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Abstract

Diet influences onset, progression, and severity of several chronic diseases, including heart
failure, diabetes, steatohepatitis, and a subset of cancers. The prevalence and clinical burden

of these obesity-linked diseases has risen over the past two decades. These metabolic disorders
are driven by ectopic lipid deposition in tissues not suited for fat storage, leading to lipotoxic
disruption of cell function and survival. Sphingolipids such as ceramides are among the most
deleterious and bioactive metabolites that accrue, as they participate in selective insulin resistance,
dyslipidemia, oxidative stress and apoptosis. This review discusses our current understanding
of biochemical pathways controlling ceramide synthesis, production and action; influences of
diet on ceramide levels; application of circulating ceramides as clinical biomarkers of metabolic
disease; and molecular mechanisms linking ceramides to altered metabolism and survival of
cells. Development of nutritional or pharmacological strategies to lower ceramides could have
therapeutic value in a wide range of prevalent diseases.
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1. INTRODUCTION

Chronic diseases are multifactorial by nature, with nutrition playing an important but
enigmatic role. The importance of a healthy diet is most commonly associated with obesity-
related diseases, wherein energy intake exceeds demand and excess calories are stored as
triglycerides. While triglyceride storage itself is likely inert, the capacity of adipose depots
to safely store these extra calories is finite. As a result, lipids can eventually accumulate

in tissues not suited for fat storage, such as the heart, liver, vasculature, and pancreas. This
ectopic lipid accumulation creates a lipotoxic state that primes the body for cardiometabolic
disease development, including heart failure, atherosclerosis, nonalcoholic fatty liver disease
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(NAFLD), obesity related cancers, and diabetes. Extensive studies carried out over the past
25 years indicate that ceramides, a bioactive and lipotoxic member of the sphingolipid class,
elicit many of the cellular changes that underly the aforementioned diseases. The discoveries
regarding ceramides in metabolic pathology present exciting opportunities for understanding
the evolutionary forces that promote nutrition-linked chronic disease development and for
identifying novel therapeutic and predictive targets for clinical implementation.

While ceramides comprise a minor proportion of the whole-body lipidome, they play
potent roles in nutrition-linked chronic disease. For example, overexpression of ceramide
synthesizing genes or ablation of genes required for ceramide degradation worsens features
of metabolic disease (13, 46), while genetic or pharmacological inhibition of ceramide
synthesis prevents cardiometabolic diseases (12, 58, 59, 141). In vitro studies in the

1990s demonstrated the signaling capacity of ceramides via direct participation in the
insulin-responsive glucose uptake pathway, providing the initial link between ceramides
and insulin resistance (135). This finding has now been widely confirmed in rodent

studies and prospective human cohort studies (12, 31, 32, 66, 86). Additional studies have
shown relationships between serum ceramides and terminal consequences of the metabolic
syndrome, such as diabetes and major adverse cardiac events (31, 66, 78, 86). Nonetheless,
more work remains if we are to achieve widespread use of ceramides as biomarkers or
develop ceramide-lowering strategies to treat these pathologies.

Herein we summarize the modes of ceramide synthesis and transport, the clinical utility

of ceramides as biomarkers for nutrition-linked chronic diseases, the role of dietary
sphingolipid intake and dietary patterns on ceramide profiles, and the molecular mechanisms
of ceramides that drive the pathogenesis underlying metabolic disease. Moreover, we discuss
the potential modes of ceramide-lowering strategies, including lifestyle interventions and
findings from preclinical pharmacological targeting of the sphingolipid synthesis pathway, to
mitigate obesity-coupled diseases.

2. CERAMIDE SYNTHESIS AND METABOLISM

The sphingolipid class encompasses 4,000-5,000 unique lipid species with reported
structures (LIPID MAPS Structure Database, Reference 130), which are metabolized in
elegant anabolic and catabolic pathways characterized within multiple organisms.

2.1. De Novo Ceramide Synthesis

Ceramides are produced in a conserved four-step biosynthetic pathway within the
endoplasmic reticulum (ER), which commences with the rate-limiting condensation of

a saturated long-chain acyl-CoA and amino acid to produce 3-ketosphinganine via

serine palmitoyltransferase (SPT) (Figure 1a). Three genes (i.e., SPTLC1, SPTLCZ, and
SPTLC3) encode the essential subunits of the SPT complex, serving as heterodimers

with differential tissue expression and specificity for acyl-CoA and amino acid substrates
(47, 61). Additional components termed small subunits of SPT and orosomucoid-like
proteins interact directly with the SPT complex substrate binding sites to confer additional
regulation of substrate specificity and activity (1, 5, 22, 47, 49, 150). The SPT complex
predominantly produces an 18-carbon sphingoid backbone produced by the condensation of
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palmitoyl-CoA with serine but can incorporate alternative fatty acids (e.g., myristoyl-CoA,
stearoyl-CoA\) or initiate production of deoxysphingolipids by using alanine or glycine.

The products of the SPT reaction are quickly acted upon by an NADPH-dependent
reductase (i.e., 3-ketodihydrosphingosine reductase) to form the defining sphingoid scaffold
dihydrosphingosine.

The next branch point adding considerable diversity to the sphingolipid pool is the third
reaction catalyzed by one of six r-acyltransferases. These (dihydro)ceramide synthases
(CERS1-6) produce dihydroceramides by adding a second, variable acyl chain to the
sphingoid backbone. The CERS enzymes differ immensely in both tissue expression pattern
and substrate specificity, producing dihydroceramides with variable acyl chain lengths
spanning 14-34 carbons (87). Despite their unique gene origins, the CERS enzymes’
primary sequences retain high homology, and substrate specificity is reportedly determined
by a single ER luminal loop (137). Furthermore, all mammalian CERS, excepting

CERS1, contain a conserved homeobox-like domain which has been shown in Drosophila
melanogaster and cultured mammalian cells to mediate transcriptional regulation of lipase
genes in response to intracellular fatty acid levels (9, 127). Transcriptional feedback of
CERS enzymes has been observed, wherein knockdown or knockout of a specific CERS
species elicits compensatory increases in alternative CERS isoforms and alterations in the
composition of the cellular sphingolipidome (99, 113, 141). Additionally, the activity of
CERS enzymes and the resulting diversity of the sphingolipid variable chain lengths is
significantly affected by their formation of homo- or heterodimers (82).

In the ultimate step of the de novo ceramide synthesis cascade, dihydroceramide is converted
to ceramide with the addition of a single 4,5-frans-double bond by the dihydroceramide
desaturases (DES1-2), encoded by DEGS1 and DEGSZ2. DESL is expressed ubiquitously

in tissues, whereas DES2 is localized to the skin and intestinal epithelium and contains
bifunctionality as a C4-hydroxylase that produces phytoceramides (96). The double bond
introduced at this step elicits a marked change in lipid bioactivity and pathological fate.
Dihydroceramides are considered benign or beneficial, while ceramides are deleterious
mediators of various stress responses that drive the pathogenesis underlying nutrition-linked
chronic disease (12, 123, 124).

2.2. Metabolism and Catabolism of Sphingolipids

Ceramides are shuttled from the ER to the Golgi apparatus to form complex sphingolipid
species through the addition of various head groups to the first position oxygen molecule
(37). For example, sphingomyelin (SM) is synthesized in the luminal Golgi with the addition
of a choline head-group by SM synthase (37). Glucosylceramides are formed in the c/s-
Golgi by glucosylceramide synthase, with further glycosylation to form lactosylceramide

or monosialodihexosylganglioside occurring in the trans-Golgi (44, 74). Ceramide can be
phosphorylated by ceramide kinase in the Golgi to form ceramide-1-phosphate (C1P) (38).
The transfer of ceramides to distinct Golgi regions is important for the regulation of complex
sphingolipid synthesis, as delivery of ceramides for SM or C1P synthesis seems to be
mediated by the ATP-dependent ceramide transport protein, whereas glycosphingolipids are
generated from vesicularly delivered ceramides (21, 35, 48).
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In addition to de novo biosynthesis, a large portion of intracellular ceramides are generated
via hydrolysis of complex sphingolipids or salvaged with reacylation of sphingoid bases
(74). Several sphingomyelinase (SMase) enzymes act to cleave the phosphocholine head
group from SM to yield ceramide and phosphocholine. This process is mediated by alkaline,
neutral, and acid SMase enzymes and is important for the modulation of cellular stress
responses and digestion of dietary sphingolipids (74, 114). Alkaline SMase is expressed
predominantly in the liver and intestinal mucosa and dissociates from the plasma membrane
to the intestinal lumen by the actions of pancreatic trypsin or bile salts to digest dietary

SM (Figure 1b) (153). Four mammalian genes encode the neutral SMases (nSMase1-3

and MA-SMase), which share the same optimal pH but differ in subcellular location (2).
The most well characterized is nSMase2, which is relevant to nutrition-related chronic
diseases due to its activation in the plasma membrane by the inflammatory cytokine tumor
necrosis factor-a (17). Acid SMase is posttranslationally modified and trafficked to produce
lysosomal SMase, which operates at low pHs, or secretory SMase, which hydrolyzes SMs
present in circulating lipoproteins (65).

Ceramides are deacylated by a family of ceramidases to form sphingosine and a free

fatty acid of variable length. Similar to SMase enzymes, ceramidase nomenclature (i.e.,
acid, ASAH1; neutral, ASAHZ2; or alkaline, ACER1-3) denotes the enzymes’ pH optima.
ASAH?2 is predominantly expressed in the gut epithelial brush border and plays a particular
role in dietary ceramide digestion, as sphingosine is the only sphingolipid known to be
readily absorbed by enterocytes (Figure 1b) (16). In addition to the ceramidase enzymes
discussed above, adiponectin receptors (ADIPORL1 and 2) have ligand-activated ceramidase
activity, which partially accounts for the insulin sensitizing effects of adiponectin (60,

129). Sphingosine formed from ceramide catabolism can be reacylated by CERS to form
ceramides and complex sphingolipids, or phosphorylated by sphingosine kinases (SPHK1
and 2) to form the potent signaling molecule sphingosine-1-phosphate (S1P) (8, 122). In
the gut, S1P is often fully degraded by S1P lyase to form phosphoethanolamine and a fatty
aldehyde hexadecenal (144). Breakdown of glycosphingolipids by various glycosidases is
important for dietary digestion and absorption of these lipids but is thought to occur less
frequently extraintestinally and does not contribute to a significant fraction of ceramide
regeneration (75, 131).

2.3. Dietary Sphingolipids

Sphingolipid content within foods is highly variable but is higher in dairy, eggs, fish,

and soy products (146, 149). Consumption of dietary sphingolipids is not considered to
contribute significantly to caloric intake (0.01-0.02% of intake by weight); however, the
typical Western diet is estimated to provide approximately 0.3-0.4 grams of sphingolipid
daily (146). While mammalian sources of dietary sphingolipid provide a broad spectrum
of complex sphingolipids (e.g., SM, cerebro-sides, gangliosides, sulfatides) with SM

as the predominant species, plant sources largely consist of a range of mono- and
oligohexosylceramides with noncanonical sphingoid bases (i.e., d17:1, d18:128, and
d18:2848 reviewed in detail in 145, 146, 149). Thus, diets which differ in plant and
animal product ingestion are likely reflected in relative abundance and diversity of dietary
sphingolipid intake (159).
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Dietary sphingolipids are differentially digested and absorbed according to class

and composition of the sphingoid base and accessory acyl chain. As such,
phosphosphingolipids, sphingosine, dihydrosphingosine, and SM are absorbed more readily
than glycosphingolipids; sphingolipids with 16-carbon accessory chains are more readily
taken up than very-long-chain species; and mammalian d18:1 sphingoid bases desaturated
at the delta-4 position are selectively absorbed over alternative plant and fungal sources

(33, 156). Dietary sphingolipids are not considered essential nutrients, and the extent to
which digested sphingolipids are fully degraded and reassembled within enterocytes to
contribute to the circulating and tissue lipidome is poorly understood (91); however, human
and rodent studies have demonstrated that dietary sphingolipids effectively impair digestion
and absorption of other dietary lipids (e.g., cholesterol, glycerolipids, free fatty acids) and
may paradoxically confer some protection from systemic inflammation, insulin resistance,
atherosclerosis, liver steatosis, and intestinal cancer (extensively reviewed in 103, 149, 156).

2.4. Gut Microbial Sphingolipids

Dietary sphingolipids are incompletely digested and absorbed in the small intestine and
travel to the colon, where they can be absorbed and assimilated into the microbial

lipidome (84). Additionally, the rate limiting enzyme of de novo ceramide synthesis,

SPT, is conserved in some bacterial species (157). Interestingly, whereas mammalian
systems predominantly produce sphingoid bases with even-numbered acyl chains, microbial
sphingolipids often incorporate odd-chain backbones (128). Rodent tracing studies, as well
as observations of odd-chain base sphingolipid species in human circulation, suggest that
bacterially derived sphingolipids can enter host circulation to influence metabolism (34,
70). Brown and colleagues (6) have reported a feedback mechanism for host and microbe
sphingolipid homeostasis, in which sphingolipids produced by the abundant Bacteroides
species are essential to subdue the accumulation of host-derived ceramides and resulting
intestinal inflammation and disease. Gonzalez and colleagues (39) have produced a dossier
of work implicating a farnesoid X receptor (FXR) gut-liver-ceramide axis, in which the
microbial degradation of bile acids stimulates FXR activity and upregulates biosynthesis of
ceramide in the enterocyte. Consequently, decreases in portal vein and systemic ceramides
in mice lacking intestinal FXR downregulated hepatic lipogenesis and glucogenesis and
promoted liver lipid oxidation and adipocyte browning to confer protection from obesity-
related metabolic disease (29, 67, 155). Conversely, Kayser and colleagues (72) have
recently reported that circulating sphingolipid levels in overweight and obese humans

are inversely correlated with gut microbial diversity and bacterial expression of genes
involved in bile acid degradation. Instead, resolution of gut dysbiosis and circulating
ceramides with diet-induced weight loss was attributed to increased colonization of anti-
inflammatory Bifidobacterium species and suppression of lipopolysaccharide biosynthesis.
Thus, a knowledge gap exists regarding ways in which dietary patterns and nutrition-linked
diseases alter gut microbiota and the intestinal sphingolipidome to influence whole-body
metabolic health and disease.
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3. CERAMIDES AS MARKERS OF DISEASE

Clinical care precision and effective resource partitioning through personalized medicine
are aided via diagnostic, risk, prognostic, and predictive biomarkers (101). Ceramides

are an ideal biomarker due to their sensitivity and specificity in association with discrete
clinical outcomes and reliably detected presence in noninvasive body fluids, including
serum, plasma, and urine. Moreover, ceramides are conditionally independent from already
established lipid markers, triglycerides and cholesterol (109). While ceramides are proposed
biomarkers for myriad metabolic conditions, they are most extensively studied in relation

to cardiovascular disease (CVD) (Table 1). In fact, a ceramide score, CERT1, has been
implemented clinically in both private and public practice in Finland as well as at the
Cleveland and Mayo Clinics in the United States.

3.1. Individual Ceramides and Cardiovascular Disease

Associations between CVD and individual ceramides have been shown in numerous case-
control and cohort studies, as well as clinical trials (3, 51, 78, 108, 136). Ceramide species
Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/20:0), and Cer(d18:1/24:1) and their ratios to
Cer(d18:1/24:0) have demonstrated predictive power for myocardial infarctions (MI) and
cardiovascular death (51). Additionally, these same ceramide species and ratios predicted

MI and cardiovascular death in patients with stable coronary heart disease or in secondary
prevention following an M1 (78). Interestingly, the associations between ceramides and CVD
are stronger for recurrent events and fatal outcomes (3, 51, 78).

Far less is known regarding distinct ceramide species in association with heart failure and
stroke. Lemaitre et al. (85) report associations between plasma ceramides in 1,179 cases

of incident heart failure in the Cardiovascular Health Study. Specifically, Cer(d18:1/16:0)
demonstrated a positive association, while Cer(d18:1/22:0) was inversely associated.

Gui et al. (43) report increased levels of plasma Cer(d18:1/16:0), Cer(d18:1/22:0), and
Cer(d18:1/24:0) in a matched case control study including 202 patients with acute ischemic
stroke and 202 age- and sex-matched controls. Of note, ceramides were significantly higher
in patients with moderate-to-high clinical severity (7= 99) than patients with minor stroke
(n=103), indicating the capacity for ceramide to predict both risk and severity of stroke.
Further research in the areas of heart failure and stroke in association with ceramides may
yield powerful diagnostic and risk predictive tools.

3.2. Ceramide-Based Scores and Cardiovascular Disease

Three predictive algorithms comprising ceramides have been published to date: Cardiac
Event Risk Test 1 (CERT1) (51, 78), Cardiac Event Risk Test 2 (CERT?2) (54), and
sphingolipid-inclusive coronary artery disease score (SIC) (109). CERT1 is the most
long-standing and established score, and it is used clinically in Finland and parts of the
Unites States. This score, which was developed by Zora Biosciences and recently licensed
by Quest Diagnostics, comprises Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1)
concentrations and each respective lipid’s ratio to Cer(d18:1/24:0). These six score
components are broken into quartiles, with the highest quartile assigned 2 points, the
second-highest quartile 1 point, and the lower two quartiles 0 points (51, 78). Hence, the
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score ranges from 0-12 points with discrete risk categories (0-2, low; 3—-6, moderate; 7-9,
increased; 10-12, high), demonstrating a positive linear relationship with CVD risk. Of
note, this linear increase is not seen with conventional CVD marker low-density lipoprotein
(LDL) cholesterol (56). The CERT1 score is an impressive clinical score, demonstrating

a disease-severity dependent scale with promise for use in risk stratification. A revised
iteration of the CERT1 score, CERT2, is composed of ceramide and phospholipid species
selected in a stepwise fashion and validated in four large independent cohorts, including the
Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy (STABILITY)
trial, which includes participants from multiple geographical locations worldwide (54, 57).
The third published ceramide-based score is SIC, which includes nonabundant sphingolipids
in addition to the most prevalent ceramide species (109). SIC performs conditionally
independently from and more effectively than conventional CVVD markers, including LDL
cholesterol and triglycerides, indicating that ceramides are robust, nonredundant, and novel
biomarkers. However, SIC was generated in a case-control study and has not been validated
in multiple cohorts or in a prospective study design. Ceramide-based scores are an important
and rapidly translatable area of research, and they overcome the cumbersome nature of

large sphingolipid panels by presenting an appealing and easily interpretable diagnostic
reporting option. Of note, the improved disease prediction and risk stratification power
yielded by ceramide-based scores has considerable potential to improve patient care and
effective utilization of healthcare resources.

3.3. Ceramides in Association with Diabetes, Insulin Resistance, and Metabolic

Syndrome

Ceramides are implicated as causal factors in insulin resistance and type 2 diabetes mellitus
(T2DM) metabolism and are obligate intermediates in beta cell death (10). They are also
potent prognostic markers of incident T2DM in mice and humans. Fretts et al. (32) recently
identified significant associations of Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/20:0),
and Cer(d18:1/22:0) with higher risk of incident diabetes in the Cardiovascular Health
Study (n= 3,645), which comprises older adults with 26 years of follow-up. Accordingly,
ceramides also associate with markers of glycemic control: insulin, homeostatic model
assessment of insulin resistance (HOMA-IR), and homeostatic model assessment of p-cell
function (HOMA-B) in the Strong Heart Study (31, 86). Interestingly, SMs are associated
with body mass index in the Strong Heart Study. Moreover, the ratio of Cer(d18:1/18:0)/
Cer(d18:1/16:0) was predictive of incident diabetes in the FINRISK cohort, Western
Norway Coronary Angiography Study, and interventional Prevent Metabolic Syndrome Trial
(combined n=11,760) (54). Notably, while not implicated as causative agents in diabetes,
dihydroceramides may be more sensitive disease biomarkers than ceramides, as they are
immediately adjacent to ceramides in the de novo synthesis pathway and considerably

less abundant, rendering them a more sensitive readout of alterations in sphingolipid
biosynthesis. In two independent cohorts, dihydroceramide species Cer(d18:0/18:0) and
Cer(d18:0/22:0) predict diabetes up to 9 years before onset more potently than their
corresponding ceramide species with the same acyl chain lengths (152). However, a
majority of human cohort studies evaluating ceramides in diabetes do not measure
dihydroceramides, and this finding has not been widely replicated. Mechanistic studies
have definitively established the causal link between ceramides and diabetes development.
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Further epidemiological studies, particularly prospective cohorts with diverse populations,
are necessary to fully interrogate the predictive and prognostic utility of ceramide, and
potentially dihydroceramide, as biomarkers in diabetes.

3.4. Ceramides and Obesity-Related Cancers

Elevated body weight and corresponding metabolic changes are associated with certain
cancers, including colorectal, breast, endometrial, and liver cancers (4). The role of
ceramides in cancer is paradoxical, as proapoptotic ceramides prevent tumor growth but
also participate in the metabolic milieu (e.g., insulin resistance and dyslipidemia) driving
onset of obesity-related cancers. An additional layer of complexity lies within differences
in interpretation of ceramide concentrations in circulation and in tumor tissue. In colorectal
cancer, concentrations of circulating Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/18:1), and
Cer(d18:1/24:1), but not hexosyl-ceramides or SMs, were significantly associated with stage
IV colorectal cancer (121). In breast cancer, higher ceramide concentrations in tumors have
been associated with less aggressive breast cancer by the Ki67 index and nuclear grade;
however, higher expression of de novo ceramide synthesizing genes is associated with
poorer outcomes (98). In the setting of ovarian cancer, an insulin resistance—related disease,
Cer(d18:1/16:0), Cer(d18:1/18:1), and Cer(d18:1/18:0) are elevated in plasma of patients
with advanced ovarian cancer (76). In hepatocellular carcinoma, ceramides are decreased in
tumor tissue compared with adjacent nontumor tissue, yet they are increased in circulation.
Furthermore, plasma Cer(d18:1/16:0) correlates with markers of hepatocellular injury (41,
77). Moreover, ceramides are proposed as an early indicator of response to radiotherapy

for hepatocellular carcinoma (28). Circulating ceramides, specifically Cer(d18:1/16:0) and
Cer(d18:1/24:1), are also proposed as early (before weight loss) markers of cancer cachexia
(97). Additional studies with larger sample sizes and prospective designs are merited to
elucidate the relationships between tumor and circulating ceramide and cancer incidence,
severity, and outcome.

3.5. Origins of Circulating Ceramides that Serve as Biomarkers of Cardiometabolic

Disease

As ceramide scores become more widely reported in the literature and utilized in the
clinic, it is important to determine why distinct ceramide species associate with discrete
disease outcomes (91, 160). For example, why is Cer(d18:1/16:0) positively associated
with cardiovascular mortality, while Cer(d18:1/24:0) is inversely associated? Multiple
explanations exist, including the tissue sources of particular ceramide species and unique
biological roles of specific ceramide species (113, 141). The CERS enzymes that add

the variable acyl chain to the sphingoid backbone have unique tissue distributions and
substrate specificities that cause particular tissues to be rich in specific acyl chains (Figure
2). For example, muscle has abundant CERS1 and therefore contains predominately
Cer(d18:1/18:0) ceramides. Likewise, circulating and intramuscular Cer(d18:1/18:0) is
tightly linked with insulin resistance and diabetes, which aligns with muscle ceramides
and their role in blunting insulin-stimulated glucose uptake in the muscle in the insulin
resistant state (54, 142, 152). The liver predominately expresses CERS2, with resulting
biosynthesis of very long chain ceramides, including Cer(d18:1/24:0), Cer(d18:1/24:1), and
Cer(d18:1/26:0). Likewise, Cer(d18:1/16:0) is enriched in adipose tissue, which primarily
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expresses CERS6. Cross-talk between organs is apparent in preclinical models, as genetic
lowering of ceramide in liver or adipose attenuates sphingolipid levels in the alternate organ
and improves glycemic control, liver steatosis, and adipose morphology (12, 154).

The majority of circulating sphingolipids are trafficked within lipoproteins and are present in
very-low-density lipoprotein, LDL, and high-density lipoprotein (HDL) (45, 119) (Figure 2).
Per particle, very-low-density lipoproteins have the highest concentration of SM, ceramide,
and S1P, emphasizing the major contribution of hepatic-derived ceramides in circulation
(45). Accordingly, apolipoprotein B- (ApoB)-containing lipoprotein deficiencies observed

in abetalipoproteinemia or microsomal transfer protein knockout mice confer an 80-90%
reduction in plasma ceramides, but not glycosphingolipids (64). Microsomal transfer protein
is also essential for packaging of lipids into intestinally derived chylomicrons. Early

rat feeding studies with radiolabeled SM or dihydrosphingosine indicate absorption of
sphingolipid-derived fatty acids into lymph triglycerides and lecithin (102), and human
trials have detected sphingolipids in intestinally derived chylomicrons (83). As such, a
portion of sphingolipids shuttled within ApoB-containing lipoproteins could be supplied by
enterocyrtes.

Due to the relative abundance of circulating lipoproteins, most SM is carried within

LDL and the larger HDL subfraction HDL2 (45). Ceramide, glycosphingolipids, and
dihydrosphingosine are predominantly carried within LDL, sphingosine and dihydroS1P
within the smaller HDL3 subfraction, and S1P within HDL3 and bound to albumin

(45, 119). While lipoprotein sphingolipid proportions may mirror their tissue of origin,
sphingolipids are likely modified within circulation, although these mechanisms are
incompletely characterized. SM within LDL can be metabolized to ceramide by secretory
SMase (23) (Figure 1). S1P is exported via the transporter Spinster2 (100), and its
delivery to and uptake from HDL may be facilitated by phospholipid transfer protein and
apolipoprotein M, respectively (15, 158). Yet, little else is known regarding the delivery
of sphingolipids to tissues via lipoprotein lipase, lipoprotein endocytosis, or alternative
mechanisms.

An emerging field of research regarding lipid transport via small extracellular vesicles
(SEVs) has provided an additional method of sphingolipid shuttling aside from lipoprotein
packaging and transport. Thus far, sphingolipids have been quantified in SEVs derived from
adipose tissue, skeletal muscle, heart, and the endothelium (7, 20, 143). Indeed, ceramides
may themselves play a role in SEV sphingolipid shuttling via stimulation of nSMase-
dependent formation and release of exosomes (126). The consequences of sphingolipid
delivery to distal tissue compartments via SEVs has not been determined but may play a role
in whole-body sphingolipid metabolism and cardiometabolic pathogenesis.

4. NUTRITION-RELATED INTERVENTIONS AND CIRCULATING
CERAMIDES

Though ceramide-based risk scores are utilized in the clinic, evidence-based
recommendations are nonexistent for patients deemed high risk to manage their
hyperceramidemia (132). Exploration of lifestyle interventions, including diet, weight loss,
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and metabolic surgery, and their effects on circulating ceramide profiles, will contribute to
the effective implementation of ceramide-based clinical algorithms and successful ceramide-
associated cardiometabolic disease risk mitigation.

Dietary Patterns and Ceramides

In the past decade, a series of human studies have been conducted to probe for impacts of
dietary intake on circulating sphingolipids. An emerging pattern suggests that the degree
of unsaturation of dietary lipids modulates the circulating sphingolipidome, although there
is little consensus regarding which specific sphingolipids are significantly altered and in
which direction (26, 73, 88, 90, 115, 120, 139, 147). Perhaps the most consistent pairing of
dietary intervention and lipid outcome in human studies is with palmitate supplementation,
which increases long-chain (139) or total circulating ceramides (73, 115). Additionally,
overfeeding studies in which fat consumption is raised to 40-60% of energy intake have
reported increases in total intramuscular (19) or circulating ceramides (52, 90). Conversely,
interventions that increase polyunsaturated fat intake decrease circulating ceramides (79,
115, 140) or shift the balance of accessory chains toward a higher proportion of very-long-
chain ceramides (92, 120, 147). These observations suggest that ceramide levels may

be induced by increasing the availability of de novo sphingolipid synthesis substrates

(e.g., palmitate) or increasing the overall lipid load. Moreover, sphingolipid metabolism
may be altered by the anti-inflammatory properties of certain dietary polyunsaturated fats
(e.g., docosahexaenoic acid) or their direct actions on expression of ceramide biosynthesis
machinery (25, 69).

Interestingly, preliminary studies have linked consumption of dairy, typically high in
saturated fat and sphingolipid content, to improvements in circulating sphingolipids

(14, 36, 83). Several metabolic improvements with milk SM or polar lipid mixture

feeding have been observed in rodent studies, including resolution of high-fat-diet-induced
dyslipidemia, gut dysbiosis, liver steatosis, and adipose inflammation (104). Le Barz et

al. (83) examined the effects of milk polar lipid feeding in postmenopausal women and
ileostomy patients. Despite the 4-week dietary supplementation with milk-derived SM

and ceramide, serum Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) paradoxically
decreased. Furthermore, ceramide and SM content of intestinally derived chylomicrons
decreased, whereas their concentrations in ileal efflux and fecal material increased.
Together, these data suggest that dietary composition may significantly impact sphingolipid
absorption and/or enterocyte and microbial sphingolipid metabolism to modulate circulating
ceramides. Furthermore, reports of neutral or inverse associations of dairy intake with
CVD and mortality risk may be partially explained by favorable alterations in sphingolipid
homeostasis (138).

At present, we lack experimental evidence and scientific consensus on dietary approaches
to modulate ceramide levels and associated disease risk. Future studies must address
important questions regarding the mechanisms by which diet affects ceramide synthesis
or gut metabolism, which nutrients most significantly impact sphingolipid metabolism,
and how these interactions perform within larger dietary patterns. Current studies are
limited by differences in lipid measurement and target resolution. Although the majority
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of human diet studies cited herein utilized targeted platforms for sphingolipidomics, many
quantified only a select few ceramide species to compare between diet groups (Table 2).
Future investigations may benefit from inclusion of a wider range of sphingolipid species.
Additionally, large studies have typically been observational, and most reports, including
interventional trials, rely heavily on self-reported intake data. Lastly, studies conducted thus
far primarily represent predominantly white populations from the US and northern Europe,
which limits translatability to the black and indigenous populations that experience the
highest rates of nutrition-linked chronic disease. Further research is required to distinguish
signatures of diverse cultural, racial, and socioeconomic dietary patterns in the context of
circulating ceramides and disease risk.

4.2. Ceramides with Weight Loss or Metabolic Surgery

Circulating ceramides are elevated in obese individuals with T2DM or NAFLD (50, 66,

89, 151), and moderate weight loss of 3-5% is a currently recommended therapy to

reduce cardiometabolic comorbidities of obesity (116). Yet, it remains unknown whether
metabolic improvements observed with clinically significant weight loss are associated with
reductions in ceramide levels. Several studies have investigated the impact of weight loss
on tissue and circulating ceramides. Kayser et al. (72) reported significant decreases in
serum dihydroceramides, d18:1 ceramides, d18:2 ceramides, and SM by 47%, 35%, 39%,
and 26%, respectively, in nondiabetic obese adults after 6 weeks of caloric restriction.
Promrat and colleagues (112) also reported significant decreases in serum ceramides of
obese patients with steatohepatitis after a 1-year diet, exercise, and behavioral weight loss
intervention. Alternatively, Dube et al. (27) reported that exercise more effectively decreased
intramuscular ceramides than diet-induced weight loss. Translation of these findings,
although promising, is limited by differences in methods for sphingolipid quantification,
weight loss intervention and duration, and patient population, as well as limited sample

size (combined 7= 96). Considerably more evidence is required to delineate the impacts

of diet and lifestyle-related weight loss interventions on levels of circulating ceramides and
attenuation of cardiometabolic disease risk.

Bariatric surgery is a durable, long-term weight loss intervention that elicits metabolic
improvements, including remission of diabetes, that exceed those achieved by nonsurgical
weight loss. Thus far, seven small studies have investigated the effects of bariatric surgery,
primarily Roux-en-Y gastric bypass, on circulating (40, 53, 62, 71, 95, 106) or intramuscular
(18) sphingolipids. In these reports, bariatric surgery consistently decreased circulating
sphingolipids, particularly total and very-long-chain ceramides, up to 6 months after surgery.
Decreases in very-long-chain ceramides correlated with improvements in measures of
glycemic control and insulin sensitivity (62, 71). Accordingly, very-long-chain ceramides
positively correlated with HOMA-IR (106) and glycated hemoglobin (40). Thus, lowering
circulating ceramides may contribute to the striking metabolic improvements observed with
bariatric surgery and extreme weight loss.
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5. MOLECULAR MECHANISMS OF CERAMIDE ACTION

Ceramide concentrations are tightly regulated, and disruptions in this organized system lead
to disease pathogenesis. We hypothesize that these outcomes stem from an evolutionarily
conserved, two-phase mechanism of ceramide action, with the molecule serving as a nutrient
sensor that protects cells from acute intracellular elevations in detergent-like free fatty acids.
The two mechanisms are delineated below as the (4) metabolic program and (6) apoptotic/
fibrotic program.

5.1. Metabolic Program

Once inside a cell, free fatty acids are rapidly neutralized via esterification to form acyl-
CoAs, which are metabolized according to the cellular energy status. Acyl-CoAs may be
joined with glycerol to produce triglycerides as an inert energy store and other glycerolipids
integral to lipid bilayer formation (134). Alternatively, acyl-CoAs can also be coupled to
carnitine and shuttled into mitochondria for beta oxidation (134). A less common fate for
acyl-CoAs is their entry into the sphingolipid synthesis pathway. We hypothesize that in
states of free fatty acid overload, acyl-CoA flux into the sphingolipid pathway is enriched,
increasing cellular sphingolipid concentrations and initiating the metabolic program. This
adaptive metabolic program mitigates fatty-acid driven damage by (&) altering fuel choice
(e.g., decreasing glucose and amino acid uptake), (4) promoting fatty acid esterification

and storage, and (¢) decreasing mitochondrial efficiency (Figure 3). When these adaptations
are insufficient and ceramides increase beyond a critical threshold, they elicit an apoptotic/
fibrotic program to minimize tissue and organismal damage resulting from cell lysis and the
release of harmful cellular debris (Figure 3). Ceramide-mediated cellular reprogramming is
protective in the short-term but maladaptive with chronic overnutrition. We hypothesize that
extended activation of ceramide signaling drives many features of the metabolic syndrome
and ultimately drives the pathogenesis of nutrition-related chronic disease.

5.1.1. Decreased uptake and utilization of glucose and amino acids.—Insulin
stimulates glucose uptake into muscle and adipose tissues by initiating the translocation

of glucose transporter 4 (GLUT4) from the cytoplasm to the plasma membrane (135).
Insulin initiates a cascade of signaling events that directly phosphorylates and activates

Akt (also known as protein kinase B), which stimulates GLUT4 translocation, allowing
glucose to enter the cell (133). Ceramides inhibit Akt phosphorylation downstream of
insulin signaling via protein phosphatase 2A (PP2A) and protein kinase C zeta (PKC()
(135, 161). PP2A dephosphorylates two activating residues, while PKCC phosphorylates
Akt at an inhibitory site (11, 111, 117, 163). Physiologically, this culminates in impaired
insulin-stimulated glucose uptake (135). In addition to decreasing uptake and utilization

of glucose, ceramides decrease the intracellular amino acid pool and diminish signaling
through the mTOR (mammalian target of rapamycin) pathway by sequestering the amino
acid transporter, SNAT2, away from the plasma membrane (30, 42, 63). The molecular
mechanisms by which ceramides inhibit amino acid uptake are not clearly understood but
are also potentially mediated by PP2A (30, 42). By downregulating amino acid transporters,
ceramides essentially starve the cell of nonfatty acid energy sources and induce homeostatic
autophagy to increase consumption of the overflowing fatty acids (42).
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In alignment, genetic and pharmacological inhibition of de novo ceramide synthesis
alleviates insulin resistance in multiple rodent models of diabetes (12, 107, 134).

Treatment with myriocin, an irreversible, high-affinity inhibitor of SPT, or fenretinide,

a synthetic retinoid inhibitor of DES1, prevents or reverses insulin resistance (11, 59,

134). Sptlc2 deletion in the liver, or whole-body haploinsufficiency, elicits similar glycemic
improvements (107, 134). Furthermore, excising the DegsI gene (encoding DES1) from
whole body, liver, or adipose tissue of adult mice improved glucose tolerance and insulin
sensitivity in animals with diet-induced obesity or leptin deficiency (12).

5.1.2. Increased fatty acid uptake, esterification, and storage.—In addition to
altering glucose metabolism, ceramides also modify lipid handling. Via PKCC( activation,
ceramides increase expression and promote translocation of fatty acid transporter cluster

of differentiation 36 (CD36) to the cell membrane, which facilitates passage of fatty acids
through lipid bilayers and promotes their esterification (11, 12, 60). Additionally, PKC(C
induces sterol regulatory element binding transcription factor 1 (SrebfI) and its downstream
transcriptional targets, thereby stimulating the transformation of deleterious free fatty acids
into inert triglycerides for storage (11, 12). Analogously, ceramides also inhibit lipolysis
through PP2A activation, which negatively regulates hormone-sensitive lipase (HSL) (12).
En masse, these mechanisms lower cellular free fatty acid levels by enhancing uptake and
storage while simultaneously blunting lipolysis, which ultimately protects the cell from free
fatty acid overload.

Again, genetic and pharmacological inhibition of de novo ceramide synthesis in mouse
models ameliorates symptoms of lipid accumulation. Inducible DegsZ ablation in mice
dramatically lowers hepatic expression of SrebfI and its transcriptional targets encoding
proteins facilitating triglyceride storage (12). Additionally, Degs ablation inhibits fatty acid
uptake into hepatocytes by decreasing activation of PKC( (12).

5.1.3. Decreased mitochondrial efficiency.—Cardiometabolic diseases are
frequently associated with impaired mitochondrial function and increased oxidative stress,
which may be partially explained by ceramide actions. Ceramides decrease electron-
transport chain activity, increase membrane permeability, and promote mitochondrial fission
(11). Elevated Cer(d18:1/16:0), in particular, is demonstrated to inhibit electron-transport
chain complex Il and 1V activity and increase reactive oxygen species production (162).
Specifically, Cer(d18:1/16:0) derived from CERS6 promotes mitochondrial fragmentation
by interacting with mitochondrial fission factor, leading to a change in mitochondrial
morphology and a decrease in respiratory capacity (46). Ultimately, these actions make
mitochondria less efficient, which we presume allows the cell to consume more fatty acid
substrate at the expense of increasing reactive oxygen species generation.

Several studies show that inhibiting ceramide synthesis leads to improved oxidative
phosphorylation. Firstly, Cers6 knockout mice were protected from high fat diet-induced
mitochondrial dysfunction and displayed significantly increased oxygen consumption rates
and extracellular acidification rates compared with controls (46). Additionally, Degs1
depleted mice showed enhanced mitochondrial complex activity in white adipose tissue
compared with controls (12).
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5.2. Apoptotic and Fibrotic Program

Ceramide induction of apoptosis allows for controlled cell death, preventing the release

of cytosolic content into the extracellular space, which would otherwise occur following
uncontrolled cell lysis. Similarly, the induction of fibrosis allows the organism to minimize
widespread damage related to tissue inflammation and necrosis. Thus, ceramide-mediated
apoptosis and fibrosis protect the organism from damage resulting from uncontrolled injury.

As ceramides accumulate, they increase mitochondrial outer membrane permeability,

which stimulates cytochrome c release and apoptosis initiation (125). Blocking ceramide
production reverses the proapoptotic cascade (110). In addition to apoptosis, ceramides are
suspected to activate TGF-p signaling, which is a key regulator of collagen expression (110).
More specifically, ceramides have a synergistic effect on the intensity of TGF-f signaling
cascade by inducing mothers against decapentaplegic homolog 3 (SMAD3) phosphorylation
and increasing collagen promoter activity (118). Correspondingly, myriocin treatment of rats
fed a high-fat diet attenuated hepatic ceramide accumulation, fibrosis, and cleaved caspase 3
levels (68).

Collectively, the aforementioned studies suggest that ceramides are influential regulators
of glucose homeostasis, lipid metabolism, and programmed cell death. Ceramides could
therefore be a therapeutic target to ameliorate the pathological mechanisms and clinical
endpoints of nutrition-linked chronic disease.

6. SUMMARY AND CONCLUSION

A rapidly growing and clinically translatable body of evidence implicates ceramides

as lipotoxic drivers and potent biomarkers of nutrition-linked chronic diseases. Further
technical refinement and study in globally representative populations are required to
facilitate widespread clinical application. Harmonization of sphingolipid measurement
methods and development of reference populations is a critical technical bottleneck

that demands attention. Furthermore, effective ceramide-lowering recommendations merit
development in order for patients to reduce their hyperceramidemia-related cardiometabolic
disease risk. A detailed understanding of dietary ingestion of sphingolipids, gut microbiota
sphingolipid synthesis, and metabolic disease state influence on ceramides—as well as

a map of the downstream mechanisms of action—is necessary to effectively reap the
therapeutic and prognostic potential of ceramides in nutrition-linked chronic disease.
Understanding the genetic basis of hyperceramidemia, as well as the response to lifestyle
changes including exercise, metabolic surgery, and dietary interventions on ceramide
concentrations, will all contribute to the effective implementation of ceramide-based clinical
algorithms and successful ceramide-associated cardiometabolic disease risk mitigation.
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' Small intestine

Microbial SL 3

Intracellular and intestinal ceramide metabolism. (&) Sphingolipids are metabolized in
various subcellular compartments. Ceramides are produced via a de novo biosynthetic
pathway in the endoplasmic reticulum (ER) and are transported to the Golgi apparatus for
synthesis of complex sphingolipids. Ceramide can be regenerated from SM hydrolysis in
the mitochondria, lysosome, plasma membrane, and circulating lipoproteins. Deacylation of
ceramides generates sphingosine, which can be phosphorylated to form S1P. (4) Dietary SM
and ceramide are digested in the small intestine by alk-SMase and nCDase, respectively,

to form sphingosine, which is absorbed by enterocytes. In the large intestine, dietary

and de novo sphingolipids are metabolized by gut microbiota to generate unique odd-

chain and deoxysphingolipid species. Abbreviations: 3-KDS, 3-ketosphinganine; aCDase,
acid ceramidase; ADIPOR, adiponectin receptors; alkCDase, alkaline ceramidase; alk-
SMase, alkaline sphingomyelinase; C1P, ceramide-1-phosphate; cer, ceramide; CERK,
ceramide kinase; CERS, (dihydro)ceramide synthase; CERT, ceramide transport protein;
dCer, dihydroceramide; DES, dihydroceramide desaturase; dSph, dihydrosphingosine; FA,
fatty acid; hCer, hexosylceramide; KDSR, 3-ketodihydrosphingosine reductase; ISMase,
lysosomal ceramidase; MA-SMase, mitochondria-associated sphingomyelinase; nCDase,
neutral ceramidase; nSMase, neutral sphingomyelinase; S1P, sphingosine-1-phosphate;

SL, sphingolipid; SM, sphingomyelin; SMS, sphingomyelin synthase; sph, sphingosine;
SPHK1, sphingosine kinase 1; SPHK2, sphingosine kinase 2; SPP, sphingosine-1-phosphate
phosphatase; SPT, serine palmitoyltransferase; sSMase, secretory sphingomyelinase;

UGCG, glucosylceramide synthase.
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Figure 2.
Species-level ceramide sources based on CERS enzyme expression profile and substrate

specificity. Ceramide synthases, the step in the de novo synthesis pathway that adds

a variable acyl chain to the sphingoid backbone, result in much of the diversity of

the sphingolipid pool. Varied tissue expression and substrate selectivity result in unique
tissue distributions of ceramide species. The circulating ceramide pool reflects the

tissue distribution of the CERS enzymes and their substrate preferences. Abbreviations:
CERS1-6, ceramide synthases 1-6; VLDL, very-low-density lipoprotein; LDL, low-density
lipoprotein; HDL, high-density lipoprotein; sV, small extracellular vesicle).
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Figure 3.
Ceramide-mediated alterations of cellular metabolism in states of fatty acid overload. In

the protective metabolic program, ceramides activate PP2A, which enacts downstream
mechanisms promoting fatty acid esterification and storage, inhibiting lipolysis via
inhibitory phosphorylation of HSL and reducing glucose and amino acid metabolism.
Ceramides also activate PKCC, which inhibits glucose uptake by preventing phosphorylation
of Akt. Additionally, CERS6 derived Cer(d18:1/16:0) species interact directly with mff,
promoting mitochondrial fragmentation and reduced efficiency. If this metabolic program
is unable to quench incoming fatty acids, ceramides trigger an apoptotic/fibrotic program
to minimize lipid-mediated cellular damage. This program includes programmed cell
death and collagen deposition. While mechanisms of ceramide are protective in the acute
setting, chronic overnutrition leads to maladaptive ceramide signaling driving disease
pathogenesis. Abbreviations: Akt, protein kinase B; BAK, BCL2-antagnist/killer 1; BAX,
BCL2 associated X protein; CERSS6, (dihydro) ceramide synthase 6; CD36, cluster of
differentiation 36; cytochrome ¢, cytochrome complex; GLUT4, glucose transporter 4;
HSL, hormone sensitive lipase; mff, mitochondrial fission factor; mTOR, mechanistic
target of rapamycin; NAFLD, nonalcoholic fatty liver disease; P, phosphorylation; PKc,
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protein kinase C; PP2A, protein phosphatase 2A; SMAD3, mothers against decapentaplegic
homolog 3; SNAT2, sodium-coupled neutral amino acid transporter 2; Srebf1, sterol
regulatory element binding transcription factor 1; TG storage, triglyceride storage; TGF-B,
transforming growth factor beta.
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