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Abstract

Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by
germline mutations in genes regulating telomere maintenance, resulting in very short telomeres.
Possible TBD manifestations range from complex multisystem disorders with onset in childhood
such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and
Coats plus to adults presenting with one or two DC-related features.

Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to

the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with
DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary
disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and
gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics
include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic
cell transplantation and lung transplantation are the only current therapeutic modalities but are
complicated by numerous comorbidities. This review summarizes the pathophysiology underlying
TBDs, associated clinical features, management recommendations and therapeutic options.

Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous
genetic background and diverse phenotypes, highlights the importance of clinical surveillance and
the urgent need to develop new therapeutic strategies to improve health outcomes.
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1. INTRODUCTION

Dyskeratosis congenita (DC) was first described by Zinsser in 1906 in a case report of
two brothers presenting with leukoplakia, abnormal skin pigmentation, nail dystrophy [1].
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Subsequent detailed case reports by Engman in 1926 [2] and Cole in 1930 [3] led to its
designation Zinsser-Engman-Cole syndrome. The X-linked gene, dyskerin (DKCI), was
discovered in affected males in 1998 [4] and mutations were shown to result in decreased
telomerase activity and short telomeres, establishing the connection between telomere
biology and human disease [5].

Over the last two decades, advances in genomics and an increased understanding of
telomeres in disease have led to the discovery of pathogenic germline genetic variants in

at least fourteen different telomere biology genes [6-9] associated with DC and related
disorders. This has led to a growing appreciation of variable genetic penetrance and
expressivity as well as recognition of a broad DC-related phenotypic spectrum (Table

1). The classical phenotype consists of the mucocutaneous triad of dysplastic finger and
toenails, oral leukoplakia, and lacy, reticular skin pigmentation (Figure 1). Some patients
present in early childhood with complex multisystem illnesses (¢é.g., Hoyeraal-Hreidarsson
syndrome, Revesz syndrome, or Coats plus) whereas others present later in life with fewer
medical problems. This variability occurs even within the same family. Patients with DC are
at very high risk of bone marrow failure, cancer, pulmonary fibrosis, liver disease, and other
medical problems. The exact prevalence of DC in the general population is unknown but

it is generally estimated at about one in a million[10] with approximately 900-1000 cases
published, to date [11-19].

This group of DC-related illnesses has been termed in the literature as telomeropathies,
short telomere syndromes, impaired telomere maintenance spectrum disorders, and telomere
biology disorders (TBDs). We favor the TBD designation because it reflects the underlying
biology that unites these disorders [6,20-22].

2. TELOMERES AND TELOMERE BIOLOGY DISORDERS
2.1. TELOMERE BIOLOGY

Telomeres are specialized nucleoprotein structures at the ends of eukaryotic chromosomes
that protect chromosome ends and are essential for maintaining genome stability. They
consist of double-stranded TTAGGG nucleotide repeats and a six-protein complex called
shelterin [23]. Human telomere lengths range from two to 14 kilobases [24] and vary
depending on cell type, age, inheritance, ancestry, and measurement method [24-27].

The addition of nucleotide repeats to telomeric ends is accomplished by the telomerase
holoenzyme complex consisting of telomerase reverse transcriptase (encoded by TERT), its
RNA component TERC (also known as hTR, encoded by 7ERC), dyskerin (encoded by
DKCI), NOP10, NHP2, NAF1 and GAR1[28].

Telomere structure poses two main challenges related to DNA repair and replication: 1) they
may be recognized by DNA damage repair machinery as double-stranded DNA breaks, and
2) the “end replication problem” that results in ongoing telomere nucleotide repeat loss due
to semiconservative replication of DNA ends during DNA replication.

The DNA damage response (DDR) could lead to recognition of telomere ends as double-
strand DNA breaks, resulting in checkpoint activation, degradation and initiation of
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inadequate repair. Telomeres are protected from DDR, in part, by their T-loop structure.
Telomeres contain both a C-rich lagging strand and a G-rich leading strand, which contains
a 3’overhang consisting of single-stranded nucleotide repeats. The G-strand overhang forms
a lariat-like structure through invasion of the terminal single stranded 3’ overhang into the
proximal double stranded telomeric region, forming the so-called T-loop and displacing

the G-rich strand, generating a displacement loop (D-loop)[29]. Additionally, telomeres are
shielded by a specialized group of six proteins called the shelterin complex (Figure 2) [23].
Shelterin consists of homodimers telomeric repeat binding factor 1 (TRF1, encoded by
TERFI) and TRF2 (encoded by TERF2) that bind to duplex telomeric sequences, protection
of telomeres 1 (POT1, encoded by POTI) localizing to the single 3’ telomeric overhang,
and linked by three additional proteins, TRF1-interacting nuclear factor 2 (TIN2, encoded
by TINF2), telomere protection protein 1 (TPP1, encoded by ACD) and RAP1 (encoded by
TERFZ2IP), all of which are recruited to the telomere through their interaction with TRF1
and TRF2. Shelterin subunits and the complex as a whole are involved in generating and
stabilizing the T-loop structure (TRF2), preventing DDR (TRF2, POT1, TIN2), recruiting
telomerase (TPP1, POT1, TIN2) and regulating telomere elongation (TRF1, POT1) [8,30—
35]. Shelterin components also interact with the telomerase complex. For example, TPP1
interacts directly with TERT, is essential for its recruitment to telomeres and also binds
POT1 [35,36].

The end replication problem occurs due to the inability of DNA polymerases to completely
replicate the telomeric C-rich lagging strand [37,38]. When the last RNA primer at the 3’
end of DNA is removed, the newly synthesized strand is a few nucleotides shorter and
causes gradual telomere shortening. Hayflick and Moorhead were the first to report the
replication limit of cells in culture, which is now known to occur due to progressive telomere
shortening with each cell division [39]. When telomeres reach a critically short length, a
non-replicative state known as cellular senescence is triggered and some cells may then
undergo apoptosis [40]. Notably the shortest telomere on a single chromosome, not average
telomere length, triggers the onset of cell senescence [41]. TERT expression is silenced

in most human cells after the first few weeks of embryogenesis [42,43] and therefore,
telomeres shorten during life and are a cellular marker of aging. Some stem cells such as
germ cells, hematopoietic stem cells, expanding lymphocytes, skin cells and the intestinal
lining continue to express telomerase and maintain telomeres at a constant length, evading
cellular senescence [44-47].

In addition to shelterin and the telomerase complex, the CST complex (CTC1, STN1, and
TENZ1) and other proteins (RTEL1, TCAB1, PARN), which directly or indirectly interact
with any of the before mentioned proteins, play essential roles in telomere maintenance (see
Figure 2 and Table 1). The CST complex is involved in telomere capping, interacts with
shelterin proteins, and can also modulate telomerase access to the telomere [48]. RTEL1 is
a DNA helicase with various functions in the telomeric context such as t-loop unwinding,
duplex telomeric DNA replication and prevention of catastrophic telomere loss during cell
division [49]. In interaction with TPP1 and TERT, TCAB1 functions in the recruitment of
the assembled telomerase at the Cajal bodies and its trafficking to the telomere [50]. PARN
is a deadenylase that processes mMRNAs and non-coding RNA, including TERC [51-53].
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2.2. MOLECULAR MECHANISMS OF TELOMERE BIOLOGY DISORDERS

The central component in the etiology of DC is defective telomere biology, resulting in
critically short telomeres limiting cellular replicative capacity. To date, pathogenic germline
variants (7.e., mutations) in 14 genes encoding for telomere biology proteins have been
described to cause TBDs. These mutations are can be inherited in X-linked recessive

(XLR), autosomal dominant (AD), or autosomal recessive (AR) patterns or de novo.

Genetic anticipation in which disease severity increases with successive generations has
been reported seen in AD DC in association with TERC, TERT, and T/NF2mutations
[54-57]. Given the complexity of telomere maintenance and the multiple genes known to be
associated with telomere biology, it has been proposed to divide the mutations in these genes
into five categories based on the biological effects [6]. The details are shown in Table 1.

Due to the direct association of dyskerin with active telomerase, pathogenic XLR DKCI
variants lead to destabilized TERC levels and reduced telomerase activity, resulting

in extremely short telomeres. Most males with DC due to DKCI manifest with the
mucocutaneous triad and early onset bone marrow failure [58]. However, some patients may
not be diagnosed until later in life and males in their fifth decade with apparently isolated
idiopathic pulmonary fibrosis and liver cirrhosis have been reported [59]. Female carriers of
DKC1 pathogenic variants occasionally present with subtle DC-associated features, such as
isolated mucocutaneous symptoms, due to skewed X chromosome inactivation and possibly
additional mechanisms, such as germline mosaicism or epigenetics [59-61].

The first pathogenic variants implicated in autosomal inheritance were detected in TERC
[62] followed by the discovery of TERT mutations [63], which both impair telomerase
catalytic activity. 7ERT mutations are predominantly heterozygous missense variants
leading to haploinsufficiency. Rarely bi-allelic variants are found, leading to dramatically
shortened telomeres and the HH phenotype [64]. TERC mutations may include deletion of
RNA segments or affect central components, such as its template region [6]. AD pathogenic
variants in 7TERC frequently associate with adult-onset of DC-associated manifestations,
but early onset, severe disease has also been reported [65]. AR recessive DC can also

be the result of bi-allelic mutations in the telomerase protein complex cofactors NOP10
and NHP2[66,67], both affecting telomerase assembly and stability. Recently, AD NAF1
frameshift mutations, causing low telomerase RNA levels, were reported in pulmonary
fibrosis-emphysema patients [9]. Heterozygous PARN mutations were first reported in
familial pulmonary fibrosis probands, but later bilallelic pathogenic variants in PARN have
been also been found in patients with HH [52,68,69]. Fitting its role in TERC maturation,
PARN mutations are assumed to destabilize TERC levels, resulting in reduced telomerase
activity [51,70]. However further investigations are warranted to elucidate whether this is the
only effect of PARN alterations in defective telomere biology.

Compound heterozygote missense mutations in WRAP53, encoding for the telomerase
trafficking protein TCAB1, have been shown to result in AR DC [71]. TCABL depletion
prevents TERC from associating with Cajal bodies and therefore disrupts telomerase-
telomere association [50], resulting in impaired telomere elongation [71]. Another process
required for telomerase recruitment is the interaction of TERT with a specific set of amino
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acids (TEL patch) on the surface of TPP1. Mutations in the TPP1 encoded by ACD,
affecting the TPP1 TEL patch, have been found to cause AD DC and AR HH [72,73].

Pathogenic changes in genes encoding for the components of the telomere capping CST
complex, CTCIand STN, lead to impairment in duplex telomere replication and C-strand
fill in[6]. CTCZand STNI alterations primarily cause Coats plus disease, which was added
to the TBD spectrum after the discovery that C7CZ mutations in AR Coats plus resulted

in short telomeres and also in DC phenotypes[74—79]. Biallelic mutations in STNI were
recently identified as cause of Coats plus disease in two patients [7].

Due to its role in telomere replication and the prevention of telomere loss during

cell division, changes in RTELL1 significantly disrupt telomere stability. Homozygous or
compound heterozygous R7EL 1 mutations are associated with very short telomeres and
result in HH [80-83] while heterozygous RTEL1 mutations were identified in pulmonary
fibrosis patients [68].

TINF2 was the first subunit of the shelterin complex found to cause AD DC [84]. TINF2
mutations are heterozygous and often de novo, causing severe telomere shortening and

are associated with HH and RS [85-87]. Rarely, 7/NF2variants may also cause adult
onset pulmonary fibrosis [88-90], implicating that some mutations might have a less severe
impact on TIN2 function or that somatic mosaicism might play a role [91]. Biallelic POT1
mutations have been recently described in siblings with Coats plus and were proposed to
lead to defective C-strand maintenance, and possibly to impaired interaction with the CST
complex [8].

3. CLINICAL MANIFESTATIONS OF TELOMERE BIOLOGY DISORDERS

The discovery of germline mutations in telomere biology genes resulting in very short
telomeres has unified a set of complicated disorders. Tables 1 and 2 summarize the

key features of each of these disorders and their genetic etiologies. The underlying
pathophysiology described above leads to disease manifestations across all organ systems.
Many patients lack all mucocutaneous triad features whereas others develop it over time
[92]. The spectrum of clinical complications includes neurological, ophthalmic, dental,
skeletal, pulmonary, gastrointestinal, liver, hematological and immunologic abnormalities
(Table 2). BMF, pulmonary disease, and malignancy represent the main causes of mortality
in DC/TBD affected individuals [12]. Due to improved medical care, better diagnostics, and
identifying affected individuals of older age, the overall survival in a recent analysis has
improved compared to previous analyses, however the median lies still at only 51 years of
age [12]. The following section details the spectrum of medical problems by TBD subtype
and also by organ system (Table 2).

3.1. Hoyeraal-Hreidarsson Syndrome

The original description of two brothers with cerebellar hypoplasia and pancytopenia was
published by Hoyeraal in 1970, followed by a case description of a boy with progressive
pancytopenia, microcephaly, cerebellar hypoplasia, and growth retardation by Hreidarsson in
1988 [93] [94]. The name Hoyeraal-Hreidarsson syndrome (HH) was subsequently proposed
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by the following fourth case report in 1995 [95] and the identification of DKCI mutations
[96] as well as short telomeres in HH patients connected it to the TBD spectrum. To date
germline pathogenic variants causing HH have been identified in DKC1[97], TERT [64],
TERC[65], TINF2[85,98], WRAP53[71], RTEL1[83], PARN[99], and ACD [73]. Most
HH is due to XLR or AR inheritance, except for all patients with heterozygous 7/NF2

and one reported patient with heterozygous 7ERC [65]. HH typically presents in infancy
with numerous complications including cerebellar hypoplasia, microcephaly, developmental
delay, immunodeficiency, intrauterine growth retardation (IUGR), as well as progressive
bone marrow failure. HH-related immunodeficiency may be non-specific and challenging to
diagnose [80,97,100]. Due to the young age at onset, the DC-associated mucocutaneous
triad might not be present at diagnosis of HH but often develops over time[69,101].

Other HH-associated clinical features may include nonspecific enteropathy and intracranial
calcifications [102]. Cerebellar hypoplasia is considered a requirement to establish the
diagnosis of HH in the setting of DC-related features.

3.2. Revesz Syndrome

The defining of Revesz syndrome is bilateral exudative retinopathy, which was initially
described in 1992 by Revesz et al in a 6 month old patient who subsequently developed
severe BMF [103]. Notably, it should be distinguished from proliferative retinopathy,

which can also occur in TBDs [104]. Additional clinical features of Revesz syndrome
include IUGR, fine and sparse hair, intracerebral calcifications, cerebellar hypoplasia and
psychomotor retardation, as well as other DC overlapping features. The discovery of very
short telomeres and germline mutations in 7/AF2 have verified Revesz syndrome as a severe
form of a TBD [84,87].

3.3. Coats Plus

Coats plus is characterized by bilateral exudative retinopathy, retinal telangiectasias, IUGR,
intracranial calcifications, osteopenia with tendency to fracture with poor bone healing, and
gastrointestinal vascular ectasias [74,105-107]. Due to the vascular ectasias, Coats plus
affected individuals are at a high risk of life-threatening gastrointestinal bleeding [107,108].
Other clinical findings may include DC-related mucocutaneous changes, such as dystrophic
nails and sparse or graying hair [105,107]. The clinical manifestations overlap with Revesz
syndrome [103], though in Coats plus intracranial calcification may be associated with
leukencephalopathy and intracranial cysts [74,106,107]. The majority of Coats plus is
caused by AR pathogenic variants in components of the CST telomere capping complex
including C7C1[74,106] and rarely in STNI [7]. The connection to TBDs was further
established with the discovery of pathogenic C7CI variants in patients with DC [75,76].
Pathogenic variants in POT1 have also been identified in patients with Coats plus [8].

In addition, many Coats plus syndrome patients feature telomeres at or below the first
percentile for age, while heterozygous C7CI carriers have telomere lengths below average
but still within normal limits [74].

3.4. Bone Marrow Failure

It is important to distinguish immune-mediated acquired aplastic anemia from an inherited
bone marrow failure syndrome (IBMFS), such as a TBD, because patients with IBMFS do
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not respond to immunosuppressive therapy [109]. BMF is a common manifestation of a
TBD with a probability of about 80% for patients with classic DC to develop at least a single
lineage cytopenia by the age of 30 years [110,111]. Initially, only one cell lineage may be
involved which then progresses into severe pancytopenia and may later evolve into MDS. In
a prospective study, clinically significant BMF was seen in 50% and manifest MDS in 20%
of patients by the age of 50 years [12]. Some patients may present with aplastic anemia in
the absence of DC-associated features.

3.5. Pulmonary Manifestations

Pulmonary complications have been reported in up to 20% of patients with DC and

related TBDs, but may be more frequent than appreciated [12,110,112], [Giri et al, under
review]. A connection between telomere biology and PF was established in 2007 with the
discovery of germline mutations in telomere biology genes as the cause of familial PF
[113,114]. Heterozygous pathogenic variants in 7TERT and TERC were the first reported
[113,115]. Additionally, mutations in DKC1, PARN, RTEL1, NAF1and rarely in TINF2
have been found in patients with familial PF [9,57,59,68,89,116-118]. Taken together, these
mutations account for approximately 20-25% of familial cases, but also up to 10% sporadic
PF cases are associated with pathogenic variants in telomerase biology genes (TERT,
TERC, RTEL1, PARN)[113,119]. Sporadic and familial PF with underlying heterozygous
pathogenic variants in TERT, TERC, RTEL1, PARN, or NAFI predominantly manifest in
late adulthood, with a median age of onset between 50 and 60 years of age [13,117]. The
interstitial lung changes in PF seen on computerized tomography (CT) scans often show a
pattern consistent with usual interstitial pneumonia, but atypical patterns have been found as
well [120].

The most common pulmonary manifestation in TBDs is PF, a multifactorial disease leading
to progressive lung scarring and fibrotic changes (Figure 1). Importantly, PF can present

as isolated disease without BMF or other overt TBD-related symptoms. Children with
complex phenotypes including classic DC and HH, have been reported to develop PF as
teenagers [121]. PF is also a frequent complication in patients with DC after bone marrow
transplantation [56,121,122] [Giri et al., under review]. It is a rapidly progressive disease
with a mean survival of 2 to 5 years in clinically symptomatic patients [117,123], with a
possibly more aggressive course in the TBD context [115] and the only curative therapy to
date is lung transplantation.

Pulmonary function in TBDs can also be affected as part of a hepatopulmonary syndrome
and might be the first presentation of portal hypertension [15]. Pulmonary arteriovenous
malformation (PAVM) is increasingly recognized as being part of the TBD-related
phenotypic spectrum. PAVMSs have been reported in patients with and without prior
hematopoietic cell transplantation (HCT) and may occur alone or in the setting of
hepatopulmonary syndrome [15,124].

We recently investigated baseline pulmonary function test and outcomes in 43 patients with
TBDs [Giri et al., under review]. Nearly half of the patients had asymptomatic pulmonary
function abnormalities at baseline testing (42% of 43 tested subjects). These findings were
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associated with progression to PF at a young age in patients with XLR, AR and 7/NF2DC
as well as after HCT (Giri et al, under review).

3.6. Liver Disease

There is a growing body of literature of complex liver disease in TBDs, which includes
non-alcoholic, non-infectious liver cirrhosis, nodular regenerative hyperplasia, non-cirrhotic
portal hypertension, and hepatopulmonary syndrome (Table 2). The reported prevalence

of liver disease in DC/TBD appears to range between 5-10%, but this number is

highly dependent on co-morbid conditions, follow-up time, and ascertainment [15,110].
DC/TBD patients may present with lung disease caused by hepatopulmonary syndrome,

due to an underlying liver disease as noted above [15]. Notably, patients presenting with
hepatopulmonary syndrome have shown a progressive course of disease with median time of
dyspnea symptom onset to death or liver transplantation of 6 years [15], and life-threatening
gastrointestinal bleeding in the context of liver dysfunction has been reported [125].

Liver fibrosis has been reported as the initial or sole manifestation of an underlying TBD
and may also be present in patients with apparently isolated PF [126]. However, most studies
of liver disease in TBDs, to date, have consisted of small case series reported in the context
of other manifestations. Patients with isolated liver fibrosis with or without PF typically have
heterozygous germline mutations in TERT or, less often, in TERC [126-128]. A 2019 study
of liver disease in 40 patients with TBDs reported the frequent occurrence of liver enzyme
elevations and ultrasound abnormalities[128]. Heterozygous pathogenic variants in RTEL1,
TERT, TINFZ, or NHP2were recently reported in 18 of 86 (20%) patients with end stage
liver disease due to heterogenous causes [129].

3.7 Malignancies in Telomere Biology Disorders

Telomeres play a significant role in chromosomal stability and telomere dysfunction is
implicated in cancer biology[130]. Patients with DC have a significantly increased lifetime
risk in developing cancer [12,110]. The 2017 update on cancer incidence in 197 patients
with DC registered in the NCI IMBFS longitudinal cohort study reported an approximately
four-fold higher incidence of cancer in DC when compared with the general population.
Patients who had undergone HCT had an approximately 30-times higher risk of cancer
than healthy individuals [12]. The major cancer types in this analysis included head and
neck squamous cell carcinoma (HNSCC), MDS, acute myeloid leukemia (AML) and
non-Hodgkin lymphoma (NHL): MDS and AML appeared at a 578- and 24-fold greater
incidence, respectively, than in the general population. The observed/expected (O/E) ratio
for any HNSCC was 74, the predominant subtype being tongue HNSCC with an O/E ratio
of 216, and for NHL 11-fold. The median age for developing any solid tumor was 38

years (range 18-61). The excess in tongue HNSCC highlights leukoplakia as precancerous
lesion and the importance of regular surveillance as well as early diagnostic. Additional
malignancies reported in DC/TBD patients are listed in Table 2. Nonmelanoma skin cancer
has also been observed [12,112].
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3.8 Vascular Diseases

Life-threatening gastrointestinal (GI) bleeding, similar to that seen in Coats plus, has
recently been reported as a significant cause of morbidity in DC-associated TBDs [125]. At
a 2017 workshop on vascular abnormalities in TBDs, significant GI bleeding, mostly due to
teleangiectatic lesions (Figure 1), but in some cases without identified origin, was reported
in 16 patients [125]. Additional vascular abnormalities reported include retinal vascular
disease and PAVMs [124,131]. PAVMs were reported to have occurred with and without
underlying hepatopulmonary syndrome [15,132-135]. In a recent retrospective case study,
the presence of PAVMs independent of liver disease, including hepatopulmonary syndrome,
was established [124], leading to the conclusion that PAVM can be an independent
pulmonary phenotype of TBDs. Several pathogenic mechanisms are currently being
discussed, such as a possible connection between short telomeres, vascular dysfunction,
and impaired wound healing [125,136,137], or a link between abnormal Wnt/beta-catenin
signaling, vasculopathy and telomere dysfunction [138,139].

3.9. Central Nervous System

Central nervous system involvement (CNS) has been reported in 10-25% of patients with
DC/TBDs [110,112]. Structural brain abnormalities, microcephaly and developmental delay
have been described in HH, RS, and Coats plus. In 2012, a report on 14 patients with

DC or DC-like found primary psychiatric disorders in 64% and neurocognitive disorders

in 36% [140]. More recently, we systematically evaluated 44 TBD patients with brain

MRI, neurology and psychiatry evaluations and found that about half of the patients had

at least one structural brain abnormality or variant, most commonly cerebellar hypoplasia
(39%). Twenty-one patients (48%) had a neurologic deficit such as developmental delay

or psychomotor abnormality. Twelve had psychiatric illnesses, including depression and/or
anxiety (Bhala et al, under review).

3.10. Genotype-Phenotype Correlations

Evaluating the correlation between genotype and phenotype in TBDs is difficult due to small
patient numbers, variable penetrance and expressivity of telomere biology defects, numerous
genetic causes, and the occurrence of genetic anticipation in some families. Nevertheless,
there is some evidence for the associations of certain genes and the complexities of their
clinical manifestations. Heterozygous mutations in 7ER7, TERC, RTEL1, and PARN appear
to be more likely to occur in adults with isolated disease (e.g., PF or BMF alone). More
complications, including HH and RS phenotypes are more likely in XLR disease (DKC1),
AR, and heterozygous TINF2 disease (Table 1). Coats plus has been primarily associated
with aberrations in C7CI1, STNI, or POT1. Individuals with sporadic or familial IPF with

a known TERT, TERC, RTEL 1, or PARN mutation, may not have telomeres as short as
patients experiencing an early onset of DC/TBD symptoms [68,114,141,142]

A 2012 genotype—phenotype study found that patients with the shortest lymphocyte
telomeres, measured by flow FISH, had the most severe disease, youngest age of onset,
earliest disease-related mortality [58]. In this study, the shortest telomeres were associated
with DKCI1, AD TINFZ, or no known causative mutation. In contrast, the UK DC Registry
did not find a relationship between telomere length, measured by quantitative PCR, and
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clinical severity in their DC-cohort [65]. Notably, relatives with very short telomeres but
only mild clinical symptoms have been identified in an HH family [73].

A recent study on the association of genotype and severity of mucocutaneous manifestation,
found that patients with higher numbers of triad and total mucocutaneous features were
more likely to present with a severe phenotype and to have AR DC or AD TINF2
mutations, while all patients lacking triad features had AD DC[92]. Additionally, a report on
neurological findings in DC patients found that shorter telomeres were associated with an
increased number of cerebral MRI findings and neurodevelopmental abnormalities [Bhala et
al under review].

4. DIAGNOSING TELOMERE BIOLOGY DISORDERS

The diagnosis of DC and related TBDs can be complicated due to the variable, complex,
and time-dependent nature of medical problems in this spectrum of illnesses (Tables 1 and
2, Figure 1). The mucocutaneous triad is often subtle, but also progressive with age [92].
Apparently isolated bone marrow failure (BMF), liver disease or pulmonary fibrosis may be
the initial symptom and may first manifest in adulthood. [89] [68,143].

Classic DC should be considered in individuals with 1) all three mucocutaneous triad
features (nail dysplasia, lacy skin pigmentation and oral leukoplakia); 2) any one feature
of the triad in combination with BMF and two other physical findings consistent with DC;
3) BMF, myelodysplastic syndrome (MDS), or pulmonary fibrosis (PF) associated with a
previously described pathogenic germline variant in a TBD-associated gene; or 4) two or
more features seen in DC associated with telomere length below the first percentile for age
[10].

All patients with new-onset BMF should be assessed for Fanconi anemia by chromosome
breakage analysis and if that test is normal, clinical telomere length testing is recommended.

Adult-onset TBDs may not be readily diagnosed due to the heterogenous germline genetics,
variable penetrance and expressivity of the phenotype, including lack of or minimally
affected mucocutaneous features. Early recognition of adults with TBDs is important
because the diagnosis has direct implications for surveillance and treatment decisions [144].
For example, IST is not an effective treatment for BMF due to a TBD [109]. Evaluation for
a TBD is recommended for adult patients presenting with a family history of PF, aplastic
anemia, early-onset HNSCC, and/or unexplained liver disease (or combinations thereof), as
well as those with early-onset sporadic PF.

Flow cytometry with fluorescent /n situ hybridization (flow FISH) in leukocyte subsets is the
only clinically validated test, to date, proven to be reliable in DC/TBD diagnostics (Figure
3) [26,58,145-147]. Lymphocyte telomeres measured by flow FISH less than the first
percentile for age are more than 95% sensitive and highly specific for differentiating patients
with DC from their unaffected relatives or patients with other inherited bone marrow

failure syndromes [58]. Terminal restriction fragment (TRF) measurement by Southern

blot, quantitative PCR (qPCR), and single telomere length assays are useful in the research
setting, but not yet validated for clinical diagnostics [26,145,148].

Expert Rev Hematol. Author manuscript; available in PMC 2022 August 24.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Niewisch and Savage

Page 11

Genetic testing is an important complement to clinical evaluations and telomere length
measurement. Genetic education and counseling are essential for all individuals undergoing
a DC/TBD evaluation because the results may have far reaching implications related to
clinical prognostication and family planning. Prior to testing, individuals being tested should
be given information on the clinical spectrum of the TBDs, on the modes of inheritance, and
the implications of genetic testing for the entire family. Unpredicted results may occur due
to variable modes of inheritance, incomplete penetrance, variable expressivity, and genetic
anticipation in successive generations. Individuals undergoing testing need to understand
that future medical complications cannot be predicted, but through monitoring and early
detection, outcomes can be improved. Currently, genetic testing for IBMFS or other cancer
predisposition syndromes contain most, but not consistently all, of the known DC/TBD-
associated genes (DKC1, TERC, TERT, NOP10, NHP2, ACD, TINF2, POT1, CTCI1, STNI,
WRAPS3, RTEL1, PARN, NAF1). Genetic testing may be inconclusive because about 20%
to 30% of patients with classic DC do not have an identifiable genetic cause of their disease
[10,12].

5. CLINICAL MANAGEMENT

As described above, individuals with TBDs are at high risk of suffering from severe,
life-threatening complications. In 2015, the first diagnosis and management guidelines

for DC and related TBDs was published and is available online (https://teamtelomere.org/
resources/#research). In 2016, the American Association for Cancer Research’s Childhood
Cancer Predisposition Workshop published further recommendations for cancer surveillance
[149]. Based on these resources, an overview of the current surveillance and management
recommendations for DC/TBD affected patients is given in Table 3. Resources for patients
and families are available at Team Telomere, Inc (www.teamtelomere.org) and/or DC Action
(United Kingdom, http://dcaction.org/).

5.1. Bone Marrow Failure

BMF is a major clinical complication in DC and related TBDs, may be the first

clinical manifestation, and remains the most common cause of mortality [12,110]. Regular
monitoring of asymptomatic individuals with mild or moderate cytopenias is recommended
while those with persistent severe BMF should receive therapy (Table 3). Unlike in acquired
aplastic anemia, BMF in the TBDs does not respond to immunosuppressive therapy (IST)
[109].

Oral androgens, such as oxymethalone or halotestin, have successfully been used for over
50 years in the treatment for aplastic anemia including for BMF in Fanconi anemia and

DC [112,150] [151], Androgen related side effects include virilization, dyslipidemia, liver
function abnormalities and elevated risk of liver adenomas. Individuals with TBDs may

be more susceptible to these therapy-limiting side effects because of TBD-related liver
pathology. Patients taking androgens should not simultaneously use hematopoietic growth
factors because splenic peliosis and splenic rupture have been reported with concurrent
use[152]. The synthetic androgen derivative danazol is currently the preferred androgen for
TBD-related BMF because it has fewer virilizing side effects.
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Retrospective analyses on the use of danazol in patients with DC have reported response,
defined as independence from red blood cell or platelet transfusions, rates of up to 70%
[153,154]. One prospective trial using danazol over 24 months in adults with TBDs reported
a hematologic response rate of approximately 80% [155]. However, several patients on that
study discontinued treatment early and 41% showed increased liver enzyme levels. The
authors of this trial reported telomere elongation in peripheral blood DNA, measured by
gPCR, over the treatment duration. Based on a previous preclinical study [156], the authors
hypothesized that danazol may lead to activation of an estrogen-responsive element in the
reporter region of the telomerase gene, resulting in upregulation of TERT expression and
subsequently in telomere elongation. However, danazol and its derivates are not capable of
being aromatized to estrogens [157]. A subsequent retrospective study using flow FISH to
measure telomere length did not find a significant difference in telomere attrition between
androgen-treated and untreated patients with DC, but that study had only a few danazol-
treated patients. [158]. Overall, androgens such as danazol, are a feasible therapy option in
patients with a hematologic treatment indication who are not candidates for HCT, either due
to medical reasons, lacking donor, or personal choice.

Eltombopag, a thrombopoietin receptor (c-Mpl) agonist, is now used in front-line therapy
for severe aplastic anemia (SAA) in combination with IST. There has been no systematic
evaluation of Eltrombopag in patients with TBDs. There is one report, to date, of two
patients with DC patients treated with Eltrombopag for BMF in whom there was no
therapeutic response [159].

HCT is the only curative therapeutic approach for BMF in DC/TBDs and when possible a
matched, related donor HCT is the treatment of choice [122,160]. Related donors must be
proven not to be affected by DC/TBD by genetic and/or telomere length testing because of
the phenotypic variability in the TBDs and poor outcomes associated with using affected
donors [143] . HCT from an unrelated donor can be considered for those lacking a matched,
related donor. HCT has been performed for DC-related BMF since the 1980s [161], but
outcomes for patients undergoing conventional HCT were dismal with a high frequency of
fatal lung complications [162]. With the increased use of reduced intensity conditioning
regimen, HCT outcomes have improved after 2000 [160,162] and a retrospective study of 34
DC patients transplanted since 1981 documented an increase of 5-year post HCT survival
from 46% to 65% [162]. However, the 10-year post transplant survival still ranges only
between 20 — 30 % [160,162]. A recent, and to date largest, retrospective analysis of HCT
data of 94 DC patients showed better outcomes in patients of younger age (3-year overall
survival 72% in patients <20 years of age vs 43% in patients >20 years of age) and in
patients with no pre-existing organ damage[122]. Prior organ impairment was associated
with chronic GvHD and nearly all patients showed lung damage post-transplant, which was
irreversible in most cases [122].

A prospective multi-institutional clinical trial HCT TBD-associated BMF (Clinical Trials.gov
Identifier: NCT01659606) is currently ongoing. This study tests whether a regimen that
avoids DNA alkylators and radiation can permit successful HCT without compromising
survival in patients with DC.
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The comorbidities in DC/TBD such as PF, liver disease and vascular abnormalities and
risk of secondary malignancies make careful post-HCT clinical management challenging
and especially important [12,163]. Patients are at high risk of avascular necrosis of hips
and shoulders and fractures which could be exacerbated by corticosteroid use. Medications
known to be associated with lung or liver toxicity should be avoided, if possible. Further
studies are warranted to optimize HCT strategies for this unique patient group and reduce
therapy-related toxicity.

5.2. Pulmonary and Liver Disease

Management of pulmonary and liver disease in patients with TBDs is complicated due

to lack of proven therapies and the frequent presence of significant co-morbidities. Anti-
fibrotic medications, such as pirfenidone and nintedanib, used in PF have not been
prospectively studied in TBD-associated PF. One retrospective analysis suggested that PF
patients with TERT/TERC associated TBD may not be as likely to respond to pirfenidone
as non-carriers [164]. Also, there are no data to suggest IST for PF would be effective
[165]. The question has been raised if androgen treatment, specifically danazol, could slow
down the progression of pulmonary fibrosis [155,166]. One case report showed amelioration
of pulmonary fibrosis symptoms during Danazol treatment in a 7/NMF2 patient after HCT,
however there was no long-term follow-up since the patients in that report succumbed

to infection [166]. The prospective trial on the efficacy of danazol in patients with DC
mentioned above stated that there was no further decrease in lung function as measured by
diffusing capacity of the lungs for carbon monoxide (DLCO) in seven patients with TBDs
[155]. To date there is no systematic data on possible positive or negative androgen effects
on PF in TBDs. Lung transplantation as curative approach has been successfully performed
in patients with DC/TBD but there are limited long term outcome data [121,167-169]. The
three published studies on lung transplantation in TBD patients showed a high rate of renal
complications and a high incidence of hematological abnormalities after lung transplantation
[167-169]. Thrombocytopenia after lung transplant was common and progressive BMF has
also been reported [168]. Pre-lung transplant screening by bone marrow biopsy in TBD
patients is advisable to evaluate whether the hematological stress of immunosuppressive
medication can be tolerated.

The literature on liver transplantation in patients with TBDs is scarce. There is one

case report of liver transplantation after HCT in a patient with DC who had cirrhosis,
hepatopulmonary syndrome, and numerous co-morbid conditions [170] and in a population
of patients with liver cirrhosis awaiting liver transplantation possibly pathogenic TBD gene
variants were identified [129]. These reports suggest that liver transplantation in TBDs is a
growing need and additional study is warranted to develop the optimal approaches.

5.4 Multi-organ Transplantation

The multisystemic manifestations of TBDs can lead to the co-occurrence of complex co-
morbidities. For example, severe pulmonary disease and bone marrow failure [167,171] or
pulmonary fibrosis and liver cirrhosis [172] have been reported. In selected cases this might
lead to the clinical dilemma on the sequence of multi-organ transplantation, for which to
date no general recommendation exists. Successful combined lung and liver transplantation
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in TBD patients has been reported, but there are no long-term outcome data available [172].
There is one trial underway for lung transplant in tandem with bone marrow transplant

for patients (ClinicalTrials.gov Identifier: NCT03500731), but results need to be awaited to
determine if this would be a therapy option in the context of DC/TBD.

5.5. Vascular Diseases

PAVMs and Gl telangiectasias are especially challenging to manage because of limited
therapeutic options[125]. PAVMs may occur in the setting of PF and/or hepatopulmonary
syndrome and thus have to be considered in this context. GI bleeding due to telangiectasis
can be life threatening and difficult to control. Platelet and/or red blood cell transfusions
may be required. Upper and lower endoscopy may identify specific lesions for intervention.
Propranolol, estrogens, and anti-angiogenic agents have been postulated to potentially be
effective. However, these data are limited to case reports and/or anecdotes [125].

5.6. Cancer

Early cancer diagnosis through surveillance is important to reduce cancer-related morbidity
and mortality in patients with TBDs. Screening can identify HNSCC when it is still
amenable to surgical resection only. TBD patients with hematopoietic malignancies may
have more therapy-related complications than non-TBD patients and need to be monitored
carefully for side effects [163].

5.7. An Urgent Need for New Therapeutics

The complex medical problems in the TBDs illustrate an urgent need for new therapies.
Improvements in supportive care and HCT have increased survival in patients with DC,
HH, Revesz syndrome, and BMF. Consequently, patients are living longer and developing
additional complications that may or may not have been previously recognized. Lung and
liver transplantation remain viable options, even after HCT, but ideally, future therapies
would not involve transplantation of any organ(s).

Preclinical studies are underway based on the increased understanding of telomere biology
underlying the TBDs. For example, a recently recognized connection between the WNT
signaling pathway and telomere maintenance proteins has been described, suggesting a
possible role of this pathway in DC/TBD pathology [173]. Targeting the WNT pathway
might therefore offer a novel therapeutic approach and further research exploring this option
is currently ongoing. Similarly, therapies targeting specific mutations may eventually prove
useful. A short peptide derived from dyskerin showed some utility in cell culture[174].

6. EXPERT OPINION

The direct connection between pathogenic germline variants, telomere biology and human
disease was established 20 years ago [5,175]. Aberrations in at least 14 genes are now
associated with TBDs and the gene list is likely to grow as more and more individuals

and their families are studied. More patients are now recognized to have TBDs due to, in
part, telomere length testing by flow FISH of lymphocyte, and the increasing use of clinical
sequencing via large gene panels or exome sequencing. However, we are now faced with
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the challenge of a growing clinical spectrum of disorders related to germline mutations in
telomere biology genes and associated with all modes of inheritance. This also comes with
a growing degree of uncertainty regarding genetic test results in patients undergoing panel
or exome sequencing in the absence of a clear TBD phenotype. How does one counsel the
parents of a child with a neurologic disorder whose exome sequencing identified a likely
pathogenic variant in TERT?

Basic science studies of TBD-associated mutations are yielding important insights into the
specific functions of each gene and variants within each gene. This has led to a growing
appreciation of gene-gene interactions and the multiple functions each one may possess,
even within the same pathway. TBDs are no longer “just” associated with alterations
related to telomerase activity, but also to telomere protection, capping, RNA acetylation
and helicase activity. We must constantly be on the look-out for non-telomeric functions of
these genes and consider how they could contribute to clinical manifestations.

Short germline telomeres and the biological connections have led us to recognize that TBDs,
like other disorders, occur along a phenotypic spectrum with some patients presenting in
infancy and others not until middle-age or older. This is important clinically as we monitor
patients and develop new therapies for complications. For example, could a drug effective in
elderly-onset TBD PF be of use in a child with TBD BMF and liver disease?

In all rare diseases, international collaboration between clinicians of all specialties, basic
scientists, and patient support and advocacy groups are absolutely essential for improving
our understanding of TBD etiology, the development of new therapeutics, and providing
optimal care of all TBD families. The Clinical Care Consortium of Telomere-associated
ailments (CCCTAA) is an international group of clinicians and scientists who are working
together with Team Telomere, Inc to develop clinical trials aimed to improve the lives of
patients with TBDs [124,125].

It is our hope that in the next five years, novel therapeutic agents will be in clinical trials
targeting key manifestations of the TBDs, such as PF, PAVM, Gl bleeding, and/or liver
disease. The current multi-center HCT trial will have generated critical data to optimize
therapy for patients with BMF requiring HCT. Additional genetic causes will be identified,
and genotype-phenotype correlations will be established to help in tailoring individual
patient therapy. Disease modifiers may also be uncovered as multi-modal approaches are
taken to further understand TBD etiology. Members of the CCCTAA will play a central role
in these efforts through database creation, data sharing, and collaborative clinical trials.
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ARTICLE HIGHLIGHTS

Dyskeratosis congenita (DC) and related telomere biology disorders (TBDs)
are caused by germline mutations in telomere biology genes resulting in very
short telomeres.

The phenotypic spectrum affects all organ systems ranging from classic
DC, Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to
apparently isolated aplastic anemia, pulmonary fibrosis or liver disease.

Better understanding of the genetic etiology has led to the recognition of
additional TBD-related manifestations such as vascular disease and structural
brain abnormalities.

Patients with TBDs are at high risk of bone marrow failure, pulmonary
disease, liver disease, and cancer.

To date, there are no curative therapeutic approaches other than hematopoietic
cell transplantation for TBD-related bone marrow failure.

The complex medical problems in patients with TBDs require close clinical
surveillance and highlight the need for new therapeutic approaches.
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Figure 1. Examples of clinical manifestations of telomere biology disorders.
a) Nail dysplasia and palmar pigmentation changes; b) Hyperpigmentation of the neck and

upper chest; ¢) Oral leukoplakia on the tongue, designated by arrow; d) Hypocellular bone
marrow biopsy; €) Peripheral interstitial and ground-glass opacities with honeycombing
consistent with usual interstitial pneumonia pattern of pulmonary fibrosis; f) Telangiectasias
of the small bowel lumen.
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Telomerase complex

CST complex

Figure 2: Schematic depiction of the telomere and key components of telomere maintenance.
Protein names are shown. DKC1: dyskerin (encoding gene DKC1); TERC: hTR, human

telomerase RNA component (7ERC), TERT: human telomerase reverse transcriptase
(TERT), NOP10: nuclear protein family A, member 3 (NOP10), NHP2: NOLAZ2 nucleolar
protein family A, member 2 (NHP2); NAF1: nuclear assembly factor 1 ribonucleoprotein
(NAFI); GARL: nucleolar protein family A, member 1 (GARI); PARN: poly (A)-specific
ribonuclease (PARN); TCAB1: telomere Cajal body associated protein 1 (WRAP53);

TPP1: telomere protection protein 1 (ACD); STN1: CST complex subunit (STNI); CTCL.:
conserved telomere maintenance component 1 (C7CJI); RTELL: Regulator of telomere
elongation helicase 1 (RTELI); TIN2: TERF1 (TRF1)-interacting nuclear factor 2 ( TINF2);
TRF1: telomeric repeat binding factor 1 (7TERFI); TRF2: telomeric repeat binding factor 2
(TERF2); RAP1: TERF?2 interacting protein (RAFPI).

Components are grouped based on their function. Colored shapes indicate proteins with
known telomere biology disorders associated mutations and inheritance pattern is implicated
by type coloring. Blue: autosomal recessive inheritance; Yellow: autosomal dominant
inheritance; Green: autosomal recessive and autosomal dominant inheritance; Red: X-linked
recessive inheritance. Proteins shown but not yet reported associated with TBD are colored
in gray.
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Figure 3. Example results of lymphocyte telomere lengths measured by flow cytometry with in
situ hybridization.

Circle color codes, sex, and causative gene: red, male with heterozygous 7/NF2, green, male
with DKCI; gray, male with DKC1, orange, female with autosomal recessive RTEL 1, blue,
male with heterozygous TERT, female with heterozygous 7ERC
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