both algorithms’ ad
vantages and overcome their limitations. 

Fig. 3. Pseudocode of HHOA algorithm.  
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The reasons for using hybrid COVID and HHOA are as follows: 

1. The No Free Lunch (NFL) theorem demonstrates that no single al
gorithm performs best for all optimization problems. This theorem 
encouraged the authors to use a hybrid version of the recent COVI
DOA to solve the image segmentation problem. 

2. The COVIDOA [40] and its binary version, BCOVIDOA [43], out
performed most existing optimization algorithms in solving bench
mark and real-world optimization problems.  

3. The idea of the proposed algorithm is to divide the initial population 
into two half and assign each half to one of the two powerful meta
heuristics (COVIDOA and HHOA). The two metaheuristics then work 
in parallel to update the two half populations. Then the updated two 
subpopulations are merged into one full population. These stapes are 
repeated until the maximum number of iterations is reached and 
finally output the optimum solution found so far. The idea of the 
proposed algorithm is very simple and can be easily implemented.  

4. The proposed approach makes parallel hybridization (which is more 
suited to parallel computer environments) between two powerful 

metaheuristics (COVIDOA and HHOA) for solving segmentation 
problems. 

5. The proposed algorithm can fix the limitations of the two meta
heuristics because each technique operates on only half of the pop
ulation, not the whole population. 

6. Traditional thresholding-based image segmentation techniques suf
fer from several problems, such as exponentially increasing the 
computational cost, which encouraged the authors to use 
metaheuristics-based image segmentation algorithms as an alterna
tive to the classical methods. Our proposed algorithm achieved su
perior performance in medical image segmentation, especially at 
high thresholding levels in which traditional methods are unsuitable 
due to the high computational cost.  

7. The proposed hybrid technique can be easily applied to any other 
metaheuristics. Still, we preferred combining COVIDOA and HHOA 
algorithms because of their superior performance in solving various 
optimization problems. 

The proposed algorithm works as follows: the population of solutions 

Fig. 4. Flowchart of the proposed COVID- HHOA algorithm.  
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is divided into two halves, and then each half is assigned to one of the 
two algorithms. Each algorithm operates in parallel with its sub- 
population and generates the updated sub-population. The two gener
ated sub-populations are combined to form one new population in which 
the optimum solution is found. The validity of the proposed algorithm in 
solving various optimization problems is proved by solving 6 test 
problems from IEEE CEC 2019 benchmark problems [44]. In Medical 
image segmentation, the quality of the segmented medical images using 
the proposed algorithm is evaluated using different metrics such as MSE, 
PSNR, SSIM, FSIM, and NCC. The proposed algorithm is compared with 
seven state-of-the-art metaheuristics such as Harris Hawks Optimization 
Algorithm (HHOA) [35], Bat Algorithm (BA) [23], Harmony Search 
Algorithm (HS) [15], Cuckoo Search Algorithm (CS) [19], Sine Cosine 
Algorithm (SCA) [22], Flower Pollination Algorithm (FPA) [18], and 
Seagull Optimization Algorithm (SOA) [45]. In addition, the Wilcoxon 
rand sum test is calculated to prove the statistical significance of the 
proposed algorithm. 

The main contributions of this paper can be summarized as follows:  

• A novel hybrid COVIDOA-HHOA algorithm is proposed for medical 
image segmentation.  

• The efficiency of COVIDOA-HHOA is demonstrated by solving six 
IEEE CEC 2019 problems.  

• The performance of COVIDOA-HHOA is compared with seven well- 
known metaheuristics.  

• The comparison proved the superior performance of COVIDOA- 
HHOA against its beers.  

• Two datasets are used for testing, including 2D and 3D medical 
images.  

• Best fitness, PSNR, SSIM, and NCC metrics evaluate performance.  
• The Wilcoxon rank-sum test is conducted to prove the efficiency of 

COVIDOA-HHOA. 

This paper is organized as follows: Section 2 provides a brief over
view of multilevel thresholding techniques such as Otsu’s method and 

Kapur’s entropy. Sections 3 and 4 give an overview of Coronavirus 
disease optimization and Harris hawks optimization, respectively. The 
proposed hybrid algorithm for multilevel thresholding is discussed in 
Section 5. The medical datasets, parameter setting, performance met
rics, and experimental results are discussed in Section 6. Finally, con
clusions and future work are given in Section 7. 

2. Multilevel thresholding 

Image thresholding is converting the color or gray scale image into a 
binary image by setting a threshold value on the pixel intensity of the 
image [46]. Where pixels below that threshold value are converted to 
black and pixels above it are converted to white. Image thresholding can 
be categorized into two classes: bi-level and multilevel. Bi-level 
thresholding aims to assign each pixel p of a graey-scale image to one 
of two regions (R1 and R2) using only one threshold value (th) as 
follows: 

p ∈ R1 if 0 ≤ p < th,
p ∈ 2ifth ≤ p < L − 1, (1)  

where L refers to maximum intensity level. 
However, multilevel thresholding segments an image into several 

distinct regions using more than one threshold value as follows: 

p ∈ R1 if 0 ≤ p < th1,

p ∈ R2 if th1 ≤ p < th2,

p ∈ Ri if thi ≤ p < thi+1,

p ∈ Rk if thk− 1 ≤ p < L − 1,

(2)  

where {th1, th2, …, thk− 1} represents a vector of different threshold 
values. 

Fig. 1 shows the difference between bi-level thresholding and 
multilevel thresholding of the mandrill baboon image. 

The optimal threshold values can be obtained by maximizing a 
fitness function. Otsu’s method and Kapur’s entropy are two popular 
techniques used in thresholding. Each technique proposes a different 

Fig. 5. Diagram of multilevel thresholding image segmentation for 3D images using the proposed COVID-HHOA algorithm.  
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fitness function that must be maximized to obtain the optimal threshold 
values. The two techniques are briefly described in the following 
subsections. 

2.1. Otsu’s method 

Otsu is a thresholding method that selects the optimal threshold by 
maximizing the variance value between different classes [9]. Assume 
that we have L intensity levels in a gray scale image, where L=256 and a 
vector V of k-1 thresholds are used to segment the image into k regions as 
in equation (2), where V = [th1, th2, …, thk-1 ]. Then the best threshold is 

obtained by maximizing the Otsu’s fitness function as follows: 

Fostu(V)=max
(
σ2

b(V)
)

(3)  

where V=[th1, th2, …, thk-1 ], and σ2
b represents the between-class vari

ance which can be expressed as follows: 

σ2
b =

∑K

k=0
ωk . (μk − μT)

2 (4)  

where ωk is the cumulative probability for region Rk, μk is the average 
intensity in region Rk and μT is the average intensity for the whole image 

Fig. 6. Comparison of convergence curves of hybrid COVID-HHOA, HHOA, and COVID algorithms using CEC 2019 test problems.4.  
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as follows: 

ωk =
∑

i∈Rk

Pi , μk =
∑

i∈Rk

i . Pi

ωk
, μk =

∑L− 1

i=0
i . Pi (5)  

where Pi is the probability of gray level i, which can be represented as 
follows: 

Pi =
fi

∑L− 1
i=0 fi

(6)  

where fi is the frequency of gray level i. 

2.2. Kapur’s entropy method 

Image entropy represents the compactness and separateness between 
image classes [10]. The Kapur method is another widely used thresh
olding method that aims to find the optimal threshold value by maxi
mizing the Kapur’s entropy as follows: 

th* =max
(
Fkapur(th)

)
(7)  

where 

Fkapur(th)=A0 + A1 ,

A0 = −
∑th− 1

i=0

Pi

ω0
ln

Pi

ω0
, A1 = −

∑L− 1

i=th

Pi

ω1
ln

Pi

ω1
,

ω0 =
∑th− 1

i=0
Pi, ω1 =

∑L− 1

i=th
Pi  

where Pi is described in Eq. (6). 
For muli-level thresholding, Kapur’s method can be defined as 

follows: 

Fkapur(V)=A0 + A1… + Ak− 1 (8)  

A0 = −
∑th1 − 1

i=0

Pi

ω0
ln

Pi

ω0
, ω0 =

∑th1 − 1

i=0
Pi  

A1 = −
∑th2 − 1

i=th1

Pi

ω1
ln

Pi

ω1
, ω1 =

∑th2 − 1

i=th1

Pi  

A2 = −
∑th3 − 1

i=th2

Pi

ω2
ln

Pi

ω2
, ω2 =

∑th3 − 1

i=th2

Pi  

An = −
∑L− 1

i=thk− 1

Pi

ωn
ln

Pi

ωn
, ω2 =

∑L− 1

i=thk− 1

Pi 

The symbol V is the vector of thresholds. 

3. Coronavirus Disease Optimization Algorithm 

COVIDOA is a recently proposed population-based optimization al
gorithm that simulates the replication mechanism of Coronavirus when 
getting inside the human body [40]. The replication process of Coro
navirus has four main stages as follows:  

1. Virus entry and uncoating 

When a human is infected with COVID, the Coronavirus particles 
attach to the human cell via one of its structural proteins, called spike 
protein [42]. After getting inside the human cell, the virus contents are 
released.  

2. Virus replication 

The virus’s replication technique is called the frameshifting tech
nique [41]. Frameshifting is moving the reading frame of a protein 
sequence of the virus to another reading frame that leads to the creation 
of many new viral proteins that are then merged to form new virus 
particles. There are many types of frameshifting techniques; however, 
the most popular is +1 frameshifting as follows: 

Fig. 7. Pseudocode of the proposed COVID_HHOA optimization algorithm for multilevel thresholding.  
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• +1 frameshifting technique 

The elements of the parent virus particle (parent solution) are moved 
in the right direction by 1 step. As a result of +1 frameshifting, the first 
element is lost. In the proposed algorithm, the first element is set as a 

random value in the range [Lb, Ub] as follows: 

Sk(1)= rand(Lb,Ub), (9)  

Sk(2 : D)= P(1 : D − 1), (10)  

where Lb and Ub are the lower and upper bounds for the variables in 
each solution.  

3. Virus mutation 

Coronavirus uses mutation to resist the human immune system [47]. 
In the proposed algorithm, the mutation is applied to the previously 
created new virus particle (solution) to produce a new one as follows: 

Zi =

{
r if rand(0, 1) < MR
Xi otherwise (11) 

The symbol X referes to the solution before mutation, Z is the 
mutated solution, Xi and Zi are the ith element in the old and new so
lutions, respectively, i = 1, …, D, and r is a random value in the range 
[Lb, Ub], MR is the mutation rate. 

Table 1 
Test images and their histograms. 

Fig. 8. 3D (volumetric) medical image.  
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4. New virion release 

The newly created virus particle leaves the infected cell targeting 
new healthy cells. In the proposed algorithm, if the fitness of the new 

solution is better than the parent solution fitness, the parent solution is 
replaced by the new one. Otherwise, the parent solution remains. 

The pseudocode of the COVID optimization algorithm is shown in 
Fig. 2. 

Fig. 9. Original volumetric medical images used for testing.  
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Fig. 9. (continued). 
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4. Harris hawks optimization 

HHOA [35] is a population-based algorithm inspired by the chasing 
behavior of Harris hawks to capture prey. The two main phases of HHOA 
are exploration and exploitation, which are explained in the following 
subsections. 

4.1. Exploration 

In this phase, The Harris Hawks update their position based on two 
strategies with equal chance P. If p < 0.5, the position is updated based 
on the position of another family member. If p > 0.5, the Harris Hawks 
perch on random tall trees and wait to find prey. These two strategies are 
modeled in equation (1). 

X(t+ 1)=
{

Xrand(t) − r1|Xrand(t) − 2 r1X(t)| P ≥ 0.5
(Xrabbit(t) − Xm(t)) − r3(Lb + r4(Ub − Lb)) P < 0.5 (12)  

where X(t+1) is the position of a hawk in the next iteration, X(t) is the 
position of hawk of the current iteration, Xrand(t) is a randomly selected 

hawk from the current population, Xrabbit(t) is the position of the 
intended prey, r1, r2, r3, and r4 are random numbers in the range [0,1]. 
Lb and Ub are the lower and upper bounds, Xm(t) is the average position 
vector of all hawks in the population, which can be calculated as follows: 

Xm(t) =
1
N

∑N

i=1
Xi(t) (13)  

where N is the total number of hawks in the population, t refers to the 
current iteration, Xi represents the position of the ith hawk in the 
population. 

4.2. The transition from exploration to exploitation 

While the prey is escaping from the attack, its energy continuously 
decreases. The energy can be modeled as follows: 

E= 2E0

(
1 −

t
T

)
(14)  

where E refers to the escaping energy of the prey at each iteration. E0 is 

Table 2 
Medical Images segmented by the proposed COVID-HHOA algorithm using Otsu’s method. 
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the initial energy of the prey, which varies between − 1 and 1, and T is 
the maximum number of iterations. When |E| ≥ 1, the algorithm is in the 
exploration phase, where the hawks explore different regions. In 
contrast, when |E| ≤ 1, the algorithm is in the exploitation phase. 

4.3. Exploitation phase 

The exploitation phase can be modeled based on the prey’s ability to 
escape from being hunted and the chasing approaches of the Hawks. If a 
random number r is less than 0.5, the rabbit has successfully run away. 
Otherwise, the rabbit failed to escape. On the other hand, the behavior 
of Harris Hawks depends on the prey’s escaping energy E. If |E| ≥ 0.5, 
the Hawks perform soft besiege; otherwise, they perform hard to 
besiege. Four stages are considered to simulate this phase, as follows: 

4.4. Soft besiege 

This stage simulated the case in which the rabbit failed to escape from 
attack (r ≥ 0.5), although it had enough energy (|E| ≥ 0.5). In this case, 

the Hawks update their location according to the following equations: 

X(t+ 1)= Δ X(t) − E
⃒
⃒JXprey(t) − X(t)

⃒
⃒ (15)  

Δ X(t)=Xprey(t) − X(t)

J = 2(1 − r5)

The Δ X(t) refers to the difference between the rabbit’s position and 
the hawk’s current location at iteration t. The J represents the power of 
the prey’s jump while escaping. Finally, r5 is a random number in the 
range [0, 1]. 

4.5. Hard besiege 

The Hawks perform hard besiege when r ≥ 0.5 and |E| < 0.5 means 
that the prey becomes very tired and has not enough energy to escape. 
This case can be modeled as follows: 

X(t+ 1)= Xprey(t) − E|ΔX(t)| (16) 

Table 3 
Medical Images segmented by the proposed COVID-HHOA algorithm using Kapur’s entropy method. 
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Table 4 
PSNR results of Otsu’s method for all algorithms.  

Image K Algorithms 

SOA [45] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 28.0241 28.0015 27.8603 27.9327 25.9398 27.6060 27.4521 28.1034 
8 29.5159 30.5702 29.8950 30.5846 29.4844 28.8106 30.0270 30.6115 
10 31.0962 32.0855 31.4062 31.1762 30.3947 29.7557 31.2010 32.3208 
12 32.2296 33.6432 31.1533 31.7412 31.2790 30.6256 33.1004 33.8829 
14 32.5824 34.6792 33.6707 33.0175 31.8011 32.6048 34.0983 35.1157 

Medical2 6 23.8976 24.3012 23.9940 24.2262 22.7669 22.6919 22.7570 24.3882 
8 26.4672 26.5729 26.0080 26.5961 25.0116 24.2180 26.1634 26.6181 
10 27.0786 27.9677 27.0960 27.4578 25.8210 25.6833 27.5117 28.1228 
12 28.8093 29.4139 28.9450 29.3669 28.4395 27.3844 28.9853 29.6817 
14 29.2411 30.7983 29.7738 29.3305 28.4481 28.4797 29.8231 30.9323 

Medical3 6 24.0112 24.5539 24.5079 24.5771 23.6808 22.7121 23.8876 24.5965 
8 25.9225 26.0874 25.5731 25.9562 24.9593 24.0463 25.5063 26.1987 
10 27.7211 28.0173 26.7435 27.8348 26.5461 26.1655 27.4362 28.1225 
12 28.4870 29.2997 29.4472 28.8344 27.0262 27.2857 27.4541 29.6674 
14 29.9596 30.7411 29.8566 30.1048 28.9854 29.0777 30.5004 31.1412 

Medical4 6 26.2450 26.5800 25.7530 26.0731 24.7475 25.8652 25.6488 26.6784 
8 26.5107 28.3621 27.5579 27.7016 26.5912 27.6891 28.0003 28.4004 
10 29.2529 30.3418 29.8796 28.3021 28.2514 28.7927 28.6717 30.3635 
12 30.1704 31.3994 30.3462 30.4476 28.8059 29.2508 29.5124 31.6963 
14 31.0825 32.3168 31.8551 31.5092 30.4896 29.6222 32.2716 32.8176 

Medical5 6 24.7579 25.7082 25.6246 25.7676 23.1043 25.1616 24.7941 25.9592 
8 27.7621 27.7409 27.9747 28.0629 27.3604 26.3591 27.0363 28.2565 
10 28.3140 29.4341 28.8750 29.4337 28.1992 28.5822 28.2220 29.7908 
12 29.3404 30.7092 29.7841 31.0181 29.8806 29.6569 29.5604 31.8339 
14 31.1842 32.3781 32.2351 32.6095 31.9152 31.9355 30.4210 33.0516 

Medical6 6 24.4866 24.8421 24.5311 24.9414 24.3269 24.4083 23.3405 25.1480 
8 25.9630 27.2037 25.9113 26.8320 24.4700 25.8269 26.4225 27.6991 
10 27.2134 28.9124 28.6518 29.0542 26.9230 27.7604 28.4883 29.7148 
12 29.0199 30.6417 29.9051 30.1581 29.1440 28.4976 29.7973 31.1191 
14 29.7714 31.6065 31.2646 31.3577 30.5977 30.6166 31.0194 32.1560  

Table 5 
PSNR results of Kapur’s entropy for all algorithms.  

Image K Algorithms 

SOA [45] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 25.2524 25.4433 26.3512 24.5522 25.2684 25.2804 24.7321 25.4509 
8 26.4326 26.9740 27.3109 27.0291 27.2530 26.2667 26.7912 27.5253 
10 28.0860 28.5479 27.7927 27.2030 28.0816 28.5909 28.6896 28.8268 
12 30.3107 30.4151 29.7459 29.3509 28.9154 29.4261 29.5701 30.5083 
14 31.4768 31.0771 30.1544 30.5344 30.5967 31.2580 31.0262 31.9442 

Medical2 6 21.5328 21.0665 19.9647 21.1612 20.7791 20.3524 20.3740 21.5760 
8 22.7437 22.9694 22.0828 23.6234 23.4112 22.8048 23.3296 23.4328 
10 25.1282 24.7891 24.9807 23.7998 25.1116 24.8474 24.0673 25.6612 
12 26.9097 26.2715 26.4183 25.8614 26.0482 25.5683 27.0147 27.6624 
14 27.4481 28.6800 28.5732 26.2504 26.6410 27.8178 28.7076 29.1074 

Medical3 6 21.4500 21.5384 21.4728 21.5716 20.7611 21.1768 20.9559 21.5922 
8 23.6874 24.0349 23.3270 24.1519 24.1593 23.7441 23.2662 24.1918 
10 25.9861 26.4415 24.6536 26.7867 24.5258 26.1975 25.3053 26.7991 
12 26.8566 28.0038 25.9627 27.1257 25.8697 26.9955 28.3338 28.5621 
14 26.8949 29.1298 27.4718 29.0164 27.2153 27.4595 28.8884 29.8025 

Medical4 6 21.8727 22.1638 21.4247 21.0408 21.8694 21.5044 22.0440 22.3226 
8 24.8756 24.4229 23.8503 23.4907 23.8887 24.3239 23.9722 24.9068 
10 25.8773 25.6581 24.4352 25.2046 25.9492 25.9190 24.7383 26.3789 
12 28.4434 27.5950 25.5445 25.5175 27.1250 27.4470 28.1482 28.4808 
14 28.9051 28.8699 28.2158 28.0796 28.3505 28.8813 28.7985 29.3621 

Medical5 6 22.4242 22.5562 21.5969 22.9651 20.6772 22.5832 21.5968 22.9713 
8 25.3659 24.8873 24.6034 25.6448 24.4785 25.3410 24.9054 26.2635 
10 27.6808 27.4961 25.9944 27.6617 28.0819 27.3302 26.8027 28.3719 
12 28.2827 28.4007 27.4091 28.7241 28.3098 28.2413 28.7864 29.7731 
14 30.7075 31.1078 30.0344 30.8091 29.4999 28.8087 30.1128 32.0764 

Medical6 6 23.2536 23.7728 20.8852 24.8318 21.1701 23.6189 22.5869 23.7954 
8 24.5919 25.7041 22.5375 25.7105 23.7390 25.3574 25.4927 25.7812 
10 26.3945 26.3455 25.6227 26.6879 24.1615 25.8539 26.5609 27.2621 
12 26.7619 27.7460 26.9430 27.7070 27.1467 27.0896 27.2924 28.0202 
14 27.6779 28.3430 28.1736 28.2404 27.7577 27.9679 27.8562 28.6281  
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Table 6 
SSIM results of Otsu’s method for all algorithms.  

Image K Algorithms 

SOA [45] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 0.5815 0.5817 0.5796 0.5808 0.5466 0.5733 0.5945 0.5827 
8 0.6115 0.6237 0.6153 0.6222 0.6024 0.6988 0.7371 0.6256 
10 0.7519 0.8630 0.7505 0.6388 0.8533 0.7315 0.8871 0.9053 
12 0.7743 0.9055 0.7562 0.7539 0.9054 0.7549 0.9051 0.9190 
14 0.7841 0.9169 0.8659 0.9063 0.9120 0.7652 0.9147 0.9532 

Medical2 6 0.5941 0.6004 0.5943 0.5998 0.5902 0.5892 0.5861 0.6004 
8 0.6709 0.6735 0.6688 0.6647 0.6527 0.6739 0.6698 0.6816 
10 0.7340 0.7339 0.7203 0.7299 0.6956 0.7192 0.7336 0.7342 
12 0.7607 0.7722 0.7427 0.7508 0.7195 0.7513 0.7757 0.7735 
14 0.7848 0.8087 0.7980 0.7923 0.7708 0.7729 0.8280 0.8151 

Medical3 6 0.8261 0.8259 0.7993 0.7977 0.8051 0.8299 0.8399 0.8768 
8 0.6902 0.6957 0.6951 0.6961 0.6827 0.6859 0.6817 0.6961 
10 0.7996 0.8219 0.8125 0.8197 0.7072 0.7128 0.7797 0.8257 
12 0.8185 0.8550 0.8340 0.8528 0.8352 0.7662 0.8356 0.8562 
14 0.8497 0.8811 0.8738 0.8719 0.8374 0.8307 0.8571 0.8827 
6 0.8688 0.9032 0.8820 0.8910 0.8688 0.8533 0.8984 0.9038 

Medical4 8 0.6929 0.6939 0.6762 0.6854 0.6508 0.6775 0.6835 0.6946 
10 0.7199 0.8297 0.7206 0.7223 0.7474 0.7570 0.7935 0.8412 
12 0.8475 0.8793 0.8022 0.7453 0.7929 0.7857 0.7987 0.8848 
14 0.8498 0.8854 0.8211 0.7895 0.8438 0.7948 0.8302 0.9090 
6 0.8748 0.8891 0.8728 0.8721 0.8835 0.8017 0.9020 0.9236 

Medical5 8 0.8840 0.9021 0.9022 0.9020 0.8587 0.8741 0.8841 0.9029 
10 0.9355 0.9361 0.9367 0.9367 0.9201 0.9237 0.9279 0.9373 
12 0.9477 0.9541 0.9452 0.9547 0.9256 0.9327 0.9546 0.9551 
14 0.9484 0.9649 0.9596 0.9580 0.9468 0.9529 0.9624 0.9655 
6 0.9552 0.9726 0.9679 0.9692 0.9607 0.9573 0.9711 0.9739 

Medical6 8 0.7027 0.8478 0.8118 0.8183 0.8683 0.6648 0.7568 0.8672 
10 0.7217 0.8651 0.8401 0.8784 0.8715 0.6813 0.8186 0.8859 
12 0.7654 0.8799 0.8577 0.8900 0.8730 0.8025 0.8215 0.9037 
14 0.8159 0.8948 0.8660 0.8987 0.8996 0.8749 0.8490 0.9239 
K 0.8440 0.9013 0.9153 0.9146 0.9407 0.9246 0.9061 0.9451  

Table 7 
SSIM results of Kapur’s entropy for all algorithms.  

Image K Algorithms 

SOA [45] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 0.5585 0.5633 0.5626 0.5126 0.5394 0.5548 0.5601 0.5641 
8 0.5823 0.5806 0.5638 0.5801 0.5785 0.5732 0.5779 0.5855 
10 0.5989 0.5995 0.5909 0.5816 0.5871 0.5956 0.5973 0.6048 
12 0.6166 0.6217 0.6054 0.6027 0.6008 0.6082 0.6253 0.6244 
14 0.6392 0.6342 0.6336 0.6354 0.6169 0.6332 0.6345 0.6447 

Medical2 6 0.5761 0.5558 0.5814 0.6086 0.6108 0.5853 0.5688 0.5788 
8 0.6565 0.6564 0.6581 0.6488 0.6691 0.6681 0.6533 0.6720 
10 0.7200 0.7021 0.6883 0.6527 0.7017 0.6964 0.7025 0.7270 
12 0.7445 0.7422 0.7418 0.7230 0.7038 0.7456 0.7599 0.7649 
14 0.7577 0.7848 0.7718 0.7506 0.7567 0.7740 0.7807 0.7907 

Medical3 6 0.6471 0.6464 0.6453 0.6352 0.6387 0.6397 0.6513 0.6482 
8 0.6888 0.6949 0.6910 0.6918 0.6952 0.6841 0.6950 0.6985 
10 0.7388 0.7480 0.7097 0.7437 0.7085 0.7379 0.7385 0.7477 
12 0.7523 0.7687 0.7408 0.7579 0.7409 0.7634 0.7748 0.7789 
14 0.7899 0.7924 0.7499 0.7897 0.7800 0.7671 0.8067 0.8424 

Medical4 6 0.5623 0.5478 0.5994 0.5531 0.5854 0.5529 0.5346 0.5566 
8 0.6601 0.6193 0.6186 0.6129 0.6284 0.6478 0.6628 0.6614 
10 0.6743 0.6872 0.6274 0.6773 0.6901 0.6729 0.6712 0.7033 
12 0.7491 0.7311 0.6919 0.7003 0.7278 0.7297 0.7454 0.7537 
14 0.7764 0.7603 0.7676 0.7382 0.7320 0.7659 0.7666 0.7777 

Medical5 6 0.8266 0.8357 0.8094 0.8598 0.8313 0.8300 0.8326 0.8385 
8 0.8763 0.8703 0.8681 0.8831 0.8771 0.8879 0.8814 0.8913 
10 0.9187 0.9128 0.8942 0.9206 0.9227 0.9109 0.9057 0.9233 
12 0.9262 0.9267 0.9235 0.9321 0.9322 0.9146 0.9305 0.9376 
14 0.9453 0.9543 0.9481 0.9518 0.9387 0.9296 0.9461 0.9613 

Medical6 6 0.6015 0.6064 0.5905 0.6248 0.6047 0.6142 0.6019 0.6101 
8 0.6299 0.6296 0.5931 0.6347 0.6115 0.6281 0.6309 0.6325 
10 0.6421 0.6379 0.6299 0.6445 0.6189 0.6410 0.6459 0.6485 
12 0.6513 0.6561 0.6566 0.6603 0.6398 0.6502 0.6531 0.6627 
14 0.6655 0.6663 0.6592 0.6642 0.6625 0.6542 0.6625 0.6717  
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Table 8 
NCC results of Otsu’s method for all algorithms.  

Image K Algorithms 

SOA [45] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 4 0.9727 0.9734 0.9722 0.9734 0.9730 0.9723 0.9855 0.9734 
6 0.9862 0.9862 0.9858 0.9860 0.9866 0.9851 0.9867 0.9868 
8 0.9921 0.9934 0.9917 0.9930 0.9893 0.9857 0.9919 0.9937 
10 0.9945 0.9948 0.9927 0.9946 0.9920 0.9914 0.9937 0.9954 
12 0.9952 0.9964 0.9946 0.9956 0.9942 0.9939 0.9961 0.9968 
14 0.9961 0.9972 0.9960 0.9963 0.9949 0.9952 0.9968 0.9975 

Medical2 6 0.9894 0.9900 0.9890 0.9894 0.9854 0.9844 0.9854 0.9905 
8 0.9933 0.9942 0.9931 0.9941 0.9900 0.9899 0.9936 0.9944 
10 0.9949 0.9958 0.9948 0.9950 0.9926 0.9927 0.9950 0.9961 
12 0.9965 0.9970 0.9966 0.9967 0.9956 0.9942 0.9966 0.9972 
14 0.9966 0.9977 0.9968 0.9970 0.9954 0.9957 0.9972 0.9979 

Medical3 6 0.9900 0.9918 0.9914 0.9918 0.9913 0.9892 0.9918 0.9920 
8 0.9945 0.9945 0.9938 0.9941 0.9929 0.9916 0.9940 0.9947 
10 0.9957 0.9961 0.9940 0.9959 0.9946 0.9950 0.9961 0.9966 
12 0.9965 0.9970 0.9971 0.9963 0.9954 0.9956 0.9964 0.9977 
14 0.9974 0.9980 0.9974 0.9977 0.9970 0.9969 0.9979 0.9983 

Medical4 6 0.9871 0.9893 0.9863 0.9877 0.9838 0.9866 0.9870 0.9893 
8 0.9889 0.9921 0.9914 0.9920 0.9889 0.9911 0.9918 0.9925 
10 0.9938 0.9949 0.9944 0.9924 0.9924 0.9933 0.9930 0.9951 
12 0.9943 0.9963 0.9956 0.9952 0.9934 0.9938 0.9944 0.9965 
14 0.9960 0.9970 0.9965 0.9966 0.9949 0.9948 0.9970 0.9973 

Medical5 6 0.9918 0.9934 0.9929 0.9934 0.9916 0.9912 0.9922 0.9938 
8 0.9956 0.9960 0.9959 0.9957 0.9934 0.9930 0.9958 0.9964 
10 0.9963 0.9970 0.9965 0.9966 0.9957 0.9961 0.9957 0.9974 
12 0.9965 0.9979 0.9971 0.9978 0.9975 0.9967 0.9974 0.9983 
14 0.9984 0.9985 0.9983 0.9983 0.9982 0.9982 0.9976 0.9989 

Medical6 6 0.9900 0.9911 0.9887 0.9917 0.9849 0.9909 0.9831 0.9919 
8 0.9933 0.9939 0.9904 0.9934 0.9894 0.9928 0.9932 0.9961 
10 0.9943 0.9959 0.9959 0.9958 0.9923 0.9943 0.9962 0.9973 
12 0.9965 0.9976 0.9966 0.9968 0.9964 0.9962 0.9972 0.9980 
14 0.9977 0.9980 0.9979 0.9975 0.9972 0.9976 0.9979 0.9984  

Table 9 
NCC results of Kapur’s entropy for all algorithms.  

Image K Algorithms 

SOA [45] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 0.9759 0.9796 0.9800 0.9750 0.9750 0.9781 0.9755 0.9801 
8 0.9855 0.9841 0.9818 0.9850 0.9842 0.9846 0.9847 0.9864 
10 0.9896 0.9894 0.9873 0.9872 0.9886 0.9895 0.9893 0.9905 
12 0.9931 0.9935 0.9909 0.9890 0.9919 0.9913 0.9930 0.9938 
14 0.9947 0.9946 0.9923 0.9912 0.9931 0.9941 0.9947 0.9956 

Medical2 6 0.9767 0.9724 0.9751 0.9756 0.9765 0.9747 0.9728 0.9774 
8 0.9865 0.9872 0.9832 0.9798 0.9871 0.9868 0.9874 0.9885 
10 0.9918 0.9912 0.9912 0.9847 0.9908 0.9899 0.9894 0.9929 
12 0.9944 0.9946 0.9934 0.9854 0.9913 0.9921 0.9950 0.9959 
14 0.9942 0.9966 0.9959 0.9935 0.9937 0.9942 0.9966 0.9970 

Medical3 6 0.9863 0.9866 0.9861 0.9866 0.9843 0.9863 0.9861 0.9867 
8 0.9922 0.9929 0.9909 0.9948 0.9920 0.9914 0.9923 0.9929 
10 0.9955 0.9956 0.9912 0.9959 0.9925 0.9945 0.9947 0.9959 
12 0.9959 0.9969 0.9941 0.9969 0.9935 0.9948 0.9969 0.9972 
14 0.9964 0.9976 0.9961 0.9974 0.9953 0.9962 0.9974 0.9978 

Medical4 6 0.9709 0.9691 0.9779 0.9693 0.9755 0.9679 0.9663 0.9719 
8 0.9843 0.9821 0.9789 0.9728 0.9824 0.9822 0.9842 0.9855 
10 0.9877 0.9877 0.9805 0.9845 0.9864 0.9870 0.9856 0.9895 
12 0.9932 0.9924 0.9858 0.9892 0.9909 0.9913 0.9934 0.9939 
14 0.9942 0.9942 0.9926 0.9924 0.9916 0.9926 0.9942 0.9950 

Medical5 6 0.9870 0.9857 0.9840 0.9916 0.9844 0.9843 0.9839 0.9866 
8 0.9934 0.9920 0.9907 0.9950 0.9931 0.9925 0.9942 0.9946 
10 0.9954 0.9954 0.9929 0.9960 0.9953 0.9953 0.9953 0.9964 
12 0.9962 0.9962 0.9962 0.9969 0.9963 0.9962 0.9970 0.9975 
14 0.9978 0.9980 0.9962 0.9980 0.9972 0.9972 0.9976 0.9983 

Medical6 6 0.9871 0.9882 0.9765 0.9913 0.9828 0.9879 0.9850 0.9884 
8 0.9916 0.9920 0.9789 0.9920 0.9852 0.9898 0.9911 0.9923 
10 0.9932 0.9929 0.9893 0.9933 0.9861 0.9911 0.9932 0.9942 
12 0.9937 0.9946 0.9935 0.9946 0.9922 0.9934 0.9941 0.9950 
14 0.9945 0.9952 0.9945 0.9950 0.9936 0.9944 0.9947 0.9955  
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Fig. 10. (a): PSNR results of Otsu’s method for all algorithms at each threshold level for Medical1, Medical2, and Medical3 images. 
(b): PSNR results of Otsu’s method for all algorithms at each threshold level for Medical4, Medical5, and Medical6 images. 
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4.6. Soft besiege with progressive rapid dives 

In this case, r < 0.5 and |E| ≥ 0.5, which means that the prey has 
enough energy to escape, and the Hawks perform soft besiege and find 
their next position by the following equation: 

Y = Xprey(t) − E
⃒
⃒JXprey(t) − X(t)

⃒
⃒ (17) 

If the position is not improved, team rapid dives based on levy flight 

will be executed as follows: 

Z = Y + S × LF(D) (18)  

where S is a randomly selected vector of dimension D. LF represents the 
levy flight function and can be calculated as follows: 

LF(D)= 0.01 ×
μ × σ
|ϑ|

1
β 

Fig. 10. (continued). 
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Fig. 11. (a): PSNR results of Kapur’s entropy for all algorithms at each threshold level for Medical1. Medical2 and Medical3 images. 
(b): PSNR results of Kapur’s entropy for all algorithms at each threshold level for Medical4, Medical5, and Medical6 images. 
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Fig. 11. (continued). 
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Fig. 12. (a): SSIM results of Otsu’s method for all algorithms at each threshold level for Medical1, Medical2, and Medical3 images. 
(b): SSIM results of Otsu’s method for all algorithms at each threshold level for Medical4, Medical5, and Medical6 images. 
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σ =

⎛

⎜
⎜
⎝

Γ(1 + β) × sin
( πβ

2

)

Γ
( 1+β

2

)
× β × 2(

β− 1
2 )

⎞

⎟
⎟
⎠

1
β This stage can be summarized as follows: 

X(t+ 1)=
{

Y F(Y) < F(X(t))
Z F(z) < F(X(t)) (19)  

4.7. Hard besiege with progressive rapid dives 

In this case, r < 0.5 and |E| < 0.5,which means that the prey does not 
have enough energy to escape, and a hard besiege is executed by the 

Fig. 12. (continued). 
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Fig. 13. (a): SSIM results of Kapur’s entropy for all algorithms at each threshold level for Medical1, Medical2, and Medical3 images. 
(b): SSIM results of Kapur’s entropy for all algorithms at each threshold level for Medical4, Medical5, and Medical6 images. 
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Fig. 13. (continued). 
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Fig. 14. (a): NCC results from Otsu’s method for all algorithms at each threshold level for Medical1, Medical2, and Medical3 images. 
Fig. 14 (b): NCC results from Otsu’s method for all algorithms at each threshold level for Medical4, Medical5, and Medical6 images. 
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Fig. 14. (continued). 

K.M. Hosny et al.                                                                                                                                                                                                                               



Computers in Biology and Medicine 150 (2022) 106003

26

Fig. 15. (a): NCC results in Kapur’s entropy for all algorithms at each threshold level for Medical1, Medical2, and Medical3 images. 
(b): NCC results in Kapur’s entropy for all algorithms at each threshold level for Medical4, Medical5, and Medical6 images. 
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Hawks as follows: 

X(t+ 1)=
{

Y F(Y) < F(X(t))
Z F(z) < F(X(t)) (20)  

where 

Y = Xprey(t) − E
⃒
⃒JXprey(t) − Xm(t)

⃒
⃒

Z = Y + S × LF(D)

The Xm(t) is the mean location defined in equation (13). The 

pseudocode of the HHOA algorithm is shown in Fig. 3. 

5. The proposed hybrid algorithm (COVID-HO) 

Because of some limitations in each metaheuristic, researchers tend 
to use a hybridization strategy to improve the performance and over
come these limitations. According to the execution order, metaheuristic 
hybridization is classified into sequential and parallel [48]. In Sequen
tial hybridization, the output of the first algorithm is used as input to the 
second. On the other side, parallel hybridization approaches similarly 

Fig. 15. (continued). 

K.M. Hosny et al.                                                                                                                                                                                                                               



Computers in Biology and Medicine 150 (2022) 106003

28

apply the algorithms. Although most of the proposed hybrid meta
heuristics are sequential, researchers of these sequential metaheuristics 
indicate the parallelization of their algorithms as future work because 

parallel hybrid metaheuristics are more suited to parallel computer 
environments [49]. 

Although HHOA and COVID algorithms effectively solve various 

Table 10 
Best fitness values of Ostu’s method for all algorithms.  

Image K Algorithms 

SOA [45] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 1.5041e+03 1.5049e+03 1.5041e+03 1.5042e+03 1.4955e+03 1.5016e+03 1.5022e+03 1.5050eþ03 
8 1.5101e+03 1.5140e+03 1.5128e+03 1.5135e+03 1.5107e+03 1.5092e+03 1.5130e+03 1.5142eþ03 
10 1.5164e+03 1.5191e+03 1.5175e+03 1.5163e+03 1.5161e+03 1.5122e+03 1.5175e+03 1.5195eþ03 
12 1.5209e+03 1.5223e+03 1.5207e+03 1.5183e+03 1.5166e+03 1.5159e+03 1.5216e+03 1.5227eþ03 
14 1.5210e+03 1.5239e+03 1.5232e+03 1.5209e+03 1.5169e+03 1.5218e+03 1.5235e+03 1.5246eþ03 

Medical2 6 3.9554e+03 3.9577e+03 3.9566e+03 3.9577e+03 3.9395e+03 3.9312e+03 3.9459e+03 3.9580eþ03 
8 3.9808e+03 3.9821e+03 3.9811e+03 3.9817e+03 3.9721e+03 3.9654e+03 3.9805e+03 3.9829eþ03 
10 3.9855e+03 3.9930e+03 3.9901e+03 3.9922e+03 3.9752e+03 3.9754e+03 3.9900e+03 3.9940eþ03 
12 3.9980e+03 4.0008e+03 3.9988e+03 3.9992e+03 3.9916e+03 3.9913e+03 3.9995e+03 4.0016eþ03 
14 4.0010e+03 4.0061e+03 4.0028e+03 4.0020e+03 3.9941e+03 3.9980e+03 4.0032e+03 4.0067eþ03 

Medical3 6 6.1387e+03 6.1128e+03 6.1383e+03 6.1128e+03 6.1219e+03 6.1240e+03 6.1267e+03 6.1402eþ03 
8 6.1603e+03 6.1352e+03 6.1594e+03 6.1337e+03 6.1430e+03 6.1436e+03 6.1539e+03 6.1633eþ03 
10 6.1744e+03 6.1482e+03 6.1717e+03 6.1470e+03 6.1652e+03 6.1627e+03 6.1721e+03 6.1757eþ03 
12 6.1780e+03 6.1549e+03 6.1804e+03 6.1497e+03 6.1650e+03 6.1711e+03 6.1719e+03 6.1841eþ03 
14 6.1809e+03 6.1590e+03 6.1854e+03 6.1564e+03 6.1801e+03 6.1792e+03 6.1863e+03 6.1882eþ03 

Medical4 6 2.2081e+03 2.2089eþ03 2.2077e+03 2.2079e+03 2.1824e+03 2.2009e+03 2.1957e+03 2.2088e+03 
8 2.2108e+03 2.2201eþ03 2.2181e+03 2.2174e+03 2.2065e+03 2.2144e+03 2.2193e+03 2.2200e+03 
10 2.2242e+03 2.2280e+03 2.2258e+03 2.2239e+03 2.2181e+03 2.2226e+03 2.2202e+03 2.2285eþ03 
12 2.2277e+03 2.2331e+03 2.2292e+03 2.2289e+03 2.2227e+03 2.2231e+03 2.2276e+03 2.2333eþ03 
14 2.2322e+03 2.2358e+03 2.2332e+03 2.2328e+03 2.2328e+03 2.2280e+03 2.2353e+03 2.2367eþ03 

Medical5 6 5.3898e+03 4.8687e+03 5.3931e+03 4.8687e+03 5.3681e+03 5.3812e+03 5.3847e+03 5.3936eþ03 
8 5.4061e+03 4.8825e+03 5.4065e+03 4.8824e+03 5.4006e+03 5.4007e+03 5.4038e+03 5.4077eþ03 
10 5.4108e+03 4.8893e+03 5.4122e+03 4.8893e+03 5.4034e+03 5.4066e+03 5.4125e+03 5.4145eþ03 
12 5.4122e+03 4.8929e+03 5.4161e+03 4.8915e+03 5.4131e+03 5.4115e+03 5.4160e+03 5.4184eþ03 
14 5.4160e+03 4.8955e+03 5.4192e+03 4.8941e+03 5.4164e+03 5.4167e+03 5.4186e+03 5.4208eþ03 

Medical6 6 4.3948e+03 4.2056e+03 4.3961e+03 4.2055e+03 4.3687e+03 4.3865e+03 4.3865e+03 4.3978eþ03 
8 4.4059e+03 4.2211e+03 4.4117e+03 4.2207e+03 4.4002e+03 4.4012e+03 4.4113e+03 4.4139eþ03 
10 4.4157e+03 4.2287e+03 4.4193e+03 4.2282e+03 4.4129e+03 4.4129e+03 4.4199e+03 4.4209eþ03 
12 4.4230e+03 4.2326e+03 4.4230e+03 4.2318e+03 4.4188e+03 4.4153e+03 4.4231e+03 4.4257eþ03 
14 4.4246e+03 4.2343e+03 4.4259e+03 4.2340e+03 4.4215e+03 4.4219e+03 4.4265e+03 4.4278eþ03  

Table 11 
Best fitness values of Kapur’s entropy for all algorithms.  

Image K Algorithms 

SOA [45] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 29.1150 29.1440 28.4842 28.5451 28.4039 28.4511 28.9466 29.1497 
8 36.4624 36.6540 35.1770 35.7679 35.6282 36.1923 36.0033 36.7475 
10 42.8551 43.2945 42.1935 42.2456 41.7597 41.3143 42.9482 44.0402 
12 48.0268 49.6176 46.7989 46.3681 45.9796 46.5262 47.9183 50.1440 
14 53.1311 54.8167 52.5195 52.4872 50.0722 51.4593 53.2681 55.7106 

Medical2 6 30.0560 30.0624 29.2634 29.3301 29.1013 29.5610 29.7242 30.1228 
8 37.4817 37.6122 36.3408 36.4637 36.4182 37.0426 37.3252 37.5760 
10 44.1656 44.5172 41.9516 43.6734 42.7747 42.7167 43.6806 44.7035 
12 50.0224 50.2347 49.0840 48.5610 47.7153 49.4137 50.2842 50.9972 
14 55.3181 56.5864 53.2115 53.1273 52.3780 52.7230 55.0156 56.9942 

Medical3 6 29.4506 29.4480 28.6691 23.1739 28.4564 29.4011 29.2656 29.4703 
8 37.2324 37.3536 35.0245 28.3095 35.1488 36.4795 36.0121 37.3482 
10 43.5538 44.2176 42.3845 32.7091 41.7464 42.8749 42.8232 44.3337 
12 49.1426 50.3112 47.7115 36.5965 47.5394 48.0504 49.5033 50.4694 
14 52.4016 56.0881 52.5454 40.3468 52.2408 52.9522 54.6020 56.1094 

Medical4 6 29.7038 29.8214 29.0196 29.4504 29.3854 29.2795 29.4105 29.8370 
8 36.5791 36.8520 35.7648 35.8712 35.9158 36.3379 36.2300 36.9593 
10 42.8729 43.6696 40.4616 41.3581 41.8134 42.2490 42.7692 43.7918 
12 47.4509 49.5428 46.0389 47.2014 46.8216 47.7198 48.9814 49.5914 
14 54.1334 55.1970 51.3232 52.4321 51.3109 52.4020 54.7969 55.4478 

Medical5 6 27.5392 27.6409 26.9876 21.7552 26.9903 27.1946 27.1707 27.6422 
8 35.0168 35.1453 33.7456 27.3895 34.5749 34.5868 33.8298 35.2417 
10 41.1285 42.0444 40.8043 31.4742 39.7802 40.7294 41.1127 42.1571 
12 47.0732 48.4408 46.2316 35.6166 45.5961 46.2532 48.1818 48.5939 
14 52.6506 54.3979 50.5047 39.2780 50.1560 50.3272 53.5915 54.5965 

Medical6 6 28.9177 29.0004 27.9225 22.9562 34.5683 28.6647 28.2243 29.0004 
8 36.0479 36.9304 34.5297 27.9091 36.3630 35.8314 36.3014 36.9257 
10 43.0778 43.5536 40.2129 32.3120 40.6346 42.0560 42.1871 43.6132 
12 48.8374 49.6670 47.4302 36.4025 45.0181 46.1182 48.5252 49.8300 
14 52.3678 55.3890 51.7384 39.7488 51.7612 50.7992 52.9835 54.4504  
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Fig. 16. (a): The best fitness values of Otsu’s method for all algorithms for Medical1, Medical2, and Medical3 images. 
(b): The best fitness values of Otsu’s method for all algorithms for Medical4, Medical5, and Medical6 images. 
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engineering problems, each one separately can suffer from limitations 
such as falling into local optimum in HHOA and being time-consuming 
in COVID. This paper combines the two algorithms to produce a parallel 
hybrid COVID-HHOA algorithm to minimize the drawbacks of both al
gorithms and benefit from their advantages. It then solves the thresh
olding problem using Otsu’s method and Kapur’s entropy as objective 
functions. 

The proposed hybrid algorithm can be summarized as follows:  

1. The population of solutions of size nPop is randomly initialized.  
2. The fitness function is calculated for each solution, and the solution 

with the best fitness is set as the rabbit location. 
3. The population is divided into two sub-populations such that solu

tions from 1 to N
2 The initial population is considered the first sub- 

population, and the remaining solutions are considered the second 
subpopulation. 

Fig. 16. (continued). 
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Fig. 17. (a): The best fitness values of Kapur’s method for all algorithms for Medical1, Medical2, and Medical3 images. 
(b): The best fitness values of Kapur’s method for all algorithms for Medical4, Medical5, and Medical6 images. 
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4. The first sub-population is assigned to the COVID algorithm, and the 
second subpopulation is assigned to the HHOA algorithm.  

5. The two algorithms operate in parallel to produce two updated sub- 
populations.  

6. The two new sub-populations are combined into one population.  
7. Steps 2–6 are repeated until the maximum number of iterations is 

reached. 

The flow chart of the proposed COVID-HHOA algorithm for multi- 
thresholding segmentation for 2D images is shown in Fig. 4. 

In the case of 3D medical images, the image is divided into several 2D 
slices, and each slice is segmented using the proposed algorithm. The 
segmented slices are concatenated together to form the segmented 3D 
image, as shown in Fig. 5. 

The advantages of medical image segmentation using our proposed 

Fig. 17. (continued). 
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approach are as follows:  

1. Segmentation has a crucial role in medical imaging as it helps to 
separate the objects of interest from the whole body, simplifying 
medical decisions.  

2. The segmentation approach, which gives perfect results for one type 
of imaging modality, might not even work for another. Our proposed 
approach achieved very good segmentation results for several med
ical images from different modalities (CT, MRI, and X-ray). 

Table 12 
P values computed by Wilcoxon’s rank-sum test for Ostu’s method.  

Otsu’s method 

Image COVID-HHOA VS 
SOA 

COVID-HHOA VS 
HHOA 

COVID-HHOA VS 
FPA 

COVID-HHOA VS 
CS 

COVID-HHOA VS 
HS 

COVID-HHOA VS 
SCA 

COVID-HHOA VS 
BA 

Medical1 4.4434e-35 3.1021e-05 6.5446e-29 1.0462e-14 2.5439e-35 9.5941e-37 2.7809e-23 
Medical2 1.6158e-36 2.6163e-13 9.2430e-35 9.7513e-16 2.0902e-34 2.9425e-34 1.0148e-26 
Medial3 9.9291e-34 1.8851e-34 1.6339e-30 8.8083e-15 1.0259e-34 4.2759e-36 3.6013e-32 
Medical4 9.8717e-37 2.7708e-10 2.0270e-20 6.5579e-15 6.8035e-34 7.5621e-34 7.0235e-34 
Medical5 6.0170e-37 8.3702e-35 1.5449e-24 6.4827e-17 2.0012e-34 5.8710e-34 2.1362e-33 
Medical6 1.3883e-36 1.0533e-34 9.2511e-30 6.9292e-15 7.9531e-34 1.1623e-35 1.0836e-32 
Average 1.05e-34 2.59e-06 4.61e-19 1.11e-10 3.08e-34 2.42e-33 2.32e-07  

Table 13 
P values computed by Wilcoxon’s rank-sum test for Kapur’s entropy.  

Kapur’s entropy 

Image COVID-HHOA VS 
SOA 

COVID-HHOA VS 
HHOA 

COVID-HHOA VS 
FPA 

COVID-HHOA VS 
CS 

COVID-HHOA VS 
HS 

COVID-HHOA VS 
SCA 

COVID-HHOA VS 
BA 

Medical1 5.6766e-36 8.0007e-08 3.4285e-39 2.4915e-34 1.5488e-34 2.5412e-36 3.6538e-28 
Medical2 2.3507e-36 9.0482e-05 2.6352e-36 5.6352e-35 1.3417e-34 1.4324e-37 3.9573e-24 
Medial3 3.1155e-37 2.5995e-06 1.4527e-37 1.5482e-34 2.5436e-34 2.0266e-37 4.6850e-22 
Medical4 1.1022e-34 1.7699e-16 1.7217e-37 6.7150e-34 8.6519e-34 4.4321e-36 2.6753e-18 
Medical5 1.1275e-34 1.5647e-26 6.3613e-36 4.5266e-35 6.7532e-34 4.5176e-39 3.2124e-10 
Medical6 8.9301e-33 6.8546e-05 5.8857e-39 1.5724e-34 2.4597e-34 2.5481e-37 1.4326e-15 
Average 7.80e-34 1.35e-05 1.43e-36 3.10e-34 3.75e-34 9.17e-37 2.68e-11  

Table 14 
Slices of 3D medical images segmented by the proposed COVID-HHOA algorithm using Otsu’s method. 

K.M. Hosny et al.                                                                                                                                                                                                                               



Computers in Biology and Medicine 150 (2022) 106003

34

Table 15 
Slices of 3D medical images segmented by the proposed COVID-HHOA algorithm using Kapur’s entropy. 

Table 16 
PSNR results of 3D medical image segmentation using Otsu’s method for all algorithms.  

Image K Algorithms 

SOA [41] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

3D_imag1 6 30.1961 30.4401 30.6070 29.5351 29.8018 30.1225 29.8267 30.6455 
8 32.0807 32.4235 32.5736 31.5420 31.0633 31.4139 31.3611 32.7306 
10 33.7221 34.2130 34.1211 33.3435 32.6111 32.6553 32.3934 34.5134 
12 34.3873 35.2726 35.1746 34.6316 34.4152 34.4275 34.2041 35.6317 
14 35.6631 36.3439 36.3487 36.4534 35.2466 34.2358 34.5301 37.3705 

3D_imag2 6 28.4792 28.2612 28.5816 28.1514 28.2390 28.1231 27.4920 28.5700 
8 29.9857 30.3715 30.4281 30.2278 29.2314 29.5801 29.6223 30.8414 
10 31.8611 32.0457 32.0356 32.1523 30.8432 30.8721 30.1978 32.5086 
12 32.9469 33.3460 33.1822 33.1939 31.9144 31.2241 31.4527 33.7971 
14 33.2306 34.3034 34.3424 34.4636 33.2121 32.7286 32.0812 34.9959 

3D_imag3 6 23.8765 24.5766 24.7164 24.7615 23.6154 23.5595 22.5702 25.3023 
8 26.1167 26.7796 27.0332 27.1784 26.7589 27.2304 24.7527 27.6537 
10 27.9192 28.8867 28.3241 29.1432 27.2341 27.9804 26.4567 29.6654 
12 28.9860 30.3745 30.0778 31.0939 28.5432 28.4431 27.4352 31.4758 
14 29.2986 31.6990 31.2865 32.0764 29.4811 29.8310 28.4833 32.7302 

3D_imag4 6 26.9810 26.9321 27.1231 26.6620 26.8743 26.3212 25.7158 27.3305 
8 29.2953 28.8902 29.5442 28.2524 28.2630 28.1423 27.5351 29.5858 
10 31.0143 30.5272 31.0023 31.0154 30.1232 29.5087 29.2950 31.4076 
12 32.1998 32.0870 32.4472 32.1555 31.1611 30.9122 30.1142 32.8436 
14 32.5924 33.2061 33.3724 33.2594 31.2641 32.3986 31.1415 33.8989 

3D_imag5 6 27.4326 28.4923 28.3731 28.1460 27.4155 28.2378 27.7748 28.4717 
8 29.7636 30.2675 29.4632 30.1205 28.2261 29.4793 28.4571 30.5245 
10 31.3146 31.8957 31.8638 32.1162 30.7573 30.4451 30.4593 32.7594 
12 32.2885 33.4235 32.5232 32.7948 31.9792 31.9715 31.6864 33.7197 
14 32.7714 34.2666 33.6360 34.1648 33.7886 31.9899 32.0876 34.8721 

3D_image6 6 26.3354 26.4546 26.2072 26.4751 26.0888 26.1373 25.4470 26.7845 
8 28.5190 28.1292 28.0865 28.3212 27.9585 27.1920 27.7022 28.4532 
10 29.4571 30.2222 29.8765 30.2512 29.3425 28.9353 28.234 30.5218 
12 30.4919 31.4218 31.0183 31.7098 30.2065 30.2410 29.9403 31.7267 
14 31.7326 32.2109 32.0645 32.5123 31.2352 31.1132 30.9337 32.6480 

Average  30.3646 30.8583 30.8478 30.8634 29.8618 29.8178 29.2882 31.4667  
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Table 17 
PSNR results of 3D medical image segmentation using Kapur’s method for all algorithms.  

Image K Algorithms 

SOA [41] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 28.9391 28.7182 26.7359 27.8832 27.8761 28.5393 28.2466 29.0592 
8 30.789 31.7338 27.3459 30.2013 28.3848 29.2610 31.9910 32.5919 
10 33.4462 34.5674 28.8927 32.7649 30.2011 31.6723 33.9310 34.3256 
12 34.8542 35.6831 30.5443 33.9639 31.5210 32.4643 35.436 36.2500 
14 36.1017 37.0353 32.4340 36.6387 33.1574 33.7446 36.6467 37.4015 

Medical2 6 27.8760 28.1027 24.0359 25.3058 26.2936 26.8300 27.1412 28.8769 
8 29.6887 30.2295 25.5423 28.4327 27.5561 28.4240 29.0898 30.9285 
10 30.1092 31.8796 27.3453 31.9067 29.3428 30.9737 31.9503 32.6432 
12 33.2782 34.2882 28.5334 33.3440 30.1108 31.6471 32.6461 34.9733 
14 33.7369 35.6173 29.2686 34.7503 30.1138 31.9441 33.5732 35.9389 

Medical3 6 25.3868 23.6456 19.1499 22.6928 20.8765 25.0683 23.5777 25.8508 
8 27.6444 25.2165 21.3553 25.7434 22.1535 26.3433 25.8927 27.3553 
10 28.8815 26.7871 24.6891 27.9029 25.1566 27.8761 28.0051 28.3343 
12 30.3123 30.4122 25.2345 30.6865 26.4503 28.4920 29.3453 32.4365 
14 31.2641 31.3217 26.4080 32.5818 28.6095 30.4881 30.5706 33.6475 

Medical4 6 27.1636 29.3512 23.3768 22.7454 20.3453 28.3452 27.3451 29.4851 
8 29.6801 30.1578 24.2954 25.1042 22.9910 29.4786 29.1662 30.3341 
10 31.1514 32.6423 25.9872 27.0787 25.2696 30.9397 30.4599 32.6304 
12 31.9376 34.1111 27.6909 30.4325 27.3560 31.6453 31.3344 34.2147 
14 32.8808 35.2234 30.5359 33.1648 28.0357 32.5760 32.6905 35.4816 

Medical5 6 27.0996 29.8734 26.0212 23.6755 25.0232 26.4998 26.8532 30.1234 
8 29.5678 31.1420 27.7549 24.6086 26.7692 28.2310 29.0765 31.6352 
10 31.2849 32.1204 29.4533 28.9561 29.6891 29.3244 30.4819 32.5461 
12 32.4544 32.6433 30.0826 30.5643 30.7765 30.6543 32.5921 33.7241 
14 33.8361 34.3116 31.8976 31.3037 31.4373 31.5773 33.4335 34.9109 

Medical6 6 25.6432 25.2261 22.3990 24.5574 23.4597 24.6637 25.0497 25.6262 
8 27.1155 28.1435 23.5334 26.7452 24.7891 27.5356 27.3455 28.5462 
10 29.1776 30.1078 25.5249 29.4057 26.9886 29.0901 29.6829 30.4483 
12 30.1092 31.5349 26.3562 30.6543 28.3455 29.6740 30.5332 31.8232 
14 30.5725 32.2195 27.5853 31.9613 29.8339 30.1687 31.8188 32.4613 

Average  30.3994 31.0255 26.7121 29.0911 27.2672 29.4724 30.1968 31.7027  

Table 18 
SSIM results of 3D medical image segmentation using Otsu’s method for all algorithms.  

Image K Algorithms 

SOA [41] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 0.9727 0.9740 0.9737 0.9734 0.9686 0.9719 0.9731 0.9741 
8 0.9776 0.9783 0.9778 0.9781 0.9750 0.9759 0.9776 0.9785 
10 0.9795 0.9797 0.9797 0.9800 0.9770 0.9777 0.9790 0.9801 
12 0.9805 0.9811 0.9806 0.9811 0.9790 0.9794 0.9806 0.9812 
14 0.9811 0.9815 0.9814 0.9816 0.9800 0.9798 0.9810 0.9822 

Medical2 6 0.9600 0.9599 0.9600 0.9597 0.9546 0.9555 0.9588 0.9602 
8 0.9673 0.9673 0.9664 0.9674 0.9643 0.9627 0.9663 0.9676 
10 0.9707 0.9711 0.9698 0.9701 0.9674 0.9646 0.9703 0.9719 
12 0.9721 0.9733 0.9719 0.9727 0.9693 0.9697 0.9720 0.9736 
14 0.9721 0.9736 0.9734 0.9738 0.9714 0.9711 0.9732 0.9745 

Medical3 6 0.9153 0.9171 0.9173 0.9179 0.9022 0.9042 0.8993 0.9200 
8 0.9279 0.9325 0.9323 0.9287 0.9220 0.9265 0.9260 0.9347 
10 0.9373 0.9416 0.9387 0.9354 0.9289 0.9301 0.9378 0.9419 
12 0.9404 0.9448 0.9431 0.9439 0.9387 0.9341 0.9418 0.9460 
14 0.9442 0.9488 0.9453 0.9469 0.9415 0.9425 0.9436 0.9487 

Medical5 6 0.8381 0.8402 0.8400 0.8388 0.8322 0.8312 0.8365 0.8410 
8 0.8460 0.8513 0.8458 0.8484 0.8345 0.84001 0.8455 0.8527 
10 0.8501 0.8567 0.8497 0.8512 0.8388 0.8439 0.8512 0.8573 
12 0.8557 0.8603 0.8537 0.8550 0.8471 0.8511 0.8559 0.8606 
14 0.8560 0.8613 0.8562 0.8568 0.8474 0.8542 0.8601 0.8624 

Medical6 6 0.9612 0.9642 0.9646 0.9660 0.9577 0.9545 0.9646 0.9659 
8 0.9701 0.9717 0.9678 0.9701 0.9621 0.9678 0.9698 0.9722 
10 0.9734 0.9742 0.9730 0.9738 0.9707 0.9700 0.9734 0.9751 
12 0.9741 0.9762 0.9740 0.9751 0.9725 0.9716 0.9744 0.9767 
14 0.9751 0.9766 0.9756 0.9767 0.9753 0.9735 0.9747 0.9774 

Medical7 6 0.9394 0.9417 0.9402 0.9414 0.9334 0.9378 0.9385 0.9410 
8 0.9531 0.9501 0.9529 0.9531 0.9481 0.9412 0.9507 0.9534 
10 0.9567 0.9603 0.9598 0.9587 0.9500 0.9554 0.9602 0.9617 
12 0.9623 0.9635 0.9621 0.9630 0.9536 0.9601 0.9629 0.9638 
14 0.9644 0.9664 0.9638 0.9658 0.9611 0.9631 0.9655 0.9666 

Average  0.9424 0.9446 0.9430 0.9437 0.9374 0.9387 0.9421 0.9454  
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Table 19 
SSIM results of 3D medical image segmentation using Kapur’s method for all algorithms.  

Image K Algorithms 

SOA [41] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 0.9649 0.9632 0.9552 0.9680 0.9601 0.9624 0.9635 0.9650 
8 0.9621 0.9738 0.9621 0.9701 0.9668 0.9700 0.9734 0.9755 
10 0.9743 0.9765 0.9673 0.9732 0.9723 0.9733 0.9767 0.9788 
12 0.9792 0.9800 0.9720 0.9768 0.9756 0.9775 0.9785 0.9809 
14 0.9807 0.9813 0.9750 0.9807 0.9779 0.9795 0.9810 0.9818 

Medical2 6 0.9588 0.9578 0.9244 0.9529 0.9500 0.9448 0.9513 0.9600 
8 0.9635 0.9631 0.9477 0.9638 0.9549 0.9588 0.9650 0.9664 
10 0.9697 0.9688 0.9545 0.9686 0.9600 0.9671 0.9694 0.9701 
12 0.9713 0.9729 0.9622 0.9721 0.9640 0.9702 0.9710 0.9735 
14 0.9725 0.9742 0.9648 0.9734 0.9681 0.9688 0.9735 0.9745 

Medical3 6 0.9044 0.9012 0.8415 0.8968 0.8648 0.9026 0.8894 0.9055 
8 0.9123 0.9187 0.8829 0.9106 0.8835 0.9107 0.9059 0.9240 
10 0.9298 0.9276 0.9074 0.9220 0.9038 0.9168 0.9266 0.9323 
12 0.9321 0.9332 0.9100 0.9324 0.9235 0.9215 0.9322 0.9424 
14 0.9386 0.9373 0.9166 0.9421 0.9326 0.9335 0.9404 0.9453 

Medical4 6 0.8301 0.8327 0.8008 0.8314 0.8109 0.8420 0.8450 0.8470 
8 0.8470 0.8378 0.8165 0.8373 0.8149 0.8433 0.8480 0.8535 
10 0.8531 0.8409 0.8268 0.8463 0.8227 0.8485 0.8499 0.8557 
12 0.8540 0.8421 0.8342 0.8525 0.8402 0.8531 0.8541 0.8566 
14 0.8558 0.8456 0.8452 0.8565 0.8416 0.8552 0.8599 0.8644 

Medical5 6 0.9583 0.9610 0.9504 0.9371 0.9485 0.9542 0.9543 0.9620 
8 0.9675 0.9653 0.9598 0.9441 0.9592 0.9624 0.9661 0.9688 
10 0.9719 0.9743 0.9637 0.9648 0.9652 0.9659 0.9734 0.9750 
12 0.9732 0.9751 0.9688 0.9682 0.9695 0.9702 0.9747 0.9758 
14 0.9750 0.9769 0.9664 0.9707 0.9719 0.9720 0.9760 0.9772 

Medical6 6 0.9213 0.9204 0.8700 0.9160 0.9131 0.9191 0.9211 0.9244 
8 0.9420 0.9412 0.9145 0.9415 0.9327 0.9265 0.9419 0.9430 
10 0.9569 0.9565 0.9277 0.9589 0.9476 0.9519 0.9554 0.9579 
12 0.9590 0.9604 0.9412 0.9591 0.9516 0.9645 0.9608 0.9612 
14 0.9618 0.9648 0.9479 0.9632 0.9576 0.9577 0.9665 0.9652 

Average  0.9380 0.9374 0.9192 0.9350 0.9268 0.9348 0.9381 0.9421  

Table 20 
The NCC results of 3D medical image segmentation using Otsu’s method for all algorithms.  

Image K Algorithms 

SOA [41] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 0.9943 0.9947 0.9946 0.9947 0.9898 0.9964 0.9968 0.9950 
8 0.9964 0.9968 0.9967 0.9968 0.9944 0.9955 0.9962 0.9970 
10 0.9975 0.9978 0.9977 0.9977 0.9958 0.9967 0.9969 0.9982 
12 0.9980 0.9981 0.9980 0.9982 0.9972 0.9972 0.9978 0.9986 
14 0.9983 0.9986 0.9983 0.9981 0.9975 0.9977 0.9978 0.9990 

Medical2 6 0.9955 0.9954 0.9955 0.9959 0.9933 0.9939 0.9952 0.9958 
8 0.9971 0.9973 0.9970 0.9972 0.9953 0.9962 0.9969 0.9975 
10 0.9978 0.9980 0.9979 0.9980 0.9966 0.9966 0.9972 0.9983 
12 0.9981 0.9985 0.9982 0.9984 0.9973 0.9972 0.9980 0.9987 
14 0.9983 0.9986 0.9985 0.9986 0.9980 0.9979 0.9981 0.9989 

Medical3 6 0.9959 0.9965 0.9964 0.9965 0.9943 0.9955 0.9947 0.9968 
8 0.9975 0.9980 0.9979 0.9980 0.9967 0.9972 0.9972 0.9984 
10 0.9984 0.9986 0.9981 0.9986 0.9975 0.9978 0.9978 0.9990 
12 0.9986 0.9990 0.9989 0.9990 0.9981 0.9981 0.9980 0.9992 
14 0.9987 0.9992 0.9989 0.9991 0.9986 0.9987 0.9985 0.9994 

Medical4 6 0.9971 0.9975 0.9974 0.9978 0.9970 0.9970 0.9975 0.9977 
8 0.9983 0.9987 0.9984 0.9985 0.9974 0.9978 0.9984 0.9986 
10 0.9988 0.9991 0.9990 0.9990 0.9980 0.9985 0.9991 0.9994 
12 0.9990 0.9993 0.9992 0.9993 0.9986 0.9989 0.9993 0.9996 
14 0.9992 0.9994 0.9993 0.9994 0.9988 0.9990 0.9994 0.9998 

Medical5 6 0.9934 0.9941 0.9940 0.9940 0.9912 0.9931 0.9937 0.9944 
8 0.9954 0.9961 0.9950 0.9960 0.9941 0.9944 0.9948 0.9964 
10 0.9969 0.9972 0.9968 0.9973 0.9961 0.9959 0.9964 0.9978 
12 0.9970 0.9974 0.9971 0.9975 0.9970 0.9967 0.9968 0.9980 
14 0.9978 0.9982 0.9976 0.9981 0.9975 0.9968 0.9971 0.9984 

Medical6 6 0.9926 0.9930 0.9930 0.9932 0.9899 0.9920 0.9924 0.9934 
8 0.9955 0.9959 0.9954 0.9955 0.9938 0.9945 0.9950 0.9959 
10 0.9963 0.9966 0.9961 0.9965 0.9943 0.9956 0.9960 0.9969 
12 0.9968 0.9970 0.9968 0.9970 0.9955 0.9961 0.9967 0.9974 
14 0.9970 0.9973 0.9972 0.9972 0.9961 0.9966 0.9972 0.9978 

Average  0.9970 0.9973 0.9971 0.9973 0.9958 0.9964 0.9968 0.9977  
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3. The proposed approach makes parallel hybridization (which is more 
suited to parallel computer environments) between two powerful 
metaheuristics (COVIDOA and HHOA) for solving segmentation 
problems.  

4. It can be applied to any two population-based metaheuristics.  
5. Its computational time is half the computational time of sequential 

hybrid metaheuristics because the initial population is divided into 
two halves, and each algorithm operates on one half in parallel. 

To prove the superiority of the proposed Hybrid COVID-HHOA al
gorithm over the native HHOA and COIVD algorithms, we utilized 6 test 
functions from IEEE CEC 2019 benchmark problems. These are a group 
of modern test functions known as “The 100-Digit Challenge” intended 
to be used in single objective numerical optimization IEEE competitions. 
The description of these functions in terms of problem dimension, range 
of possible values, and the global optimum is discussed in Ref. [50]. 

The convergence curves of the proposed hybrid algorithm, HHOA, 
and COVID algorithms are presented in Fig. 6. The figure clearly shows 
the superiority of the proposed hybrid algorithm as it reaches the opti
mum fitness values compared to COVID and HHOA algorithms. The 
pseudocode of the proposed COVID-HHOA algorithm for multilevel 
thresholding is shown in Fig. 7. 

6. Experimental results and discussion 

In this section, we firstly provide a brief description of the medical 
datasets used for testing. Then, we show the parameter settings for the 
proposed and state-of-the-art algorithms. After that, the evaluation 
metrics used for comparing the results are explained in detail. Then, we 
present the numerical results obtained from running the proposed al
gorithm and its peers. Finally, we conducted a comparative analysis of 
the obtained results. 

6.1. Datasets 

6.1.1. 2D medical images 
We used six 2D medical images to prove the efficiency of the pro

posed algorithm in medical image segmentation. Medical1, Medical2, 
and Medical4 images are MRI images, Medical3 are X-ray images, and 
Medical5 and Medical6 are CT images. These images have many varia
tions, such as size, resolution, and modality. The images and their his
tograms are shown in Table 1. 

6.1.2. Volumetric (3D) medical images 
The advanced medical imaging technologies available today, such as 

MRI, CT, X-ray, and ultrasound, make it possible to view the detailed 
structure of human anatomy by acquiring efficient volumetric medical 
images. These images make it easier for medical experts to examine, 
detect, and diagnose diseases. Volumetric medical images can be rep
resented by a group of 2D image slices [51], as shown in Fig. 8. A set of 
3D medical images are selected for testing from the open-source dataset 
available in Ref. [52]. The selected image slices are shown in Fig. 9. 

6.2. Parameter setting 

The results of multilevel thresholding using the proposed algorithm 
are compared with those of seven well-known metaheuristic algorithms 
in different evaluation criteria. These algorithms are: Harris Hawks 
Optimization Algorithm (HHOA) [35], Bat Algorithm (BA) [23], Har
mony Search Algorithm (HSA) [15], Cuckoo Search Algorithm (CSA) 
[19], Sine Cosine Algorithm (SCA) [22], Flower Pollination Algorithm 
(FPA) [18], and Seagull Optimization Algorithm (SOA) [45]. 

The reasons for selecting these algorithms for comparison are as 
follows:  

⁃ They have proved their superior performance in solving various 
optimization problems, especially image segmentation. 

Table 21 
The NCC results of 3D medical image segmentation using Kapur’s entropy method for all algorithms.  

Image K Algorithms 

SOA [41] HHOA [35] FPA [18] CS [19] HS [15] SCA [22] BA [23] COVID-HHOA 

Medical1 6 0.9858 0.9853 0.9778 0.9900 0.9821 0.9838 0.9861 0.9867 
8 0.9932 0.9932 0.9851 0.9910 0.9882 0.9887 0.9938 0.9946 
10 0.9950 0.9954 0.9882 0.9921 0.9920 0.9921 0.9951 0.9958 
12 0.9970 0.9975 0.9928 0.9939 0.9944 0.9935 0.9970 0.9978 
14 0.9978 0.9981 0.9931 0.9980 0.9960 0.9952 0.9980 0.9984 

Medical2 6 0.9940 0.9921 0.9804 0.9914 0.9921 0.9882 0.9912 0.9948 
8 0.9944 0.9949 0.9820 0.9955 0.9932 0.9920 0.9950 0.9956 
10 0.9960 0.9961 0.9927 0.9975 0.9945 0.9956 0.9974 0.9966 
12 0.9978 0.9980 0.9928 0.9978 0.9964 0.9959 0.9980 0.9983 
14 0.9980 0.9984 0.9929 0.9983 0.9968 0.9962 0.9984 0.9988 

Medical3 6 0.9910 0.9939 0.9698 0.9943 0.9926 0.9911 0.9886 0.9943 
8 0.9950 0.9949 0.9910 0.9951 0.9935 0.9934 0.9951 0.9956 
10 0.9965 0.9960 0.9919 0.9965 0.9952 0.9953 0.9968 0.9971 
12 0.9974 0.9975 0.9937 0.9977 0.9973 0.9965 0.9978 0.9985 
14 0.9982 0.9979 0.9961 0.9981 0.9975 0.9980 0.9983 0.9989 

Medical4 6 0.9939 0.9969 0.9895 0.9968 0.9950 0.9965 0.9954 0.9971 
8 0.9957 0.9981 0.9952 0.9978 0.9957 0.9973 0.9978 0.9981 
10 0.9980 0.9985 0.9957 0.9982 0.9970 0.9978 0.9980 0.9984 
12 0.9954 0.9988 0.9961 0.9988 0.9978 0.9980 0.9985 0.9989 
14 0.9986 0.9990 0.9970 0.9990 0.9984 0.9984 0.9990 0.9993 

Medical5 6 0.9888 0.9923 0.9873 0.9710 0.9879 0.9866 0.9898 0.9926 
8 0.9944 0.9939 0.9905 0.9761 0.9925 0.9925 0.9938 0.9941 
10 0.9960 0.9948 0.9934 0.9943 0.9932 0.9930 0.9950 0.9952 
12 0.9969 0.9968 0.9955 0.9945 0.9953 0.9947 0.9975 0.9974 
14 0.9977 0.9978 0.9962 0.9948 0.9964 0.9956 0.9978 0.9980 

Medical6 6 0.9851 0.9845 0.9728 0.9890 0.9822 0.9821 0.9851 0.9861 
8 0.9906 0.9922 0.9876 0.9922 0.9913 0.9932 0.9935 0.9937 
10 0.9943 0.9951 0.9883 0.9956 0.9928 0.9940 0.9958 0.9958 
12 0.9948 0.9960 0.9899 0.9960 0.9944 0.9944 0.9964 0.9965 
14 0.9955 0.9968 0.9907 0.9970 0.9955 0.9947 0.9973 0.9972 

Average  0.9947 0.9953 0.9895 0.9939 0.9935 0.9934 0.9952 0.9960  
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⁃ Most of them are recent and published in reputable sources.  
⁃ Their MATLAB implementations are publicly available on the 

MATLAB website (https://www.mathworks.com/). 

All the experiments were run on a laptop with the following speci
fications: Intel(R) Core(TM) i7-1065G7 processor, RAM of 8.0 GB size, 
and Windows 10 Ultimate 64-bit operating system. All the algorithms 
are developed using MATLAB R2016a development environment. 

6.3. Performance metrics 

The performance of the proposed algorithm is evaluated using 
several performance metrics, including Peak Signal-to-Noise Ratio 
(PSNR), Structural Similarity Index (SSIM), Normalized Correlation 
Coefficient (NCC), and best fitness, in addition to the Wilcoxon rank-sum 
test. 

PSNR, SSIM, and NCC are used to measure the quality of the 
segmented images, while best fitness is measured to prove the ability of 
the proposed algorithm to find optimum solutions, and the Wilcoxon 
rank-sum test is utilized to prove the statistical significance of the pro
posed algorithm as follows:  

a) Best Fitness 

The maximum fitness obtained from running the proposed ad state- 

of-the-art algorithms with Otsu’s method and Kapur’s entropy functions 
is measured using equations (3) and (7).  

b) Peak signal-to-noise ratio (PSNR) 

PSNR is commonly used to quantify the quality of images. It refers to 
the ratio between the segmented image power and noise power. PSNR 
for 2D and 3D images is calculated as follows: 

PSNR= 10 Log10

(
2552

MSE

)

(21)  

where MSE of a 2D image is calculated as follows: 

MSE =
1

M × N

∑M

i=1

∑N

j=1
[F(i, j) − f (i, j)]2 (22a) 

F(i,j) is the original image, f(i,j) is the segmented image, and M × N 
refers to the 2D image size. 

For 3D images, the MSE is calculated as follows: 

MSE =
1

M × N × L

∑M

i=1

∑N

j=1

∑L

k=1
[F(i, j, k) − f (i, j, k)]2 (22b)  

where F(i,j,k) is the original 3D image, f(i,j,k) is the segmented 3D 
image, and M × N × L refers to the size of the 3D image. 

Fig. 18. The average PSNR, SSIM, and NCC results of 3D medical image segmentation using (a) Otsu’s method and (b) Kapur’s entropy for all algorithms.  
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c) Structural similarity index (SSIM) 

SSIM is used to quantify the structural similarity between the orig
inal and segmented images; the SSIM for 2D and 3D images is calculated 
as follows: 

SSIM(F, f )=
(
2μFμf + C1

)(
2σFf + C2

)

(
μ2

Fμ2
f + C1

)(
σ2

Fσ2
f + C2

) (23) 

The F and f refer to the original and segmented images. The μF and μf 

are the mean intensity of F and f, while σ2
F and σ2

f refer to the variance of 
F and f, respectively. The values of C1 = 6.502 and C2 = 58.522 are used.  

d) Normalized correlation coefficient (NCC) 

NCC is used to measure the extent to which two images are related. 
The absolute value of NCC ranges from 0 to 1, where 0 indicates that the 
two images have no relation and 1 indicates the strongest possible 
relation. The higher the absolute value of NCC, the stronger the rela
tionship between the two images. 

NCC between the original and segmented 2D images F(i,j) and f(i,j) is 
calculated as follows: 

NCC =

∑M− 1
i=0

∑N− 1
j=0 (F(i, j) × f (i, j))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑M− 1
i=0

∑N− 1
j=0 (F(i, j) × F(i, j)) ×

∑M− 1
i=0

∑N− 1
j=0 (f (i, j) × f (i, j))

√ (24)  

where M × N is the size of the 2D image. 
The NCC between two 3D images F(i,j,k) and f(i,j,k) is calculated as 

follows:   

e) Wilcoxon rank-sum test 

The Wilcoxon rank-sum test is a non-parametric statistical test used 
to measure the statistical difference between two related methods [51]. 
We conducted the Wilcoxon rank-sum test with a 5% significance level 
to prove the proposed algorithm’s statistical significance compared to 
the other algorithms. 

6.4. Results 

This section presents the numerical results of running the proposed 
algorithm to select the optimum threshold values using Otsu’s method 
and Kapur’s Entropy. These results are compared with the state-of-the- 
art algorithms regarding best fitness, PSNR, SSIM, NCC, and Wilcoxon 
rank-sum test. This section is divided into two subsections for presenting 
the results of using the proposed algorithm to segment 2D and 3D 
medical images as follows: 

6.4.1. Experimental results for 2D medical images 
Tables 2 and 3 show the segmentation results of the 2D medical test 

images using the proposed COVID-HHOA algorithm. These images are 
segmented using Otsu’s method and Kaur’s Entropy fitness functions at 
6, 8, 10, 12, and 14 threshold levels. 

Tables 4 and 5 show the PSNR values produced by the proposed and 
state-of-the-art algorithms for all test images using Otsu’s method and 

Kapur’s entropy at different threshold levels. It’s shown from the tables 
that the proposed algorithm has the highest PSNR in 59 from 60 cases. 

The SSIM results of Otsu’s method and Kapur’s entropy are presented 
in Tables 6 and 7. The closer the SSIM values to 1, the better the quality 
of the segmented images. The tables show that the proposed algorithm 
has superior results in 27 from 30 cases in the case of Otsu’s method; 
however, it has the best results in 21 from 30 cases in the case of Kapur’s 
entropy. 

In addition to PSNR and SSIM results, the NCC results are presented 
to prove the high quality of the segmented images produced by the 
proposed algorithm. The NCC values produced by all algorithms for all 
2D images using Otsu’s method and Kapur’s entropy are shown in Ta
bles 8 and 9. It can be seen that the proposed algorithm exceeds all state- 
of-the-art algorithms in terms of NCC values in all cases except one case 
in Otsu’s method results and 3 cases in Kapur’s entropy results. 

The relationship between the number of thresholds and PSNR, SSIM, 
and NCC for Otsu’s method and Kapur’s entropy is shown in Fig. 10 to 
15, respectively. Each one is split into two figures (a and b) for more 
clarity. 

According to the fitness function, we compared the proposed algo
rithm to the other algorithms in terms of the best fitness value obtained 
from running each algorithm 30 times with Otsu’s method and Kapur’s 
entropy. Higher fitness function values indicate higher quality of the 
solutions produced by the algorithm. The best fitness values for all al
gorithms using Otsu’s method and Kapur’s entropy are shown in Ta
bles 10 and 11. The relationship between the thresholds and the fitness 
values is shown in Fig. 16 (a, b) and 17(a, b) for Otsu’s method and 
Kapur’s entropy, respectively. Although all algorithms have relative 
fitness values, the proposed algorithm slightly exceeds them in almost 
all cases, indicating its ability to find high-quality solutions. 

6.4.2. Experimental results for 3D medical images 
In this section, the performance of the proposed algorithm in 3D 

medical image segmentation is assessed according to the same evalua
tion metrics mentioned above. The proposed algorithm and seven well- 
known metaheuristic techniques are applied to 6 different volumetric 
medical images to determine the optimal threshold values to segment 
the slices of these images. We utilized the same parameter settings and 
threshold levels as in the case of 2D medical images. 

The segmented image slices from applying the proposed algorithm 
for Otsu’s method and Kapur’s entropy at different threshold levels are 
shown in Tables 14 and 15, respectively. The high quality of the 
segmented image slices is evident from their visual appearance. 

The results of PSNR, SSIM, and NCC of the proposed algorithm 
against its peers for Otsu’s method and Kapur’s entropy are given in 
Table 16 to 21. The values in these tables, highlighted in bold, indicate 
the best results. 

6.5. Discussions 

In the medical field, the quality of the images is of great importance 
because any degradation of the image quality may affect the diagnosis 
process. The higher the PSNR, SSIM, and NCC values, the higher the 
quality of the segmented images. As shown in Figs. 10–15, all algorithms 
have similar performance at lower threshold values for both Otsu’s 
method and Kapur’s entropy; however, the superiority of the proposed 
algorithms gets more obvious at large threshold numbers, which proves 
the efficiency of the proposed algorithm in image segmentation, 

NCC =

∑M− 1
i=0

∑N− 1
j=0

∑L− 1
k=0 (F(i, j, k) × f (i, j, k))
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especially at high threshold levels. 
According to PSNR, the proposed algorithm has the best performance 

in almost all cases, followed by HHOA. SCA and CS algorithms have the 
lowest PSNR values. The SSIM and NCC results show high similarity 
between the original and the segmented images produced by the pro
posed algorithm, which means that there is no high degradation in the 
medical images, which is very important for taking a medical decision. 
As in the case of PSNR, the superiority of the proposed algorithm in 
terms of SSIM and NCC gets clearer at high threshold levels. 

The obtained fitness function values show the algorithm’s ability to 
find high-quality solutions to the problem. All algorithms have similar 
fitness values in almost all cases; however, the proposed algorithm 
slightly outperforms them. 

Despite the very good performance of the HHOA algorithm in most 
cases, it fails to get high fitness in some cases, such as the case of Medial5 
and Medical6 images (which are CT images) for Otsu’s method. How
ever, the proposed algorithm achieves superior performance for all 
cases. 

From the visual perception, we can notice the high quality of the 
segmented images at all threshold levels. These results indicate the 
ability of the proposed COVID-HHOA algorithm to find the threshold 
values that most fit for segmentation. 

Some algorithms such as BA, CS, and HHOA exceed the proposed 
algorithm when a low threshold level is used. However, in most cases, 
especially at high threshold levels, the proposed algorithm has superior 
performance. 

The bar charts in Fig. 18 show all algorithms’ average PSNR, SSIM, 
and NCC results, respectively. The superiority of the proposed algorithm 
against the other algorithms in terms of PSNR is clearly shown in Fig. 18. 
In the case of SSIM and NCC, all algorithms have similar performance; 
however, the proposed algorithm is slightly superior. 

For a 3D medical image, each image slice is segmented separately, 
and then the segmented image slices are concatenated to form a 
segmented 3D image. The PSNR, SSIM, NCC, and fitness values for a 3D 
image are obtained by computing the average value of all slices. As in 
the case of 2D medical images, the proposed algorithm shows superior 
performance in 3D image segmentation. 

In addition to the previously mentioned evaluation criteria, we uti
lized the Wilcoxon rank-sum test to compare the results of the proposed 
algorithm with other algorithms. As mentioned in Refs. [28–30], the null 
hypothesis is defined as: there is no significant difference between a pair 
of algorithms. The p values obtained from the Wilcoxon rank-sum test 
are applicable to judge whether or not to reject the null hypothesis. 
Smaller p values (less than 0.05) indicate that the null hypothesis is 
rejected. And the two compared algorithms are considered significantly 
different. 

The p values produced by comparing the proposed algorithm with all 
other algorithms are shown in Tables 12 and 13. All the p values shown 
in the table are ≤0.05, proving the alternative hypothesis that there is a 
significant difference between the two methods. The overall results 
prove the efficiency of the proposed COVID-HHOA algorithm in image 
segmentation. 

Based on the previously mentioned results, we can say that the 
proposed COVID-HHOA algorithm outperforms all other algorithms in 
2D and 3D medical image segmentation at high threshold levels. How
ever, the proposed approach is not the best at lower threshold values. 
Higher threshold levels are preferable in image segmentation to pre
cisely locate the complex objects in the image. 

7. Conclusions and future work 

This paper proposes a hybrid algorithm for solving the multilevel 
thresholding problem for 2D and 3D medical image segmentation. This 
algorithm is called COVID-HHOA, which combines two robust meta
heuristic algorithms to get better quality solutions. The proposed algo
rithm uses Otsu’s and Kapur’s entropy as fitness functions to find the 

best threshold values. The superiority of the proposed COVID-HHOA 
algorithm is verified using two groups of 2D medical images and volu
metric medical images. The hybridization is implemented by splitting 
the populations into two smaller populations, and each subpopulation is 
assigned to one of the two algorithms to be updated in parallel. Different 
evaluation metrics are utilized to compare the performance of the pro
posed algorithm with seven well-known metaheuristics. These metrics 
are PSNR, SSIM, NCC, best fitness, and applying the Wilcoxon rank-sum 
test to prove the significance and superiority of the proposed algorithm. 
The overall results reveal the efficiency of the proposed COVID-HHOA in 
solving the medical image segmentation problem. It is worth mentioning 
that except the methods used in the paper, some of the most represen
tative computational intelligence algorithms can be used to solve the 
problem, like monarch butterfly optimization (MBO), earthworm opti
mization algorithm (EWA), elephant herding optimization (EHO), moth 
search (MS) algorithm, Slime mould algorithm (SMA), hunger games 
search (HGS), Runge Kutta optimizer (RUN), colony predation algo
rithm (CPA), and Harris hawks optimization (HHOA). Future work may 
include hybridizing the novel COVID algorithm with one of these met
aheuristics. Also, we can apply the proposed algorithm in the image 
segmentation of color images. 
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