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Abstract

Here, we discuss the principles of allosteric activating mutations, propagation downstream of the 

signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. 

We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-

incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. 

Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, 

targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that 

destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders 

can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase 

warhead anchor. The physical properties and favored conformational state of the engineered 

linker can precisely coordinate the distance and orientation between the target and the recruited 

E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent 

links of allosteric ligands and orthosteric warheads, increase the effective local concentration of 

productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric 

drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, 

driving innovative drug discovery.
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Introduction

Classically, throughout past decades, the life sciences aimed at morphological descriptions 

of organisms, their classification, and their habitats. The emergence of the structure – 

function paradigm was inspired by the recognition that even living things must conform 

to the laws of physics, including the laws of motion and structural chemistry [1]. The 

gradual conceptual change merged with technological advances that were able to capture 

the conformational heterogeneity [1–5]. Allostery, which involves dynamic shifts of the 

distributions of the conformational ensembles prompted by some triggering events, is 

at the center of regulated molecular behavior [6–15]. Changes in the conformational 

distributions provoked by allosteric PTMs (post-translational modifications), interactions 

with ions, cofactors, mutations, allosteric drugs, changes in concentrations, and more [16–

30], result in conformational and dynamic changes [12,13,31–41] and can be captured by 

the dynamic free energy landscapes [37,42]. The resulting energetic frustration, or local 

energetic conflicts in the structure [43–46] reinforced by the allosteric conformational 

changes, propagate and are the key to protein function [47–52]. Allostery signals at short 

ranges. If the domains are separated by long disordered linkers, as in the case of Raf kinase 

[53], the relatively similar free energies of the conformational states (the depths of the basins 

in the landscape) characteristic of disordered ensembles, support multiple routes through 

which the allosteric signals can travel [54]. Funnels of folding, binding and function [55–58] 

showed that folding progresses via multiple routes, with some dominantly populated, which 

may not be the case for allosteric propagation or folding of disordered states.

Catalysis and regulation are the beating heart of biology [59]. In catalysis, ensembles 

of activated conformations can catalyze multiple reaction steps [60]. The transition-state 

ensemble [61] can also employ multiple paths from the rugged saddle region as shown for 

the yeast chorismate mutase [62,63]. Thus, conformational ensemble concepts [64] extend 

from folding to binding to enzymatic catalysis, and below we apply them to allosteric cancer 

drivers and innovative allosteric drug concepts. Considering that to have a functional impact 

allostery-prompted signals of activating mutations need to propagate downstream, we further 

take up the vital and formidable question of measurements of signal thresholds and outline 

some principles [65].
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Allosteric driver mutations in cancer

Here, we consider diseases that are the outcome of allosteric driver mutations [33,66–79]. 

Not all drivers are allosteric [80]; mutations at the functional (or active) site are not, as 

exemplified by oncogenic Ras drivers at G12, or Q61. More on this below. Allosteric drivers 

work by destabilizing the inactive protein state, stabilizing the active state, or both [33]. In 

repressors, allosteric mutations stabilize the inactive state [70]. The differences in energy 

between the inactive and active states are typically relatively small. To get stabilized, that 

is, to become the favorable state, the protein needs to undergo a conformational change. 

Mutations can do this by breaking the interactions that stabilize it, and/or forming alternative 

stabilizing interactions, such as salt bridges or hydrophobic cores. By definition, these are 

allosteric events [6] that can lead to significant increase in protein activity over the basal 

state. Driver mutations promote cancer since they bestow a growth edge [81]. Current 

therapeutic regimens seek knowledge of the patient’s driver mutations to guide treatment 

[82–85]. Driver mutations are commonly identified by their high frequencies of occurrence, 

making detection of rare allosteric driver mutations that may be equally potent a daunting 

task [86]. Thus, in addition to the statistics of occurrence, strategies to identify driver 

mutations include structural location and organization, and functional consequences [81]. 

Clustering of mutations not only in protein sequences [87] but especially in structures [88–

93] is one such strategy. Allosteric drivers often cluster since clustering intensifies their 

effect. A classic example of clustered residue hotspots is the “hot regions” [94,95]. The 

residues are structurally highly conserved residing within locally tightly packed regions, 

where they form a network of interactions making their contributions to the stability 

cooperative. Identification of drivers can also be helped by molecular dynamics (MD) 

simulations, which can observe conformational changes. Residue interaction networks [96] 

can further reveal whether they lie on the same propagation pathway of the intramolecular 

allosteric signal, which can strengthen the signal outcome. Other approaches include (i) 

machine learning, which can identify dynamic signatures (e.g., [40,97–100]), and whose 

vast contributions to the field will be reviewed elsewhere, (ii) dynamic residue networks 

and (iii) perturbation response scanning which were used to identify allosteric hot spots 

of human Hsp90 as cancer drug target, and it was shown that both approaches are in 

agreement [101]. A recent review summarized the approaches to identify allosteric regions/

hotspots. It includes residue interaction networks and other approaches. It also extensively 

discusses allosteric drugs [102]. Additional approaches have also been devised [103–109]. 

From the conformational standpoint, the hallmark of allosteric activity is the behavior of 

the ensemble. If it is shifted toward an active (or inactive in repressors) state, then the 

mutations are activating. Ensemble shifts can be captured through, e.g., schematic, funnel-

like “function diagrams” [110], nuclear magnetic resonance (NMR), and MD simulations 

[111–114]. Recently, we proposed that a key mechanism of allosteric driver mutations is 

relieving autoinhibition and provided a few mechanistic examples, such as protein kinase 

B (AKT) and mammalian target of rapamycin (mTOR) protein kinases, phosphoinositide 3-

kinase α (PI3Kα) lipid kinase, SH2 domain-containing phosphatase 2 (SHP2) phosphatase, 

NIMA-related kinase 7 (NEK7) and 9 (NEK9) protein kinases, and engineered mutations in 

MAP/microtubule affinity-regulating kinase 1 (MARK1) kinase-associated-1 (KA1) domain 

[66]. Mutations that relieve autoinhibition are allosteric drivers, whether they are frequent 
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or statistically rare [86]. Below, we go deeper into PI3Kα with recent data, which now 

also include double/multiple mutations, Raf, and phosphatase and tensin homolog (PTEN) 

phosphatase for comparison and discuss Ras non-allosteric mutations.

PI3Kα lipid kinase

PI3Kα is a lipid kinase. It is a key component in the PI3K/AKT/mTOR signaling 

pathway, phosphorylating signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) at the membrane [115,116]. Phosphorylation 

events play a key role in PI3Kα autoinhibition and activation [117]. PI3Kα has two 

domains, p85α and p110α. Single, double, and multiple cancer driver mutations have 

been identified in PI3Kα (Figure 1). They can be strong, functionally weak, or relatively 

rare. When co-occurring they can collaborate to more potently transform cells [118–120]. 

Strong drivers include E542K, E545K in the p110α helical domain and H1047R in the 

kinase domain. E726K and M1043V/I are weak drivers in the kinase domain. The other 

weak mutations are N345K, C420R, E453K/Q in the C2 domain and R38H/C, R88Q, 

R93Q, R108H, and G118D in the adaptor binding domain (ABD). Their actions can be 

additive or cooperative. The driver mutations activate PI3Kα by relieving the autoinhibition 

exerted by the nSH2 domain of the p85α subunit, which covers the active site and blocks 

access to membrane, and by positioning the kinase domain appropriately at the membrane. 

Under physiological conditions, the favorable interaction of the nSH2 with a phosphorylated 

tyrosine motif at the C-terminal of an insulin receptor, a receptor tyrosine kinase (RTK), 

promotes conformational changes that lead to exposure to the active site. The E542K 

and E545K driver mutations in p110α disrupt the interfacial salt bridges, relieving the 

autoinhibition and leading to a reorganization at the active site. In the absence of an 

incoming physiological signal from the RTK and Ras activation, the H1047R strong driver 

promotes the interaction with the membrane. The weak drivers (e.g., E453K/Q and E726K 

on the surface of the N-lobe, and M1043V/I in the interior of the C-lobe of the kinase 

domain) can couple with the driver hotspots [118,121]. They too help promote population 

shift toward the active state by enhancing the activation mechanisms, all of which mimic the 

physiological activation of PI3K, which involves two components: release of autoinhibition 

by the nSH2 domain and attaching favorably to the membrane. Some mutations (e.g., 

M1043V/I) enhance the population shift by stabilizing the hydrophobic core. For further 

details and the roles played by other driver mutations see [115].

Raf kinase

Raf is a key protein kinase in the mitogen-activated protein kinase (MAPK) signaling 

cascade [122–126]. It consists of three conserved regions (CRs). CR1 contains the Ras 

binding domain (RBD), which binds activated Ras at the membrane [53,127,128], and the 

cysteine rich domain (CRD), which anchors at the membrane [129,130]. Wild-type active 

Raf is a dimer [131]. In the inactive autoinhibited state, it is a monomer [132–134]. Both 

RBD and CRD are involved in Raf’s autoinhibition by binding CR3, which results in 

occluding the dimerization surface of the kinase domain (Figure 2). Binding to Ras and the 

membrane exposes the catalytic kinase domain surface for dimerization and activation. CR2 

has a flexible linker between CR1 and CR3 which contains a serine/threonine rich region. 

In the autoinhibited state, it is phosphorylated and binds the 14-3-3 protein. The binding 
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stabilizes the ternary autoinhibited state [135–137]. CR3 is the kinase domain, which 

consists of two lobes connected by a hinge. When activated, it phosphorylates mitogen-

activated protein kinase kinase 1/2 (MEK1/2), a key action in MAPK signal propagation. 

The activation loop (A-loop) runs from the conserved DFG motif to the APE motif in the 

C-terminal lobe. Phosphorylated Thr599 and Ser602 in the A-loop [138–144] of active, 

dimeric B-Raf destabilize the inactive and stabilize the active state. The switching from the 

inactive to the active state involves allosteric structural changes [145].

V600E, the most frequent cancer mutation in B-Raf, is a potent driver mutation [146,147]. 

MD simulations provided mechanistic details as to how it allosterically shifts B-Raf from 

the inactive to the active state by mimicking the mechanism of activation of the wild-type 

[120,123]. The A-loop is extended, and when the DFG motif orients such that Phe595 

rotates away from the αC-helix, the helix moves inward (Figure 3). This allows formation 

of a salt bridge between Lys483 and Glu501. The mutation further acts by destabilizing the 

inactive state. It breaks the hydrophobic interactions and stabilizes the active state a salt 

bridge between Glu600 and Lys507.

PTEN tumor suppressor

PTEN is a tumor suppressor phosphatase [117]. It dephosphorylates signaling lipid PIP3 at 

the membrane to PIP2, opposing PI3K phosphorylation of PIP2, thus suspending signaling. 

Its activation and catalytic reaction have been described [148]. PTEN consists of the PIP2-

binding motif (PBM, residues 1–15), the phosphatase domain (residues 16–185), the C2 

domain which anchors at the membrane (residues 190–350), the C-terminal tail (CTT), and 

the PDZ binding motif (Figure 4). In the autoinhibited state, the phosphorylated residues 

in CTT interact with the arginine loop in the phosphatase domain, and the CBR3 and Cα2 

loops in the C2 domain. Being a tumor suppressor, its driver mutations reduce the vital 

membrane interactions (S10N, K13E, G20E, L42R, and F90S) [149], obstruct the catalysis 

(R130Q/G), obstruct the essential phosphatase/C2 interface (S170N/G/I/R and R173C/H/L) 

[150], and relieve the autoinhibition. Its pathway is among the most highly mutated in 

cancer, particularly when involving mutations in PTEN, and to lesser extent, mutations in 

PI3Kα and AKT1 [151]. PTEN deletion mutations are also common in cancer [152] as are 

S170N/G/I/R and R173C/H/L [153]. Some of the mutations are allosteric and our on-going 

work aims to reveal their detailed mechanisms. Notably, some of PTEN’s mutations have 

been observed to promote autism spectrum disorder (ASD) [154]. Neurodevelopmental 

disorders have also been associated with mutations in PI3K, Raf, Ras, and more [155,156]. 

Recently, we resolved the tantalizing question of how to understand same gene, and even 

same mutations, promoting both cancer and neurodevelopmental disorder [157].

Not all driver mutations are allosteric: The Ras example.

Wild-type Ras regulates cell growth and division [158–165]. It binds multiple effectors and 

signals through multiple pathways. Among these, MAPK and PI3K/AKT/mTOR stand out 

as the major, and most consequential in cell life, including development, and disease. Above 

we have already discussed its two main effectors, PI3K and B-Raf. These, along with Ras 

activators, regulators and its other effectors, and signaling cascades (e.g., PTEN), including 

events such as mutations, have been studied and reviewed in multiple publications (e.g., 
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[54,128,130,136,137,166–189]). The MAPK signal enters the G1 phase of the cell cycle, 

where cyclin-dependent kinases promote passage to the S (synthesis) phase. Together with 

the Ras/PI3K/AKT/mTOR pathway signal [190,191], they promote cell growth and division, 

accelerating proliferation [192–194]. Ras inactivation is mediated by GTPase-activating 

proteins (GAPs) that hydrolyze the GTP to GDP [195]. Driver mutations such as those at 

G12 hinder GAP-assisted hydrolysis, keeping Ras in the active GTP-bound state [196–199]. 

Weaker drivers enhance the exchange of GDP by GTP, e.g., A146T in KRas4B [200] as 

well as influence the intrinsic hydrolysis. In the steady state of the cell, about seventy five 

percent of KRasG12C is GTP bound, reflecting its high, millimolar-range concentration and 

picomolar affinity. G12C shows relatively higher rate of intrinsic hydrolysis as compared to 

other mutations such as G12D, G12V, G13D, and Q61H [201].

Different than kinases, in Ras activating mutations work by blocking deactivation, not 

by stabilizing the active and (or) destabilizing the inactive state; that is, not by shifting 

the equilibrium which results in increasing the number of the active molecules [158]. 

In contrast, kinases switch from the inactive αC-helix-out to the active αC-helix-in, 

movements that involve rotation and shift. In epidermal growth factor receptor (EGFR), 

the driver L858R mutation in the A-loop destabilizes the inactive αC-helix-out conformation 

with Arg breaking the hydrophobic interactions in the αC-helix-out, and the driver T790M 

mutation stabilizes the active αC-helix-in conformation by stabilizing the hydrophobic 

R-spine. T315I in Bcr-Abl, T334I in c-Abl, T341I in Src, T670I in Kit, and T674I in 

platelet-derived growth factor receptor α (PDGFRα), all also stabilize the hydrophobic 

R-spine [33].

Allosteric drugs: Bcr-Abl, allosteric molecular glues and allosteric 

PROTACs

Targeting Bcr-Abl

Allosteric drugs have been extensively reviewed by us and others (e.g., [12,31,33,34,202–

210]). Below following a brief overview, we touch on some recent examples focusing on 

Bcr-Abl, a fusion of BCR and ABL genes present in most patients with different phenotypes 

of leukemia, including acute lymphoblastic leukemia (ALL), chronic myeloid leukemia 

(CML), and neutrophilic-chronic myeloid leukemia (CML-N) (Figure 5). This fusion results 

from the reciprocal translocation of chromosomes 9 and 22. CML has been treated by 

tyrosine kinase inhibitors (TKIs), especially imatinib that binds to Abl inactive state [211]. 

Drug resistance eventually emerges, either by mutations at the active site or elsewhere in 

the kinase domain, allosterically altering the active site. Overcoming such mutational events 

requires a drug with higher affinity than the substrate or cofactor, which can be challenging 

to achieve. In the quintessential kinases example, this requires higher affinity than the 

low micromolar ATP [212]. It also requires sufficiently high dosage. High dosage leads 

to binding to related kinases with conserved active sites, thus toxic side-effects. Allosteric 

drugs bind at sites other than the active, or functional site, which are not conserved. Their 

resulting high specificity has low chance of side effects. Covalent allosteric drugs combine 

the pharmacological merits of covalent drugs and the high specificity of allosteric drugs 

[202,212]. Cooperativity between the orthosteric and allosteric ligand binding sites has been 
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proposed [6] and recently observed for RAR-related orphan receptor γ isoform 2 (RORγt, 

a.k.a. RORγ2) [213] and discussed further in a number of works (e.g., [214] and references 

therein). How to quantify design parameters [18,215,216] was also overviewed.

A recent study reported that multiple patient-derived imatinib-resistant Abl kinase domain 

mutants still bound imatinib [217]. Kinetic analyses suggested that the allosteric drug 

resistance mutations resulted in considerably faster drug dissociation from the mutant as 

compared to the wild type. These observations can be explained by considering that the 

difference in energy between the active and inactive states of the kinase is small. The 

conformational changes promoted by the allosteric oncogenic mutations shift the free energy 

landscape from the inactive kinase to populate the now more stable active state, which 

is not imatinib binding competent. These changes destabilize imatinib binding [218–220], 

lowering its affinity which is outcompeted by the high affinity of ATP. Gene duplication, a 

frequent event in cancer, will increase Bcr-Abl expression, which will aggravate the plight. 

On a related note, resistance may also be augmented by upregulation of a redundant kinase 

[217,219,221–228].

In kinases, the A-loop, the DFG motif, the regulatory spine, and the gatekeeper residue 

are all key elements in identification of the active/inactive states. Recently two inactive 

states have been detected by NMR for the Abl kinase domain [218]. The studies revealed 

that the kinase domain interconverts between one active, populated 90% of the time, and 

two discrete inactive states, each transiently populated 5% of the time. One of these is 

imatinib binding competent. Resistance mutations shift the ensemble toward the active state 

facilitated by the small difference in energy. As to the two inactive states, in principle both 

can be used for drug design if new features are captured in the second. Additional Abl 

allosteric strategies have been discussed as well (e.g., see [223,229]).

Innovative allosteric drugs: from heterobifunctional PROTACs to molecular glues

Allosteric drugs have recently taken an innovative turn [230,231] through the powerful 

concept of molecular glues [232] and heterobifunctional PROteolysis TArgeting Chimeras 

(PROTACs) [233]. Molecular glues are small molecules that bind at the interface 

between two proteins and induce their interactions [234]. Induction of proximity is a 

groundbreaking concept in drug discovery, with molecular glues promising to broaden 

the therapeutic landscape. Their potential has been validated by natural products 

(e.g., rapamycin, tacrolimus (FK506), and sanglifehrin A), synthetic small molecules 

(e.g., IMiD, immunomodulatory imide drug) including thalidomide and its analogues, 

lenalidomide and pomalidomide), and anticancer sulfonamides (e.g., tasisulam, indisulam, 

and chloroquinoxaline sulfonamide (CQS)) (Figure 6). Uncompetitive molecular glues 

acting as active state stabilizers were shown to expand protein-protein modulation drugs 

for peptide hormone receptors [235]. Interfacial binding of the IMiD ligands induces a 

protein-protein interaction e.g., between cereblon (CRBN) and the target proteins [236]. 

The ‘molecular glue’ connotation was attributed not only to heteromeric protein-protein 

interactions but also to homomeric sigma-1 receptor (Sig1R) interactions to explain how 

allosteric modulators could increase the number of Sig1R in the agonist state conformation, 

thus activity [237]. Molecular glue compounds can stabilize weak protein interactions as 
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shown in the case of the Cdc34A (a.k.a. UBE2R1, ubiquitin-conjugating enzyme E2 R1) 

where molecular glue compounds inhibit a noncovalent E2 enzyme–ubiquitin complex 

[238], and promote cyclin-dependent kinase 12 (CDK12)–DDB1 (CUL4 adaptor protein) 

interaction to trigger cyclin K degradation [239].

The PROTACs do not inhibit proteins [230,240–242]. They destroy them. While 

conceptually resembling molecular glues [243], PROTACS also differ. Unlike the molecular 

glues which consist of single small molecule, a PROTAC is a linkage of two. PROTACs 

are heterobifunctional degraders that enter cells and reduce their targeted proteins through 

the ubiquitination system. Allosteric PROTAC consists of a molecule (the warhead) that 

recruits an E3 ligase. The molecule is also linked to a high affinity allosteric inhibitor 

of the target protein. The inhibitor and the warhead molecules are covalently joined by a 

chemically suitable linker such that the target protein and the ubiquitination complex are 

brought into proximity. The IMiD molecular glue ligands above provide a good example 

[236], with the drug property downside of the construct. PROTACs have been exploited 

in mediated ternary complex formation (e.g., [244–247]) and their cooperativity have been 

delineated as well [248,249]. The challenge in designing them is in tuning the affinity and 

cooperativity of binding at both ends [248]. Especially challenging is the linker [250]. Its 

length and flexibility, essential to induce a ternary complex with the two proteins at the 

appropriate distance and orientation, require an optimal conformational bias. Differential 

allosteric PROTAC substrate specificity has been shown to be dictated by orientation of 

recruited E3 ligase [251], and the impact of linker length on the activity of PROTACs has 

also been investigated [252,253]. A PROTAC database has also been developed [254]. A list 

of selected degraders in, and approaching, the clinic has been compiled [233].

Recently, the first allosteric PROTACs were constructed. Abl1 contains an allosteric 

myristoyl binding site [255]. Multiple allosteric drugs have been designed to bind in this 

pocket [256,257]. The PROTACs were designed to covalently link to the allosteric inhibitor 

(GNF-5, an analog of GNF-2 [256]) (Figure 7) to degrade the Bcr-Abl1 mutant protein 

(with the T315I mutation). Since GNF-5 acts together with competitive inhibitors, such as 

imatinib, the allosteric PROTACs can collaborate with the competitive inhibitors trampling 

the oncogenic recalcitrant Bcr-Abl mutant, permitting a reduced drug dose and lesser 

side effects. GNF-5–PROTAC also acts on Bcr-Abl1 lacking mutations, permitting broad 

therapeutic stem cell applications [258].

Bifunctional molecules developed for targeted protein degradation through ubiquitination 

[243] are new potential allosteric drugs. In principle, this technology can bring any two 

proteins together through small molecules that target each partner. Details, outlines, and 

examples of the development of small molecule degraders that work by stabilizing and 

increasing the affinity of the ternary complexes and cases that have been shown to work 

have recently been reviewed in-depth, including an induced cooperativity in the catalytic 

degradation profiles [259]. The potential and innovation of such applications is only 

beginning to be apparent. One recent example has been discussed [238]. In another, G 

protein-coupled receptor (GPCR) example [235], it has been employed to promote the 

association of protein complexes, an emerging therapeutic strategy. The authors discovered 

a GPCR ligand that stabilizes an active state conformation by cooperatively binding both 
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the receptor and orthosteric ligand. Drug resistance could arise through mutations in the 

degradation pathway, suggesting combination strategies to slow it. Additional innovative 

allosteric drug approaches have also been reviewed (e.g., [18,260]).

In another innovative and promising feat [261], a chemical biology approach developed a 

bitopic ligand for the RORγt nuclear receptor (NR), which concomitantly exploited two 

binding pockets. Three candidates were obtained, yielding an orthosteric and allosteric 

RORγt pharmacophore covalently linked via a polyethylene glycol (PEG) linker. Covalent 

occlusion of the RORγt ligand binding pocket was further shown to permit targeting of 

an allosteric site [262]. Here too, the linker’s length influences the RORγt binding mode. 

Bitopic ligands can powerfully improve the affinity and (or) selectivity profiles [263]. Apart 

from identification of the allosteric pocket, the challenge is in the properties of the linker. 

Currently, linkers are mostly synthetic polymers such as polyethylene glycols, making an 

engineered conformational bias a formidable task.

Signal transduction

Molecular events, such as activation, are governed by the conformational behavior of the 

protein [1,2,6,8,10,32,92,264–276]. To be effective, the allosteric signal – physiologic or 

oncogenic – needs to propagate downstream. For that it needs to be sufficiently strong 

but not too strong. We dubbed productive signal transduction “signaling by-the-numbers”. 

Signaling by the numbers does not imply a stronger functional effect [277], but rather, as 

setting the threshold for the signal for propagating downstream through the pathway to the 

cell cycle to activate (repress) transcription, or exit via physiologic senescence, premature 

developmental senescence, or oncogene induced senescence (OIS). Activity of a single 

protein (node) in the pathway cannot serve as the threshold for passing from one node to 

the other. To calculate the threshold, three quantities are needed: the expression level of the 

protein, how much is located (recruited) to the right place, and the population activated by 

the upstream signaling node. Cell type [278], cell state [279], timing window [280–283] in 

cell development, and chromatin modeling, all play a role [284–289].

Conclusions: future of studies of allostery

Where will studies of allostery go? If we can venture to predict, we see them focusing 

on translation, including the mechanisms of activating allosteric mutations, identification of 

druggable allosteric sites, and innovative and productive allosteric drugs. The advantages 

of allosteric drugs are well-established, especially, the higher specificity which is coupled 

with reduced side effects. Besides increasing the drug repertoire, efforts will focus on 

higher affinity, and potency. Exploiting the already available repertoire, which has already 

undergone clinical trials and is in use, will save development time and cost. Covalent 

linkage of such drugs via appropriate linkers to warheads that recruit degraders, as in the 

case of Bcr-Abl1’s PROTAC, or to orthosteric drugs, can accomplish such a goal. In a 

way, this is analogous to repurposing drugs that are already in the clinic with documented 

safety profiles. The challenge is in the construction of linkers (or spacers) with appropriate 

length and conformational bias such that the orthosteric and allosteric pharmacophores yield 

bitopic ligands that achieve improved affinity and selectivity. The search is also on for 
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allosteric drugs at newly discovered pockets or covalently linked to residues other than Cys, 

such as Tyr [290]. Innovative allosteric drugs may also be engineered to mimic allosteric 

rescue mutations [194].

Over 55 years have elapsed since Monod, Wyman, and Changeux have proposed the 

transformational two-state concerted model (MWC model) [291]. In the late 1990’s, we 

proposed the conformational selection and population shift versus induced fit model to 

explain how biological functions are achieved through allostery [6,55,292]. Going forward, 

the challenge is in identifying rare allosteric activating mutations, their mechanisms, and 

innovative allosteric pharmacology.

In addition, we foresee conceiving ways of defining and measuring signal transduction, 

initiated by allosteric events, and propagating downstream, a formidable but achievable 

aim [65]. As we emphasized recently in “allostery, and how to define and measure 

signal transduction”, such measurements are vastly important in setting thresholds for 

‘actionable’ signals, which would permit assessing and predicting oncogenic signaling in 

tumor development and drug resistance. On their own, activating mutations may or may not 

influence the cell cycle and the level of expression. We have been trying to contribute our 

share toward these aims [65,157].
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MD molecular dynamics

NMR nuclear magnetic resonance

AKT protein kinase B

mTOR mammalian target of rapamycin

PI3K phosphoinositide 3-kinase

SHP2 SH2 domain-containing phosphatase 2

NEK NIMA-related kinase

MARK MAP/microtubule affinity-regulating kinase

KA1 kinase-associated-1

PTEN phosphatase and tensin homolog

PIP2 phosphatidylinositol 4,5-bisphosphate

PIP3 phosphatidylinositol 3,4,5-trisphosphate
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ABD adaptor binding domain

RTK receptor tyrosine kinase

MAPK mitogen-activated protein kinase

CR conserved region

RBD Ras binding domain

CRD cysteine rich domain

MEK mitogen-activated protein kinase kinase

A-loop activation loop

PBM PIP2-binding motif

CTT C-terminal tail

ASD autism spectrum disorder

GAP GTPase-activating protein

EGFR epidermal growth factor receptor

PDGFR platelet-derived growth factor receptor

ALL acute lymphoblastic leukemia

CML chronic myeloid leukemia

CML-N neutrophilic-chronic myeloid leukemia

TKI tyrosine kinase inhibitor

RORγ RAR-related orphan receptor γ

PROTAC proteolysis targeting chimera

IMiD immunomodulatory imide drug

CRBN cereblon

Sig1R sigma-1 receptor

CDK cyclin-dependent kinase

GPCR G protein-coupled receptor
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• We overview the principles of allosteric activating mutations and allosteric 

drugs

• Examples of activating mutations include the Ras signaling network and Abl 

kinase

• We overview innovative allosteric drug concepts, underscoring the challenge

• The review links allostery on the molecular level and productive cell signaling

• From the cellular standpoint, we propose a signaling by-the-numbers lens
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Figure 1. 
PI3Kα and its oncogenic mutations. PI3Kα is an obligate dimer with catalytic p110α 
(surface representation) and regulatory p85α (cartoon representation) subunits. p110α 
contains ABD (cyan), RBD (orange), C2 domain (yellow), helical domain (light green), and 

kinase domain (pink). The iSH2 and nSH2 domains in p85α interact with p110α subunit. 

PI3Kα contains hotspot mutations (H1047R in the kinase domain; E542K and E545K in 

the helical domain, yellow letter) and weak mutations (M1043V/I and E726K in the kinase 

domain; R38H/C, R88Q, R93Q, R108H, G118D in the ABD; N345K, C420R, E453Q/K 

in the C2 domain, white letter). These mutations can collaborate to transform cells more 

potently.
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Figure 2. 
Autoinhibited and activated Raf in the Ras/Raf/MEK/ERK pathway. Here, examples are 

shown for B-Raf (top panel). In the cytosol, Raf monomer is autoinhibited via the interaction 

with 14-3-3 proteins. Activated Ras by Son of sevenless 1 (SOS1) recruits Raf to the 

membrane, releasing autoinhibition. Raf is activated through side-by-side dimerization of 

the kinase domain. Active Raf dimer phosphorylates and activates MEK, and subsequently 

phosphorylates and activates ERK, leading to cell proliferation. Kinase suppressor of Ras 

(KSR) can act as a scaffolding protein, promoting the signaling. In Raf, KD denotes the 

kinase domain and BRS domain denotes B-Raf specific domain. In KSR, CC-SAM denotes 

coiled coil sterile α motif. The crystal structure of autoinhibited B-Raf interacting with 

14-3-3 proteins (PDB: 6NYB) (bottom left). Two phosphorylated sites, pS729 and pS365, 

have strong interactions with 14-3-3 proteins. The dimer interface of the kinase domain (red 

surface) is blocked by 14–3-3 protein. The crystal structure of active Raf dimer in complex 

with 14-3-3 proteins (PDB ID: 6Q0J) (bottom right). pS729 interacts with 14-3-3 protein, 

and the MEK proteins are loaded to the kinase domain for phosphorylation.
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Figure 3. 
B-Raf V600E destabilizes the inactive state and stabilizes the active state. Inactive wild-

type B-Raf contains a large hydrophobic pocket (white) that includes Phe595 and Val600 

(yellow), which prevents the formation of the Lys483–Glu501 salt bridge and maintains 

an outward αC-helix (top left). The V600E mutation disrupts the hydrophobic pocket and 

causes the activation loop of B-Raf to extend and forms the Lys507–GluE600 salt bridge. 

However, in a low population state, Phe595 can orient to prevent the Lys483–Glu501 salt 

bridge formation, which keeps the αC-helix from moving fully inward (top middle). B-Raf 

V600E with proper orientation of Phe595 to allow both Lys507–GluE600 and Lys483–

Glu501 salt bridge formation, stabilizing the active state (top right). B-Raf V600E maintains 

an active configuration in the presence of Type I inhibitor GDC0879 (bottom left). Type II 

inhibitor derived from diarylthiazole allosterically inhibits B-Raf V600E by stabilizing the 

“DFG out” orientation (bottom middle). Type II inhibitor Ponatinib extends to an allosteric 

site (red circle), stabilizing the “DFG out” orientation and displacing the activation loop and 

E600 from its typical conformation (bottom right). Inhibitors are colored cyan. Cartoons 

depict the crystal structures of B-Raf V600E with inhibitor (PDB: 4MNF, 4CQE, 6P3D).
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Figure 4. 
PTEN structure and mutations. Domain structure of phosphatase and tensin homolog 

(PTEN) (top left). It contains the N-terminal PIP2-binding motif (PBM), the phosphatase 

(PTP) domain, the C2 domain, and the C-terminal tail (CTT). The three residues, 
401TKV403, at the C-terminus serve as the PDZ binding motif at the membrane. 

In the cytosol, PTEN is autoinhibited by its CTT with phosphorylation on a serine-

threonine cluster (pS380, pT382, pT383, and pS385) yielding a closed conformation (top 
right). Dephosphorylation on the CTT relieves the autoinhibition, promoting membrane 

localization. The locations of mutations mapped on the crystal structure of PTEN (PDB: 

5BZZ) (middle right) and a highlight of the active site (P loop) in the PTP domain 

(middle left). Types of the mutations and their associated deceases are summarized (bottom). 

These include germline mutations of the neurodevelopmental disorders (e.g., Cowden 

syndrome (CWS), Bannayan-Riley-Ruvalcaba syndrome (BRRS), and macrocephaly/autism 

syndrome (MCEPHAS)) and somatic mutations of the tumors (e.g., glioblastoma, 

endometrial carcinoma, prostate cancer, breast cancer, non-Hodgkin lymphoma, and 

anaplastic astrocytoma).
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Figure 5. 
Chromosome 9 consists of the ABL gene and chromosome 22 contains the BCR gene. In 

BCR-ABL-induced leukemia oncogenesis, the translocation mutation between chromosome 

9 and chromosome 22 leads to the generation of the fusion BCR-ABL gene, which encodes 

the Bcr-Abl oncoprotein. p210 Bcr-Abl protein is the hallmark of chronic myeloid leukemia 

(CML). p210 Bcr region possesses the coiled coil (CC) domain, the serine/threonine (S/T) 

domain, the Dbl homology (DH) domain, and the pleckstrin homology (PH) domain. 

Phosphorylation of Tyr177 in the S/T domain enables to Bcr-Abl recruitment of Grb2 

through its SH2 interaction, which activate Ras/MAPK pathway. Abl region contains the 

SH3 domain, the SH2 domain, the kinase domain, and the FABD (F-actin-binding domain). 

Phosphorylation of Tyr412 (numbered by Abl 1b isoform) in the activation loop activates 

Abl kinase. In Abl kinase domain, orthosteric inhibitors (e.g., imatinib, nilotinib, dasatinib, 

and ponatinib) bind to the ATP-binding pocket in the N-lobe of the kinase domain, while 

allosteric inhibitors (e.g., GNF-2, GNF-5, and asciminib) prefer to occupy the myristoyl-

binding pocket in the C-lobe of the kinase domain.
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Figure 6. 
Structures of different types of molecular glues, including natural products (rapamycin, 

FK506, and sanglifehrin A), IMiD (thalidomide, lenalidomide, and pomalidomide), and 

sulfonamides (tasisulam, indisulam, and CQS). Examples of the molecular glues in the 

intermolecular interface of protein complexes for rapamycin (PDB: 4DRI), thalidomide 

(PDB: 7BQU), and indisulam (PDB: 6Q0W).
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Figure 7. 
GNF-5-PROTAC is formed by a GNF-5 inhibitor and a warhead molecule which are 

connected by a linker. Release of the myristoyl group from the C-lobe of Abl kinase domain 

activates Abl protein, leading to a vacant myristoyl-binding pocket. GNF-5, an allosteric 

inhibitor, can bind to the myristoyl-binding pocket of Abl. Of the heterobifunctional GNF-5-

PROTAC molecule, GNF5 is responsible for the binding of Abl, while the other end recruits 

E3 ligase. This forms a Abl/GNF-5-PROTAC/E3 ternary complex. Then, this complex is 

brought into the ubiquitin system. The E3 ligase binds to E2 enzyme, regulating the transfer 

of ubiquitin protein to Abl from E2 enzyme. The Abl protein is degraded by proteasome 

accompanied with the dissociation of Abl/GNF-5-PROTAC/E3 ternary complex.
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