Skip to main content
. 2022 Aug 5;2022:6446680. doi: 10.1155/2022/6446680

Table 6.

Performance of the proposed deep CNN and machine learning classifiers on brain dataset-1 and Figshare dataset with and without image registration.

Dataset Preprocessing Model Sensitivity Specificity PPV NPV Accuracy DSC
Brain dataset-1 Without image registration Deep CNN + random forest 0.932 0.961 0.934 0.943 94.5% 92.4%
Deep CNN + SVM-RBF 0.960 0.958 0.942 0.963 95.6% 93.3%
Deep CNN + ELM 0.944 0.955 0.951 0.967 95.1% 94.6%
With image registration Deep CNN + random forest 0.951 0.982 0.964 0.969 97.2% 95.8%
Deep CNN + SVM-RBF 0.983 0.986 0.973 0.992 98.3% 97.8%
Deep CNN + ELM 0.965 0.984 0.972 0.982 98.0% 97.0%

Figshare dataset Without image registration Deep CNN + random forest 0.938 0.964 0.939 0.963 92.4% 91.8%
Deep CNN + SVM-RBF 0.959 0.973 0.951 0.971 94.5% 93.2%
Deep CNN + ELM 0.928 0.959 0.938 0.960 91.2% 90.4%
With image registration Deep CNN + random forest 0.956 0.979 0.957 0.977 97.8% 95.7%
Deep CNN + SVM-RBF 0.971 0.984 0.967 0.985 98.0% 97.1%
Deep CNN + ELM 0.947 0.975 0.950 0.973 96.7% 94.8%