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Summary:

X-chromosome inactivation (XCI) is a random, permanent, and developmentally early epigenetic 

event that occurs during mammalian embryogenesis. We harness these features to investigate 

characteristics of early lineage specification events during human development. We initially assess 

the consistency of X-inactivation and establish a robust set of XCI-escape genes. By analyzing 

variance in XCI ratios across tissues and individuals, we find that XCI is shared across all tissues, 

suggesting XCI is completed in the epiblast (in at least 6-16 cells) prior to specification of the 

germ layers. Additionally, we exploit tissue-specific variability to characterize the number of cells 

present during tissue lineage commitment, ranging from approximately 20 cells in liver and whole 

blood tissues to 80 cells in brain tissues. By investigating variability of XCI ratios using adult 

tissue, we characterize embryonic features of human XCI and lineage specification otherwise 

difficult to ascertain experimentally.
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eTOC:

Werner et al. model variability in human XCI ratios across tissues and individuals using the GTEx 

dataset, determining XCI ratios are consistent across all tissue lineages. This suggests observed 

XCI variability in adult populations is explained by the statistics of a stochastic embryonic event 

occurring in a small cell pool.
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Introduction:

Every cell within female mammalian embryos undergoes the process of X-chromosome 

inactivation (XCI), which silences expression from a single randomly chosen X-allele via 

epigenetic mechanisms (Dossin and Heard, 2021; Lyon, 1961; Migeon, 2013). The random 

choice of which allele to inactivate occurs early in development and is permanent thereafter 

with the inactivated allele propagated through each cell’s developmental lineage (Lyon, 

1972). As a result, adult females exhibit mosaic X-linked allelic expression throughout 

every tissue within the body, an enduring phenotypic consequence of an early embryonic 

milestone. The random, permanent, and developmental early nature of XCI positions the 

whole-body mosaicism of X-linked allelic expression as a lineage marker reaching back 
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to the earliest embryonic stages (Mclaren, 1972; Nesbitt, 1971). Careful analysis of X-

linked allelic expression across individuals and tissues can thus reveal whole-body lineage 

relationships stemming from some of the first lineage decisions made during embryogenesis 

(Bittel et al., 2008; Fialkow, 1973; Monteiro et al., 1998; Nesbitt, 1971).

While the probability for inactivation is equal between the X-alleles in humans, variation in 

XCI allelic ratios across individuals is a salient feature of XCI. Deviation from the expected 

XCI allelic ratio of 0.5 can arise through various mechanisms (Brown and Robinson, 2000; 

Naumova et al., 1996; Schmidt and Sart, 1992; Wu et al., 2014) with the most basic being 

the inherent stochasticity of the initial choice of allelic inactivation (Shvetsova et al., 2019). 

The variability of the initial XCI ratio within the embryo is directly linked to the number of 

cells present during inactivation where smaller cell numbers result in increased variability of 

XCI ratios (Nesbitt, 1971). In fact, one can estimate the number of cells present at the time 

of inactivation by analyzing the variance of XCI ratios across a population. Several studies 

using this approach (Amos-Landgraf et al., 2006; Shvetsova et al., 2019) , as well as studies 

utilizing in vitro embryonic models (Moreira de Mello et al., 2017; Petropoulos et al., 2016; 

van den Berg et al., 2009), have estimated that XCI occurs in a small stem cell pool within 

the human embryo with estimates as little as 8 cells. The combination of the random nature 

and small pool of cells present during XCI imparts an ever-present basal-level of variability 

in XCI ratios within adult human populations.

The stability of XCI down lineages means that minor cell sampling variation can be used 

as a marker for any process involving selection of a set of cells, i.e., lineage specification 

(Fialkow, 1973; Nesbitt, 1971). While growing evidence indicates XCI is initiated early 

(Moreira de Mello et al., 2017; Petropoulos et al., 2016; van den Berg et al., 2009) , the 

exact timing of XCI as it relates to early lineage specification is unclear (Geens and Chuva 

De Sousa Lopes, 2017) and has important implications for the variance in XCI ratios 

across early lineages. Specifically, the extent of variability in XCI across adult tissues, 

those derived from the embryonic lineage during embryogenesis, is a long-standing question 

(Bittel et al., 2008; Hoon et al., 2015) and directly linked to the timing of XCI and early 

lineage events. Germ layer specification is the first lineage decision made for all future 

embryonic tissues and occurs during post-implantation embryonic development (Ghimire et 

al., 2021), a similar timeframe to XCI. If XCI is completed before germ layer specification 

each germ layer would be specified from the same pool of cells with a set XCI ratio (Fig. 

1A). The germ layer-specific XCI ratio would be dependent on the initial XCI ratio resulting 

in shared XCI ratios across germ layers (Fig. 1A) and the subsequently derived adult 

tissues. In contrast, if XCI is completed after germ layer specification, germ layer-specific 

XCI ratios are set independently and are not expected to be shared across the different 

germ layers (Fig. 1B), producing variance in XCI ratios across adult tissues. Consequently, 

comparing XCI ratios for tissues within either the same or different germ layer lineages can 

reveal the temporal ordering of XCI and germ layer specification.

An additional early lineage event that may overlap with XCI is extraembryonic/embryonic 

lineage specification (Moreira de Mello et al., 2017; Petropoulos et al., 2016), which 

precedes germ layer lineage specification. If XCI occurs before or during extraembryonic/

embryonic lineage specification, variance in XCI ratios across adult tissues will be 
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influenced by the initial stochasticity of XCI and the subsequent cell selection for the 

embryonic lineage. In other words, variance in XCI ratios across the germ layer lineages 

is tied to their last developmental common denominator: the specification of the embryonic 

epiblast. Since extraembryonic tissues do not contribute to adult tissues, the timing of XCI 

and extraembryonic/embryonic lineage specification provides the developmental context that 

variance in adult tissues is potentially tied to the specification of the embryonic epiblast.

In this study, we develop an approach to determine the tissue XCI ratio from unphased bulk 

RNA-sequencing data, allowing us to assess XCI ratios from any publicly available RNA-

sequencing dataset. Utilizing the tissue sampling scheme of the Genotype-Tissue Expression 

(GTEx v8) project (Lonsdale et al., 2013), we analyze XCI ratios for 49 tissues both within 

and across individuals for 311 female donors (Fig. S1). We establish that XCI ratios are 

shared for tissues both within and across germ layers demonstrating that XCI is completed 

before any significant lineage decisions are made for embryonic tissues. Additionally, we 

extend population-level modeling of variance in XCI ratios to all well-powered tissues, 

deriving estimates for the number of cells present at the time of embryonic epiblast and 

tissue-specific lineage commitment. By providing cell counts, temporal ordering of lineage 

events, and lineage relationships across tissues, capturing the statistical commonalities that 

underlie the inherently stochastic nature of XCI is a powerful approach for resolving 

questions of early developmental lineage specification.

Results:

The folded-normal model accurately estimates XCI ratios from unphased data

A practical consequence of bulk RNA-sequencing is that the XCI ratio of a tissue can 

be estimated from the direction and magnitude of X-linked allele-specific expression. For 

a tissue with 75% of cells carrying an active maternal X-allele, approximately 75% of 

RNA-sequencing reads for heterozygous loci are expected to align to the maternal X-allele 

(Fig. 2A). However, allelic expression for any given gene is affected by a variety of factors 

both biological (e.g., eQTLs) and technical (e.g., read sampling). To derive robust estimates, 

we aggregate allelic expression ratios across well-powered intra-genic heterozygous SNPs 

for a given tissue, providing a chromosome-wide estimate of the tissue XCI ratio (Fig, 2A).

When aligned to a reference genome, reference alleles will be composed of both maternal 

and paternal alleles for a given sample. It follows that reference allelic expression ratios 

represent the expected expression ratios from both the maternal and paternal alleles given 

the XCI ratio of the tissue (Fig. 2A). To account for this, folding the reference allelic 

expression ratios about 0.5 aggregates the imbalanced allelic expression within the tissue 

across the two alleles. This enables the magnitude of the XCI ratio to be estimated from 

unphased expression data by fitting a folded distribution (Gart, 1970; Urbakh, 1967) (see 

methods, Fig. 2A-B).

To assess the accuracy of the folded-normal model in estimating XCI ratios, we test our 

approach with phased bulk RNA-sequencing data from the EN-TEx (Rozowsky et al., 

2021) consortium, a total of 49 tissue samples from 2 female donors spanning 26 different 

tissues. Comparing the unphased estimates derived with the folded-normal model to the 
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phased median allelic expression per sample, we find nearly perfect XCI ratio estimate 

correspondence for ratios greater than 0.6 (Fig. 2C). For samples skewed closer to the 

folding point of 0.5, model misspecification of the underlying distribution makes the 

estimate overconservative.

Our approach for estimating XCI ratios aggregates allelic expression across numerous 

heterozygous loci, averaging away mechanisms outside of XCI that may impact X-linked 

allelic expression. A widespread mechanism that may still impact our XCI ratio estimates is 

escape from inactivation, where a gene is biallelically expressed from the active and inactive 

X-alleles (Tukiainen et al., 2017). Between 15-30% of genes on the X-chromosome have 

documented evidence for escape (Carrel and Willard, 2005; Tukiainen et al., 2017). While 

we exclude known escape genes (Tukiainen et al., 2017) from our folded-normal XCI ratio 

estimates, it is very likely unannotated escape genes are present within the data. To identify 

the impact of escape on our XCI ratio estimates, we compare folded-normal XCI ratio 

estimates derived with either excluding or including known escape genes to the phased XCI 

ratio of tissues excluding the known escape genes (Fig. 2D). Including known escape genes 

biases the folded-normal XCI ratio estimates towards 0.5 (Fig. 2D). By comparing allelic 

ratios of known escape genes to all other genes in EN-TEx tissues with XCI ratios >= 0.7, 

we clearly see escape genes trend towards balanced biallelic expression contributing to the 

underestimated XCI ratios when including escape genes (Fig. 2E).

To assess variance in XCI and escape more broadly, we capitalize on the tissue sampling 

structure of the Genotype-Tissue Expression (GTEx v8) dataset (Fig. S1). From an average 

of 56 +− 23.5 (SD) well-powered heterozygous SNPs (genes, see methods) per sample 

(Fig. S1), we derive robust XCI ratio estimates for 4658 GTEx tissue samples spanning 49 

different tissues (Fig. S1).

In addition to biological sources of variation (escape), read depth is a critical source of 

technical variation to assess when analyzing allelic expression. Sampled allelic expression 

is the result of a binomial sampling event dependent on the number of reads sampled and 

the probability of allelic expression. While we employ stringent read count requirements 

(see methods), we additionally explore how robust our tissue-level XCI ratio estimates are 

in the face of global decreases in read depths across genes (Fig. 2F). As read depths per 

gene are decreased (10%, 20%, 30%, etc.), the vast majority of increased error in the XCI 

ratio estimates is constrained to the estimates below 0.6 (Fig. 2F), whereas the most skewed 

tissue samples (XCI ratio estimates above 0.9) display nearly zero additional error even up 

to an 80% reduction in read depth (Fig. 2F). These results are in line with our phased vs 

unphased comparisons demonstrating XCI ratio estimates above 0.6 (Fig. 2C) are highly 

accurate. Additionally, these results appear to be independent of the number of genes used 

to estimate the tissue XCI ratio (Fig. S1), where we use a minimum of 10 genes per sample. 

This suggests that aggregating allelic expression over even a modest number of genes is 

powered to accurately estimate tissue XCI ratios above 0.6 from bulk RNA-sequencing data.

Escape genes exhibit consistent cross-tissue biallelic expression

Our method to quantitatively determine the tissue XCI ratio via aggregating signal across 

genes is especially well-suited to explore escape from XCI within the GTEx dataset (Fig. 
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2E). Our basic strategy for detecting escape genes is to calculate each gene’s consistency 

with the aggregate chromosomal inactivation ratio. Assessing all X-linked genes utilized 

in our GTEx XCI ratio estimates (Fig. 3A) and previously annotated constitutively escape 

genes (Tukiainen et al., 2017) results in a wide range of correlations between gene and tissue 

XCI ratios, exemplified by the genes SHROOM4 and TCEAL3 (Fig. 3B). As expected, 

the transcripts associated with XCI, namely, XIST and TSIX, show some of the highest 

correlations to the tissue XCI ratio (i.e., top 8.7%, Fig. 3B). Similarly, known escape genes 

exhibit some of the smallest correlations (Fig. 3B). Interestingly, several genes previously 

annotated as escape do exhibit rather strong correlations to the XCI ratio of tissues. We 

find that increased gene expression is linked to increased correlation to the tissue XCI 

ratio (Fig. 3C) suggesting that some gene variation with respect to the tissue XCI ratio 

is technical, reflecting read sampling at low expression. At matched expression levels, 

previously annotated escape genes have smaller tissue-gene XCI ratio correlations compared 

to all other genes (Fig. 3C), demonstrating that known escape genes are less correlated to the 

tissue XCI ratio as expected by expression levels alone.

From our analysis in the EN-TEx dataset, escape from inactivation trends toward balanced 

biallelic expression rather than achieving completely equal allelic expression (Fig. 2E), 

explaining how some escape genes retain significant correlations to tissue XCI ratios in 

the GTEx dataset. To comprehensively test the degree to which escape produces balanced 

allelic expression, we construct a one-sided test to detect whether a gene consistently trends 

towards balanced biallelic expression regardless of the XCI ratio of the tissue (see methods, 

Fig. S2). Against a null distribution of inactivated genes, we are able to identify genes with 

consistent biallelic expression in opposition to the aggregate imbalanced tissue XCI ratio, 

indicating escape from XCI (Fig. 3D).

Testing the known escape genes using this approach results in significant escape signal (Fig. 

3E). Similarly, we are able to identify 19 genes previously unannotated for constitutive 

escape to have significant escape signal (p-value < .001): ARHGAP4, BTK, CASK, 

CHRDL1, CLIC2, COX7B, CTPS2, CXorf36, F8, ITM2A, MECP2, MPP1, NLGN4X, 

PGK1, RPL36A, SASH3, SEPT6, STARD8, VSIG4 (Fig. 3E, Fig. S4). Revisiting these 

genes within the literature, several have prior evidence for escape, though typically limited 

in the tissues assessed: BTK (Hagen et al., 2020; Zito et al., 2021), CASK (Zito et al., 2021), 

CHRDL1 (Zito et al., 2021), CLIC2 (Tukiainen et al., 2017; Zito et al., 2021), COX7B 

(Larsson et al., 2019), CTPS2 (Balaton et al., 2021), CXorf36 (Winham et al., 2019), MPP1 

(Zito et al., 2021), NLGN4X (Tukiainen et al., 2017; Zito et al., 2021), SASH3 (Zito et 

al., 2021), SEPT6 (Zhang et al., 2013), VSIG4 (Berletch et al., 2015). Our results suggest 

these genes escape inactivation more broadly than previously reported. In addition, our 

analysis provides supporting evidence of escape for 34 previously annotated escape genes 

and supporting evidence of inactivation for 143 genes (Table S1). While in this analysis we 

are powered to identify more constitutively escape genes, variability in escape across tissues 

and individuals is well documented. As such, our escape annotations are robust to the GTEx 

data we sample over and will benefit greatly from future experimental follow up.

To test the impact of including escape genes on our GTEx tissue XCI ratio estimates, we 

compare our original tissue XCI ratio estimates to estimates calculated while including 
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the known escape genes (Fig. 3F). The inclusion of escape genes results in slightly 

underestimated XCI ratios (Fig. 3F), though the impact is minimal with an average absolute 

deviation of 0.0088 (± 0.010 SD) between XCI ratio estimates including/excluding the 

known escape genes. This demonstrates our folded aggregation of allelic expression across 

genes to estimate XCI ratios is robust to noise generated by escape from inactivation.

XCI is completed prior to germ layer specification

Having developed a robust approach to measure XCI ratios from unphased data, we turn to 

assessing the degree XCI ratios are shared across tissues within individuals. As an initial 

visualization of XCI ratios across tissues, we order all female GTEx donors by their average 

XCI ratio and plot the ratio for all tissues grouped by germ layer (Fig. 4A). XCI ratios 

qualitatively appear consistent across all tissues and the three germ layers (Fig. 4A). We then 

ask how well do individual tissues predict all other tissues’ XCI ratios, which we quantify 

with the AUROC (area under receiver operating characteristic curve) metric (Fig. S3). For a 

given tissue, we take the average XCI ratio of all other tissues for each donor and use this 

average to classify the donors as low/high XCI ratio donors. If the given tissue’s XCI ratio 

can recapitulate the same low/high classifications of the donors, this indicates that tissue’s 

XCI ratio is in concordance with the average of all other tissues and would result in an 

AUROC close to 1. Across various thresholds for defining low/high donors, we see that 

performance is high and consistent across all tissues, suggesting XCI ratios are generally 

shared across all tissues for an individual (Fig. S3).

Stratifying tissue comparisons of XCI ratios by germ layer lineage relationships should 

resolve the temporal ordering of XCI and germ layer specification within the human 

embryo. If XCI occurs before germ layer specification, tissue XCI ratios are expected to 

positively covary across tissues from different germ layer lineages (Fig.1A). In contrast, 

if XCI occurs after germ layer specification, the XCI ratio of each germ layer is set 

independently and there is little expected covariance in XCI ratios for tissues from different 

germ layers (Fig.1B). We compute correlations of the XCI ratio for combinations of 

tissues derived from either the same or different germ layers, exemplified in Figure 4 

panel B. Tissues sharing the same germ layer lineage produce strictly positive significant 

correlation values ranging from 0.25 to 0.90 (Fig. 4C), demonstrating XCI ratios are shared 

within individual germ layer lineages. Strikingly, significant positive ratio correlations for 

tissues derived from different germ layers are on the same order as the within germ layer 

comparisons, ranging from 0.24 to 0.87 (Fig. 4C, Fig. S3). The fact tissues derived from 

different germ layers covary for their XCI ratio strongly suggests XCI is completed prior to 

germ layer specification and the initial embryonic XCI ratio is propagated through all germ 

layer lineages.

While we annotate individual tissues to belong to a single primary germ layer, tissues are 

compositions of cell types derived from different germ layers. This may impact the observed 

variance in XCI ratios across tissues if there is a strong germ layer-specific effect in XCI 

ratio variance. We take advantage of the recently released single-nucleus RNA-sequencing 

(Eraslan et al., 2022) GTEx data to deconvolve (Newman et al., 2019) several of the bulk 

tissues into their germ layer components, allowing us to explore variance in XCI ratios 
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across germ layers within single tissues. Figure 4D provides examples of the deconvolved 

germ layer proportions of three tissues with the remaining 6 tissues provided in Figure 

S4, demonstrating there is variation in germ layer composition within tissues. We extract 

germ layer-specific markers for the lung, skin, and esophagus mucosa tissues (Table S2, 

see methods) to explore variance in XCI ratios across germ layers within single tissues. 

The XCI ratios of germ layer-specific markers positively covary in each tissue (Fig. 4E-G, 

Pearson correlations: lung mesoderm and endoderm 0.626, skin mesoderm and ectoderm 

0.621, esophagus endoderm and ectoderm 0.603, esophagus mesoderm and ectoderm 0.360, 

esophagus mesoderm and endoderm 0.537), recapitulating the result of shared XCI ratios 

across germ layers we demonstrate with the non-deconvolved tissues.

Specific tissue lineages have increased probability for switching the parental direction of 
XCI

In addition to demonstrating that XCI ratios are broadly shared across all tissues, our 

cross-tissue analysis reveals there is a degree of variability in XCI ratios across tissues 

within individuals. Comparing distributions of gene-level allelic expression across tissues for 

individual donors reveals there are often individual tissues that exhibit divergence in XCI 

ratios in opposition to the general trend of shared XCI ratios (Fig. 5A-B). This is evidenced 

by the divergent distributions of gene-level allelic-expression for the Whole Blood, Vagina, 

and Skin tissues in donor 11P81 (Fig. 5A), and the Esophagus – Mucosa, Vagina, and Skin 

tissues in donor 1J1OQ (Fig. 5B). The presence of individual tissues exhibiting divergent 

XCI ratios within an individual suggests there may be lineage-specific effects contributing to 

variance in XCI ratios across tissues.

To further investigate the degree of variation in XCI ratios across tissues, we take advantage 

of the cross-tissue sampling of individual donors to determine the parental direction of XCI. 

If an expressed heterozygous SNP is captured for two different tissues of an individual, 

the reference allele is on the same haplotype and maintains directional allelic information. 

Thus, calculating the correlation of reference SNP allelic ratios for shared SNPs between 

two tissues can reveal whether those tissues share the same XCI direction (Fig. 5C-D, 

see methods). When examining a donor with generally high XCI ratios across all tissues 

(Fig. 5C Donor 11P81), we find that all tissues share the same parental direction in allelic 

inactivation. Whereas a less skewed donor (Fig. 5D Donor 1J10Q, Ovary and Vagina 

tissues) exhibits a subset of tissues with opposite parental inactivation compared to the 

majority of tissues for that donor. Across all donors, as the average XCI ratio of their 

tissues increases, the proportion of their tissues exhibiting switched parental XCI decreases 

(Fig. 5E), with the most skewed donors exhibiting zero tissues with switched parental XCI 

(Fig. 5E). Interestingly, switching parental direction of XCI is in fact concentrated in a 

subset of tissues, with 12 out of 49 tissues being significantly enriched for instances of 

switched XCI (Fig. 5F, fisher’s exact test, p-value <= 0.5). The existence of individual 

tissues with increased probability for switching parental directions of XCI is indicative of 

increased variance in XCI ratios for those particular tissue lineages. We explore this model 

further in the Results section ‘Cell population estimates at the time of tissue-specific lineage 

commitment’.
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Cell population estimate at the time of embryonic epiblast lineage specification

The fact XCI ratios are broadly shared across tissues suggests the initial embryonic XCI 

ratio determined at the time of inactivation is propagated through development. This is 

strongly evidenced by the consistency of XCI ratios across the developmental distant germ 

layer lineages (Fig. 4, Fig. 5A-B). Population level variance in adult XCI ratios thus, in 

part, reflects the sample distribution during XCI, which depends on the number of cells 

present during inactivation. We derive estimates for the number of cells present at the 

time of inactivation by modeling XCI ratio variance from tissue-specific ratio distributions 

across donors (Fig. 6A, Fig. S8). Using a maximum likelihood approach, we fit estimated 

models to the tails of the empirical XCI ratio distributions to account for the uncertain 

unfolded XCI ratio estimates between 0.4 and 0.6 (Fig. 6A, see methods). The cell number 

estimates derived from all well-powered tissues range from 6 to 16 cells (Fig. 6B), i.e., 

approximately within a single cell division, demonstrating a striking degree of similarity in 

population level XCI ratio variance across the assessed tissues. We model variance in XCI 

ratios as a random binomial sampling event that is then propagated through development. 

The consistency in XCI ratios across developmentally distant tissues supports this model, 

though there are likely additional contributors to the observed variance in XCI ratios, such as 

genetic variation which might drive allelic selection (Brown and Robinson, 2000; Schmidt 

and Sart, 1992) as well as stochastic deviations during development (Sun et al., 2021). In 

the simplest case, observed variance in XCI ratios is derived from the initial stochasticity of 

XCI, positing our cell number estimates as lower bounds for the number of cells that must 

be involved in XCI.

Notably, we sample variance in XCI of tissues derived from the embryonic lineage. If XCI 

occurs before extraembryonic/embryonic lineage specification, the variance we observe in 

adult tissues is a combination of the initial variance at the time of XCI and additional 

sampling variance linked to the lineage specification of the embryonic epiblast. This 

contextualizes our 6-16 cell number estimate as a potential lower bound for the number 

of cells present during embryonic epiblast lineage specification in the human embryo.

Cell population estimates at the time of tissue-specific lineage commitment

Tissue-specific lineage commitment can be modeled as a random sampling event from a 

pool of unspecified progenitor cells. In the context of XCI, the XCI ratio of the newly 

specified tissue is dependent on the prior XCI ratio of the progenitor pool and the number 

of cells fated for that tissue and can be modeled as a binomial sampling event (Fig. 6C). 

As such, the GTEx dataset offers a unique opportunity to capture this tissue-specific XCI 

variance and model the lower bound for the number of cells present at the time of tissue-

specific lineage commitment across a broad range of human tissues.

To capture the tissue-specific variance in XCI as it relates to the prior embryonic XCI 

ratio, we model the deviation of tissue-specific XCI ratios from the average donor XCI 

ratios for all donors of a given tissue (see methods, Fig. 6D, 46 well-powered tissues). Our 

model follows the logic that tissues with large variation in their deviation from average 

donor XCI ratios are derived from a smaller pool of cells, a consequence of increased 

variability due to small sample size effects. On the low end of the estimated cell numbers, 
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we have liver, whole blood, and adrenal tissues with ~20 estimated cells compared to 

the brain tissues which occupy most of the higher estimated cell numbers, ranging from 

~40-140 estimated cells. In line with our model that tissues derived from smaller stem 

cell pools are subject to increased variability in XCI ratios, we find a strong negative 

relationship between our estimated tissue lineage-specific cell numbers and the probability 

of a tissue switching the direction of parental XCI (Fig. 6D inset, Pearson correlation: 

−0.663, p-value < .001). A tissue derived from a small number of cells is more likely to 

result in a sample of oppositely skewed cells compared to the parental XCI ratio of the 

unspecified progenitor pool simply through increased sampling variance. Our estimated 

lineage-specific cell numbers and lineage-specific probability for switching parental XCI are 

internally consistent with a model of lineage-specific variance in XCI ratios being driven by 

cell sampling variation at the time of lineage specification.

Discussion:

In this work, we exploited the random, permanent, and developmentally early nature 

of XCI to investigate characteristics of early lineage specification events during human 

development. By analyzing variance in XCI ratios across tissues and individuals, we showed 

human XCI is completed before tissue specification and the stochastically determined 

XCI ratio set during embryogenesis is a shared feature across all tissue lineages. We 

estimate a lower bound of 6-16 cells are fated for the embryonic epiblast lineage based 

on population-level variance in XCI ratios. Additionally, we provide lower bound estimates 

of the number of cells present during tissue-specific lineage specification for 46 different 

tissues. To conduct this analysis, we developed a method to estimate the ratio of XCI 

using unphased allele-specific expression, a highly scalable approach applicable to any bulk 

RNA-sequencing sample.

This work provides insight into the observed variance of XCI ratios in normal female 

populations, an area of ongoing debate (Brown and Robinson, 2000; Clerc and Avner, 2006; 

Migeon, 1998; Peeters et al., 2016). Our results indicate that the initial embryonic XCI ratio 

is propagated through development and is a shared feature across all tissue lineages. This 

demonstrates the stochasticity of the initial choice for inactivation within the embryo has a 

measurable impact on XCI ratios in adult females. Importantly, GTEx donors presumably 

represent a phenotypically normal population; as such, our analysis captures XCI variance in 

the absence of potential drivers (X-linked diseases) of allelic-selection, representing the null 

distribution of XCI variation in adult females.

Additional contributors to the observed variance in XCI ratios across tissues may be genetic 

variation that can drive allelic selection over development (Brown and Robinson, 2000; 

Schmidt and Sart, 1992) or stochastic deviations in XCI ratios caused by developmental 

proliferation (Sun et al., 2021). In contrast to these models, we report strikingly consistent 

XCI ratios across tissues for individual donors, and, importantly, across tissues derived from 

different germ layers. If allelic-selection or stochastic deviations from proliferation were 

strong contributors to variance in XCI, we would not expect consistent XCI ratios across 

developmentally distant adult tissues. Nevertheless, it is unlikely that the initial embryonic 

XCI ratio is propagated through development with perfect fidelity, which contextualizes our 
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cell number estimates as lower bound estimates for the number of cells that must have been 

involved in XCI or lineage specification events. In general, our results suggest XCI ratios are 

broadly shared across tissues with lineage-specific stochasticity due to cell sampling effects 

during lineage-specification.

For the timing of XCI, there is a wealth of complimentary research on the exact molecular 

mechanisms (Dossin and Heard, 2021; Vallot et al., 2017) that define the highly complex 

biological process of XCI. XCI is a continuous molecular process and recent studies from 

human embryos suggest the timing of XCI may overlap the lineage specification of the 

extraembryonic and embryonic tissues (Moreira de Mello et al., 2017; Petropoulos et al., 

2016), which precedes germ layer specification. In this study, we aimed to interrogate 

timing of XCI as it relates to germ layer specification within the embryonic lineage. Any 

overlap in timing for the molecular process of XCI and extraembryonic/embryonic lineage 

specification will have no impact on our results and conclusions of shared variance in XCI 

within the embryonic lineage. The consideration of extraembryonic tissues provides the 

developmental context that XCI ratio variance within the germ layer lineages may be a 

combination of XCI stochasticity and cell sampling during embryonic epiblast specification.

One alternative model consistent with our results is the potential for rapid allelic changes in 

the time between XCI and germ layer specification, allowing for selection or drift to occur, 

with the XCI ratio then stabilized after germ layer specification. While possible, we find this 

improbable due to the small number of cell divisions estimated to occur between XCI and 

germ layer specification, as well as the lack of evidence for any continued effects after germ 

layer specification.

Our work is part of a broader history of using X-linked mosaicism as a useful tool for 

studying lineage relationships, with studies ranging from investigations of early lineage 

events in mice (Nesbitt, 1971) to ascertaining tumor clonality (Linder and Gartler, 1965). 

Typically, these approaches will capitalize on a single locus of the X-chromosome to 

determine XCI status (Boudewijns et al., 2007). One of our methodological contributions is 

demonstrating the allelic expression imbalance generated via XCI can be aggregated across 

multiple loci to provide near-perfect estimates of XCI ratios, even in the absence of phased 

information.

While GTEx represents the premier dataset for human cross-tissue functional genomics, 

more data is always helpful. As our approach for estimating XCI ratios is applicable to any 

bulk RNA-sequencing data, we envision this work providing an informative control for any 

future functional genomic investigations involving the X-chromosome.

Limitations of study

While the GTEx dataset aims to sample non-diseased tissues, we cannot rule out potential 

disease-states, genetic or otherwise, for all tissue samples, where disease may impact allelic 

selection and contribute to variance inn XCI ratios. When assessing escape from XCI, we 

focus on genes with constitutive rather than facultative signal and cannot make conclusions 

on likely tissue- or donor-specific escape. Our tissue-specific cell count estimations depend 

on the sample size of the given tissue and the number of tissues sampled for individual 

Werner et al. Page 11

Dev Cell. Author manuscript; available in PMC 2023 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



donors, both of which vary considerably across tissues and individuals. As such, these 

estimates are likely rough approximations that can be improved with additional tissue and 

donor sampling.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Requests for further information should be directed to and will be fulfilled 

by the lead contact, Jesse Gillis (jesse.gillis@utoronto.ca).

Materials availability—This study did not generate new unique reagents

Data and code availability

• This paper analyzes existing, publicly available data. Links to access 

these datasets are listed in the key resources table. The generated 

allele-specific expression information per sample (variant information 

removed) and the CIBERSORTx deconvolution results are made 

available at the FTP site: http://labshare.cshl.edu/shares/gillislab/people/werner/

werner_et_al_Dev_Cell_2022/data. Descriptions of the data are available at 

github.com/JonathanMWerner/human_cross_tissue_XCI

• All original code has been deposited at figshare (DOI: 10.6084/

m9.figshare.20216816) and at Github (github.com/JonathanMWerner/

human_cross_tissue_XCI) and is publicly available as of the date of publication.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Detailed explanation of donor enrollment, sample collection, and ethical details of the GTEx 

dataset are provided in Lonsdale et al., 2013.

METHOD DETAILS

GTEx and EN-TEx data—Fastq files for all female donors from the GTEx 

project v7 release (Lonsdale et al., 2013) were obtained from dbGaP accession 

number phs000424.vN.pN. BAM files for additional female samples from the v8 

release were obtained from the associated AnVIL repository (gtexportal.org/home/

protectedDataAcccess). All GTEx v7 data files can also be accessed in the GTEx v8 AnVIL 

repository. Phased expression data from the EN-TEx project (Rozowsky et al., 2021) were 

obtained in collaboration with the ENCODE consortium. EN-TEx data is available on the 

online portal. Expression data and annotations for the GTEx single nucleus RNA-sequencing 

data were obtained from the GTEx data portal.

RNA-seq alignment and SNP identification—For aligning RNA-sequencing data, 

the GRCh38.p7 human reference genome using GENCODE v.25 (Frankish et al., 2021) 

annotations was generated with STAR v2.4.2a (Dobin et al., 2013) and data was aligned 
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with STAR v2.4.2a or STAR v2.5.2b. STAR was run using default parameters with 

per sample 2-pass mapping. BAM files for the additional GTEx v8 samples (originally 

aligned to GRCh38.p10 with GENCODE v.26 annotations) were sorted using samtools 

v1.9 (Li et al., 2009) and converted to fastq files using bedtools v.2.26.0 (Quinlan 

and Hall, 2010). For each sample, alignment to the X-chromosome was extracted using 

samtools and passed to GATK (McKenna et al., 2010) for SNP identification. Using 

GATK v.4.1.3.0 and following the best practices workflow for RNAseq short variant 

discovery (GATK best practices), we utilized the following pipeline of GATK tools using 

default parameters unless otherwise stated: AddorReplaceReadGroups -> MarkDuplicates -> 

SplitNCigarReads -> HaplotypeCaller (-stand-call-conf 0.0) -> SelectVariants (-select-type 

SNP) -> VariantFiltration. The following filters were used in VariantFiltration to set flags 

for downstream filtering: QD < 2.0, QUAL < 30.0, SOR > 3.0, FS > 60.0, MQ < 40.0, 

MQRankSum < −12.5, and ReadPosRankSum < −8.0. These filters were determined from 

GATK recommendations and empirical evaluation of the identified SNPs’ metrics.

SNP quality control—SNPs identified through GATK were further filtered on various 

metrics to increase confidence in SNPs identified from RNA-sequencing data and ensure 

well-powered SNPs for allele-specific expression analysis. The resulting .vcf files from 

GATK were filtered to only contain SNPs present within dbSNP (Sherry et al., 2001). The 

remaining SNPs were filtered to be heterozygous with 2 identified alleles and at least 10 

reads mapped to each allele for a minimum threshold of 20 reads per SNP. Additionally, 

SNPs were required to pass the SOR, FS, and ReadPosRankSum filters set in the GATK 

pipeline. Only SNPs located within annotated genes (excluding the PAR regions of the 

X-chromosome) were considered and in the case of multiple identified SNPs in the same 

gene for a sample, the SNP with the highest total read count was taken as the max-powered 

representative for that gene. SNPs with a total read count above 3000 were excluded as they 

demonstrated a uniform distribution of allelic expression.

Gene filtering (reference bias and XCI escape)—From the observation of a heavy 

tail towards allelic expression in the reference direction across all called SNPs in the GTEx 

dataset, we compiled gene specific distributions of allelic expression to determine if a select 

few genes/SNPs were at fault. The majority of genes demonstrated distributions of relative 

allelic expression centered around 0.5 with several considerable exceptions, some genes 

exhibited bimodal or extremely biased distributions. We excluded genes that failed the dip 

test for unimodality as well as the top and bottom 5% of genes ranked by the deviation of 

their mean reference expression ratio from 0.5. Additionally, we excluded genes previously 

annotated to constitutively escape XCI (Tukiainen et al., 2017). In total, we end up with 

well-powered SNPs from 542 genes along the X-chromosome for modeling XCI ratios.

Folded normal model for estimating XCI ratios—We aggregate the allelic expression 

imbalance of the X-chromosome over both alleles by folding the reference allelic expression 

ratios about 0.5 (Fig 2A-B). To obtain our XCI ratio estimates we fit a folded normal 

distribution to the folded reference allelic expression ratios of each sample, using the 

maximum log likelihood estimate as the estimated XCI ratio. Theoretically, the captured 

bulk allelic expression for a heterozygous X-linked SNP follows a binomial distribution 
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characterized by the read depth of the SNP and the XCI ratio of the sample. Without phasing 

information, the allelic expression of heterozygous X-linked SNPs can be characterized by 

the folded-binomial model (Gart, 1970; Urbakh, 1967). Since SNPs vary in read depth and 

various biological factors (e.g. eQTLs) are not accounted for in the binomial model, we take 

the folded normal model as a continuous approximation. We require samples to have XCI 

ratio estimates derived from at least 10 filtered SNPs for downstream analysis, resulting in 

4659 samples with a mean of 56 well-powered SNPs per sample (Fig. S1). Additionally, 

we calculate 95% confidence intervals (CI) for each XCI ratio estimate via a nonparametric 

bootstrap percentile approach (n = 200), excluding XCI ratio estimates with a CI width >= 

.15 from downstream analysis. For donors with multiple samples for the same tissue, we 

average the XCI ratio estimates together, duplicated tissue samples have minor differences in 

estimated XCI ratios (mean difference in XCI ratios for duplicate tissue samples: 0.018 +− 

0.023 SD).

Modeling read sampling error when estimating XCI ratios—The sampled allelic 

reads for any expressed heterozygous loci will follow a binomial distribution defined by the 

total number of reads sampled (n) and the probability for allelic expression (p). For a given 

GTEx sample, we define SNP-specific binomial distributions as Binomial(n = total number 

of reads, p = sampled reference allelic expression ratio). For each individual GTEx tissue 

sample, we randomly sample a single instance from each SNP-specific binomial distribution 

to simulate SNP expression ratios with noise from allelic read sampling. We estimate the 

XCI ratio using the folded normal model on the simulated SNP expression ratios and repeat 

the simulation 50 times to generate a distribution of estimated tissue XCI ratios. We compute 

the root mean squared error of the simulated tissue XCI ratios about the original estimated 

tissue XCI ratio. We repeat the entire analysis with a percent reduction in each SNP’s total 

read count (10%, 20%, 30%, etc.) to model variance in our estimated XCI ratios as read 

depth decreases.

Gene-tissue XCI ratio correlations—To test individual gene’s propensity to follow 

the aggregate chromosomal XCI ratio, we calculate Pearson correlations between a gene’s 

reference allelic expression ratio and the estimated XCI ratio leaving out that gene for all 

samples the gene is detected. We calculate these correlations for each of the 542 filtered 

genes described above and for 45 previously annotated constitutively escape genes detected 

in our dataset. We only consider genes detected in at least 30 samples and with an FDR 

corrected (Benjamini-Hochberg) correlation p-value <= .05 determined by a permutation test 

(n = 10000) for further investigation of escape status, resulting in 380 putative inactive genes 

and the 45 previously annotated escape genes.

Testing for escape from XCI—To detect escape genes, it is necessary to compare 

against genes that undergo complete inactivation and do not escape. After stratifying by 

mean expression, we reason the genes most likely to undergo complete inactivation are 

genes with high gene-tissue XCI ratio correlations within each expression bin (Fig. 3C). 

Accordingly, we take the top 50% of putative inactive genes within each bin to define the 

null distribution of allelic expression under the hypothesis of complete inactivation (191 

genes). The remaining 189 putative inactive genes and the 45 known escape genes comprise 
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our test set. We reason a gene that escapes XCI will be biased for balanced biallelic 

expression regardless of the XCI ratio of the tissue. Using only tissues with an estimated 

XCI ratio >= 0.70, we compute the deviation from 0.5 (balanced allelic expression) for all 

inactive genes and the test gene. We rank the gene deviations and calculate the empirical 

p-value as the rank of the test gene divided by the total number of ranks i.e. the number 

of null inactive genes + 1 (Fig. S2). We only consider empirical p-values derived from 

samples with at least 20 null inactive genes detected. Additionally, we only consider test 

genes with at least 50 empirical p-values. For each remaining test gene, we aggregate 

the distribution of empirical p-values using Fisher’s method and apply an FDR correction 

(Benjamini-Hochberg) to the resulting meta-analytic p-values. We use a threshold of meta-

analytic p-value < .001 to call significance for escape. For Fisher’s method, under the null 

hypothesis, the log sum of all p-values follows a chi-squared distribution with 2k degrees of 

freedom, where k is the number of independent tests being combined. We use R’s pchisq 

function to compute the meta-analytic p-value for the following test statistic:

X2k
2 ∼ − 2∑i = 1

k log(pi) .

Tissue XCI ratio predicting donor XCI ratio—For the donors that contribute to a 

given tissue, we calculate the mean XCI ratio across all other tissues for each donor and 

use that mean as an approximation for the true XCI ratio for each donor. We classify 

donors as low/high XCI ratio donors if they have a mean XCI ratio greater than or equal to 

various thresholds (0.65, 0.7, 0.75). We calculate the AUROC of a given tissue’s XCI ratio 

predicting the low/high donors via the Mann-Whitney U test statistic where

AUCtissue = U
nℎigℎ donorsnlow donors

.

Cross-tissue XCI ratio correlations—For all pairwise combinations of the 49 tissues 

present within the GTEx dataset, we take the subset of donors that contribute both tissues 

for a given comparison and calculate the Pearson correlation for the folded XCI ratio of the 

tissues. Figure 4c1-c2 depicts only the correlation values derived with a sample size of at 

least 20 donors and an FDR corrected (Benjamini-Hochberg) p-value <= .05 derived from 

a permutation test (n = 10000). Supplemental Figure 3 depicts all computed correlations 

regardless of sample size or p-value.

CIBERSORTx deconvolution and germ layer-specific marker identification—
CIBERSORTx (https://cibersortx.stanford.edu, (Newman et al., 2019)) was run using the 

recommended settings following the “Build a signature matrix file from single-cell RNA 

sequencing data” and “Impute cell fractions” tutorials, batch correction was enabled when 

imputing cell fractions. Briefly, the annotated single-cell RNA sequencing data from GTEx 

is used to build a signature matrix that identifies genes that define the annotated cell types. 

This signature matrix is used to impute the cell type composition of bulk RNA sequencing 

samples. We extract germ layer-specific marker genes from the signature matrices identified 

from CIBERSORTx, classifying a gene as a germ layer marker if it is a gene that identifies 
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cell types exclusively from a single germ layer. Our annotated germ layer markers, the cell 

types they define, and the tissue they are derived from are available in Supplementary Table 

2. The signature matrices and imputed cell types per tissue with associated statistics from 

CIBERSORTx are made available on the FTP site http://labshare.cshl.edu/shares/gillislab/

people/werner/werner_et_al_Dev_Cell_2022/data.

Inference on direction of XCI ratios—To infer the direction of XCI ratios from 

unphased data, we look at allelic expression of heterozygous SNPs captured in multiple 

tissues for an individual donor. The reference allele of a heterozygous SNP captured in two 

different tissues of a single donor represents the same parental X-allele in both tissues. If the 

direction of XCI is the same for both tissues, the heterozygous SNP is expected to exhibit 

the same degree of reference allelic expression across the two tissues (positive correlation). 

If the direction of XCI is different, reference allelic expression will be inverted for one of the 

tissues resulting in a negative correlation. For each donor, for all pairwise combinations of 

their donated tissues with XCI ratios >= 0.6, we calculate Pearson correlations for unfolded 

reference allelic expression ratios using only SNPs detected in both tissues (Fig. 5). We only 

use SNPs that are within the previously filtered 542 genes described above and only consider 

correlations derived from tissue comparisons with at least 30 shared SNPs. Using positive or 

negative correlations as a readout for switched XCI direction between tissues, we perform 

Fisher’s exact test with a Benjamini-Hochberg correction to identify any tissue significantly 

enriched for switching XCI directions. We use the hypergeometric distribution to calculate 

raw p-values for Fisher’s Exact Test. For a given tissue, we input the number of times that 

tissue switched XCI directions minus 1, the total number of switched XCI cases across all 

tissues, the total number of non-switched XCI cases across all tissues, and the sample size 

for the given tissue.

Evaluating XCI cell number estimates—XCI is a binomial sampling event defined 

by the number of cells present during inactivation and the equal probability of inactivation 

between the alleles Binomial(N = # of cells, p = 0.5). As such, the variance in XCI 

ratios within a population is directly linked to the number of cells present during XCI. We 

derive estimates for the number of cells present during XCI by fitting a normal model to 

tissue-specific XCI skew distributions as a smoothened estimate for the underlying binomial 

distribution. We take the theoretical variance from the binomial model as the variance for the 

normal approximation.

varXCI = var Binomial(N, p, q)
N = pq

N = .5(1 − .5)
Nembryo

, where p,q = probability of allelic inactivation.

For a range of cell numbers (N = 2:50), we select the normal model with minimum error 

between its CDF and the empirical XCI ratio CDF of a given tissue for the tails of the 

distribution (XCI ratio <= 0.4 and XCI ratio >= 0.6). This accounts for the uncertain folded 

0.5 – 0.6 XCI ratios estimates in the unfolded space. We calculate 95% CIs for each 

estimated cell number via a nonparametric bootstrap percentile approach (n = 2000). We 

only consider cell number estimates from tissues with at least 10 donors.
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Evaluating tissue-specific lineage cell number estimates—We model tissue-

specific lineage specification as a cell sampling event from a large pool of cells. As such, the 

XCI ratio of a tissue will follow a binomial model defined by the number of cells fated for 

that tissue and the XCI ratio of the embryo (Fig. 6c).

XCItissue ∼ Binomial(N, p, q)
N =

Binomial(Ntissue, XCIembryo, 1 − XCIembryo)
Ntissue

varXCItissue = var Binomial(N, p, q)
N = pq

N =
XCIembryo(1 − XCIembryo)

Ntissue

SDXCItissue =
XCIembryo(1 − XCIembryo)

Ntissue

For a given tissue, across donors with variable XCI ratios (XCIembryo) the variation in the 

tissue XCI ratio is defined by the constant Ntissue, the number of cells fated for that tissue. 

To estimate this constant, we calculate z-scores for each tissue-donor pair of a given tissue 

using the mean XCI ratio of all other tissues for each donor as an approximation for the 

XCIembryo.

Ztissue =
XCItissue − XCIembryo

SDtissue
=

XCItissue − XCIembryo
XCIembryo(1 − XCIembryo) Ntissue = ttissue Ntissue

As the standard deviation of a distribution of z-scores is 1, we solve for Ntissue:

SD(Z) = 1
m − 1 ∑i = 1

m (Zi − Z̄)2 = 1, where m = number of donors for a given tissue

Ntissue = m − 1
∑i = 1

m (ti − t̄ )2

We calculate 95% CIs for each Ntissue via a nonparametric bootstrap percentile approach (n 

= 2000) using the ttissue distribution. We require a tissue to have at least 10 donors in order to 

calculate Ntissue.

Data analysis and visualization—All analysis was conducted in R version 4.0.5 

(R Core Team, 2021). Graphs were generated using the ggplot2 (Wickham, 2016), 

ComplexHeatmap (Gu et al., 2016), karyoploteR (Gel and Serra, 2017), and base R 

packages.
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QUANTIFICATION AND STATISTICAL ANALYSIS

When correcting p-values, we use the Benjamini-Hochberg procedure implemented by R's 

p.adjust function with “method = BH” parameter. Significance is determined with p-value 

<= 0.05 unless otherwise stated. We use the R dip.test function from the diptest package to 

perform Hartigan’s dip test of unimodality. For Fisher’s method of aggregating p-values, we 

use the R function pchisq with ‘lower.tail = FALSE’ parameter to compute the meta-analytic 

p-value from the calculated chi-square test statistic. All confidence intervals are computed 

using a nonparametric bootstrap percentile approach, where the underlying data is sampled 

with replacement to generate a bootstrapped distribution of the variable in question (tissue 

XCI ratio estimates, cell number estimates). The 95% confidence interval is defined by 

the 2.5th and 97.5th percentile of the bootstrapped distribution. We determine if tissues are 

enriched for switching parental XCI directions using the hypergeometric implementation 

of Fisher’s Exact Test, using R’s phyper function. When fitting normal distributions to 

tissue XCI ratio distributions, we use the R quantile function with parameter “type = 1” to 

compute the empirical CDF and the R qnorm function to compute the theoretical normal 

CDF. For any given correlation calculated, we permute the underlying data to get a null 

distribution of correlations under the hypothesis of independence, using R’s cor function 

with “method = pearson” parameter. We derive a raw p-value for the original correlation 

value from the empirical null distribution of correlations (permutation test). In the analyses 

where we generate many correlations, we apply a Benjamini-Hochberg FDR correction to 

the associated distribution of raw p-values to call significance, using a threshold of p-value 

<= 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Tissue XCI ratios can be determined using reference-aligned bulk RNA-seq 

data

• XCI ratios are shared across all human tissues

• XCI variance in adult populations is explained by the inherent stochasticity of 

XCI

• Human XCI occurs when the embryonic epiblast is composed of at least 6-16 

cells
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Figure 1: Timing of XCI determines lineage-specific XCI ratio probability
A, Schematic representing completed XCI before germ layer specification. Each germ 

layer inherits the same randomly determined XCI ratio set prior to germ layer lineage 

specification. The probability distribution of XCI is determined by the number of cells 

present during inactivation. B, Schematic representing completed XCI after germ layer 

specification. The XCI ratio for each germ layer is set independent of one another, together 

along with variation in cell numbers fated for each germ layer results in variable XCI ratios 

across the germ layer lineages.
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Figure 2: The folded-normal model accurately estimates XCI ratios from unphased bulk RNA-
sequencing data
A, Schematic demonstrating how allelic expression of heterozygous SNPs reflect the XCI 

ratio of bulk tissue samples. Aligning expression data to a reference genome scrambles the 

parental haplotypes. Folding the reference allelic expression ratios captures the magnitude 

of the tissue XCI ratio. B, Distributions of reference allelic expression ratios for identified 

heterozygous SNPs across tissue samples exhibiting a range of bulk XCI ratios. Both the 

unfolded (top row) and folded distributions with the fitted folded normal model (bottom 

row) are shown. C, For the EN-TEx tissue samples, the phased median gene XCI ratio is 

plotted against the unphased XCI ratio estimate from the folded normal model. The folded 

normal model produces near identical XCI ratio estimates for samples with XCI ratios 

greater than or equal to 0.60. D, Deviation of the folded normal model from the phased 

median gene XCI ratio when excluding or including known escape genes. E, Aggregated 

folded reference allelic expression distributions for known escape and inactive genes in 
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EN-TEx tissues with XCI ratios >= 0.70. F, Root mean squared error distributions for 

GTEx tissue samples binned by their original estimated XCI ratio as read depth per SNP is 

gradually reduced. See also Figure S1.
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Figure 3: Genes that escape XCI exhibit balanced biallelic expression across XCI skewed tissues
A, The genomic location and number of GTEx samples each gene is detected for the 542 

genes that pass our quality control filters. B, All 542 genes and 45 known escape genes 

ranked by the Pearson correlation coefficient for each gene’s allelic expression and the XCI 

ratio of the tissue for samples that detect that gene. C, Distributions of gene-tissue XCI 

ratio correlations for all 542 genes and 45 escape genes, binned by average expression. 

The range of average expression is binned into 4 equally spaced bins. We label the top 

50% of ‘all other genes’ in each expression bin as ‘inactive genes’ and the bottom 50% as 

‘unknown’ genes, as they are potentially a mix of inactive and unannotated escape genes. 

D, An example for how the empirical p-values are calculated for a given test gene across 

tissue samples. For a given tissue sample, we calculate each gene’s allelic expression ratio 

deviation from 0.5, where the black histogram represents the deviations from the inactive 

genes in the sample and the blue dotted line represents the deviation of the given test gene 
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in the sample, ARHGAP4 in this example. We apply Fisher’s method to aggregate each test 

gene’s distribution of empirical p-values to calculate a meta-analytic p-value to determine 

significance (ARHGAP4 meta-analytic p-value: 4.44e−21, SLC6A8 meta analytic p-value: 

0.997). E, The aggregated empirical p-value distributions for inactive, known escape, and 

the unknown genes now classified as confident inactive and novel escape are plotted. 

The unknown genes are classified as either confident inactive or novel escape by using a 

significance threshold of meta-analytic p-value < .001. F, The percent of genes previously 

annotated for escape per sample is plotted against the difference between the sample’s XCI 

ratio estimates derived when either including or excluding the previously annotated escape 

genes. The inset plot compares the XCI ratio estimates derived without the known escape 

genes (x-axis) or including the known escape genes (y-axis). See also Figure S2 and Table 

S1.
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Figure 4: XCI ratios are shared across germ layer lineages
A, Heatmap of all estimated XCI ratios for the tissues of each donor, with donors ordered 

by their mean XCI ratio across tissues and tissues grouped by germ layer lineage. Black 

indicates no tissue donation for that donor-tissue pair. B, Examples of within and across 

germ layer lineage comparisons of XCI ratios. Each data point represents the estimated XCI 

ratios of the two indicated tissues for a single donor. C, All significant (FDR corrected 

p-value <= 0.5, permutation test n = 10000) Pearson correlation coefficients for within and 

across germ layer lineage comparisons. D, Stacked bar plots for the germ layer percentage 

composition for each sample in the Lung, Esophagus Mucosa, and Skin Lower Leg GTEx 

tissues. The deconvolved cell type percentages and their germ layer annotations are provided 

in Fig. S2. E-G, the folded allelic expression ratios for germ layer markers and all other 

genes (Not markers) are plotted for several example donors per tissue, E: Lung, F: Skin 

Lower Leg, G: Esophagus Mucosa. The adjacent scatter plots compare the median folded 
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allelic expression between germ layer markers for all donors. E: Lung mesodermal and 

endodermal markers, Pearson correlation of 0.626 (p-value < .001), F: Skin Lower Leg 

mesodermal and ectodermal markers, Pearson correlation of 0.621 (p-value < .001), G: 

Esophagus Mucosa endodermal and ectodermal markers, Pearson correlation 0.603 (p-value 

< .001), mesodermal and ectodermal markers, Pearson correlation 0.360, (p-value < .001), 

mesodermal and endodermal markers Pearson correlation 0.537 (p-value < .001). See also 

Figure S3-4 and Table S2.
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Figure 5: Individual tissue lineages exhibit increased variance in XCI ratios
A, Folded allele-specific expression distributions for individual tissues from the 11P81 

donor with the aggregated germ layer distributions in the top panel. B, Folded allele-specific 

expression distributions for individual tissues from the 1J1OQ donor with the aggregated 

germ layer distributions in the top panel. C, Pearson correlation distributions calculated from 

all pairwise comparisons of shared heterozygous SNPs between two tissues for all of donor 

11P81 ‘s tissues. Positive correlations indicate the same parental direction of XCI, negative 

correlations indicate opposite parental directions of XCI. D, Similar to C, displaying results 

for donor 1J1OQ’s tissues. E, Box plots of the per donor proportion of tissues that switched 

parental XCI directions with donors binned by their mean XCI ratio across tissues. F, 

Bar plot indicating the proportion of donors where the specified tissue switched directions 

compared to other tissues. Asterisks indicate significance from Fisher’s Exact test (FDR 

corrected p-value <= .05), identifying tissues enriched for switching XCI directions.
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Figure 6: XCI and tissue lineage specification can be timed to a pool of cells by exploiting 
observed variability
A, Example tissue demonstrating the model for estimating cell numbers at the time of 

XCI using the population-level variance in XCI ratios. We fit normal distributions, as a 

continuous approximation of the underlying binomial distribution of XCI ratios, to the tails 

of tissue-specific XCI ratio distributions (shaded in blue), which accounts for the uncertain 

0.40-0.60 unfolded XCI ratio estimates (shaded in grey). B, The resulting estimated cell 

numbers present during XCI derived from the XCI ratio variance of all tissues with at least 

10 donors. Error bars are 95% confidence intervals and tissues are grouped by germ layer 

lineage. C, Schematic for our model of tissue lineage specification and the implications 

for tissue-specific XCI ratios. The XCI ratio of a tissue is dependent on the prior XCI 

ratio of the embryo and the number of cells selected for that tissue lineage. These two 

features define the binomial distribution for that tissue’s XCI ratio. D, Estimated number 

of cells selected for individual tissue lineage specification of 46 different tissues. Error bars 
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represent 95% confidence intervals. The top bar graph plots the variance in the distribution 

of tissue XCI ratio deviation from the average XCI ratio of each donor for that tissue. The 

inset plot compares the estimated number of cells present at the time of tissue specification 

to the proportion of that tissue’s samples that switched parental XCI directions, Pearson 

correlation −0.663 (p-value < .001).
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GTEx V8 protected access data, 
bulk RNA-seq

Lonsdale et al., 2013 https://gtexportal.org/home/protectedDataAccess

GTEx V9 open access data, 
single nucleus RNA-seq

Eraslan et al., 2022 https://gtexportal.org/home/datasets

EN-TEx phased bulk RNA-seq Rozowsky et al., 2021 https://www.encodeproject.org/entex-matrix/?
type=Experiment&status=released&internal_tags=ENTEx
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