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Abstract

Multidrug-resistant tuberculosis (MDR-TB) accounts for one third of the annual deaths due 

to antimicrobial resistance1. Drug resistance-conferring mutations frequently cause fitness 

costs in bacteria2–5. Experimental work indicates that these drug resistance-related fitness 

costs might be mitigated by compensatory mutations6–10. However, the clinical relevance of 

compensatory evolution remains poorly understood. Here we show that, in the country of 

Georgia, during a 6-year nationwide study, 63% of MDR-TB was due to patient-to-patient 

transmission. Compensatory mutations and patient incarceration were independently associated 

with transmission. Furthermore, compensatory mutations were overrepresented among isolates 

from incarcerated individuals that also frequently spilled over into the non-incarcerated 

population. As a result, up to 31% of MDR-TB in Georgia was directly or indirectly linked 

to prisons. We conclude that prisons fuel the epidemic of MDR-TB in Georgia by acting as 

ecological drivers of fitness-compensated strains with high transmission potential.
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Growing antimicrobial resistance is a threat to global public health and the economy1. 

In 2019, an estimated 464,000 new cases of human tuberculosis (TB) were caused by 

rifampicin-resistant Mycobacterium tuberculosis (Mtb) worldwide, of which 78% were 

MDR-TB strains, resistant to the two first-line antibiotics, isoniazid and rifampicin11. 

However, the number of MDR-TB-associated fatalities is small compared to the annual 

total of 1.4 million deaths due to TB in general1,11. Moreover, only 3.3% of the 10 million 

annual new TB cases in the world are caused by MDR Mtb variants, and this proportion 

has remained stable despite TB being treated with antibiotics for decades12. Based on 

these observations, it was suggested that MDR-TB might be generally less transmissible 

due to fitness costs of MDR13, and, as a consequence, MDR-TB was predicted to remain 

a localized problem14. Indeed, several geographical hotspots of MDR-TB exist, with the 

countries of the former Soviet Union being heavily affected, for reasons not well understood. 

For instance, in the country of Georgia, 12% of all new TB cases in 2019 were caused by 

MDR strains15. Recent studies have also demonstrated that most drug resistance in TB is 

due to transmission, as opposed to de novo evolution within patients16–19.

In Mtb, drug resistance is predominantly conferred by chromosomal mutations in the genes 

encoding the drug target4. Rifampicin resistance is caused by mutations in the gene rpoB, 

encoding the β subunit of the bacterial RNA polymerase. In vitro data demonstrated a 

fitness deficit for rifampicin-resistant Mtb5. In contrast, analysis of paired clinical isolates 

from patients who acquired rifampicin resistance during treatment (mediated by the same 

rpoB mutations as assessed previously in vitro) revealed that some of these strains did 

not carry any detectable fitness deficit in vitro. It was hypothesized that these clinical 

strains acquired secondary, fitness-deficit compensating mutations. Genome analyses of 

experimentally evolved Mtb laboratory strains, together with a collection of rifampicin-

resistant clinical strains, revealed the presence of compensatory mutations in the RNA 

polymerase10. Subsequent work conducted in several bacterial species6,7,20 showed that 

secondary mutations in the RNA polymerase restored the transcriptional activity of the 

enzyme. However, whether these compensatory mutations influence the transmission fitness 

of Mtb in human populations remains to be established. Although several studies in human 

populations assessed the effect of compensatory mutations on the transmissibility of MDR-

TB, findings have been inconsistent16,21–23. Moreover, these previous studies relied on small 

datasets and did not control for confounding factors.

In this study, we assessed associations among various bacterial factors and corresponding 

patient data with measures of MDR-TB transmission inferred with the R package 

phybreak24. For this, we used a nationwide collection of 1,613 MDR-TB whole-genome 

sequences from Georgia, isolated between 2011 and 2016 (Fig. 1 and Supplementary Fig. 

1). For the remainder of this article, our use of the term MDR will include pre-XDR (pre-

XDR: MDR + resistance to either aminoglycosides or fluoroquinolones) and XDR (XDR: 

MDR + fluoroquinolone and aminoglycoside resistance) cases, unless otherwise stated. The 

dataset represents 70% of all culture-confirmed MDR-TB cases isolated in Georgia in this 

timeframe (Supplementary Table 1 and Supplementary Fig. 2). The accession numbers of all 

included genomes are listed in Supplementary Table 2.
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We first predicted the drug resistance profiles of the sequenced Mtb strains by screening 

for the presence of known drug resistance markers (Supplementary Table 3) and found 

that the epidemic of drug-resistant TB in Georgia is driven by strains resistant to many 

drugs, with most being even more resistant than regular MDR strains (Supplementary Fig. 

3 and Supplementary Table 4). Of the 1,613 strains analyzed, 699 strains (43%) were 

pre-XDR, 605 (38%) were MDR and 309 (19%) were XDR (Supplementary Table 4). The 

pre-XDR and XDR resistance profiles are strongly associated with treatment failure25,26. 

Apart from the mutations defining the drug resistance class, all strains carried a median of 

two (25th percentile = 2 and 75th percentile = 2) additional resistance mutations. Control 

measures in Georgia will be hampered by the predominance of pre-XDR phenotypes and 

the high prevalence of additional resistance mutations; for example, 92% of the strains 

harbored streptomycin resistance-conferring mutations (Supplementary Table 4). Treatment 

regimens, including the novel and repurposed drugs bedaquiline, pretomanid, delamanid 

and linezolid, will be necessary to combat the epidemic of MDR-TB in Georgia27. On that 

note, we identified 22 strains with mutations in the promoter region or coding sequence of 

the transcriptional repressor Rv0678/mmpR. Mutations in Rv0678/mmpR are implicated in 

bedaquiline/clofazimine cross-resistance28, and bedaquiline has been used in Georgia on a 

compassionate basis since 2011 (ref. 29).

To identify putative compensatory mutations, we screened the RNA polymerase genes 

rpoA, rpoB and rpoC for the presence of non-synonymous mutations. After filtering 

for phylogenetic markers, we identified a total of 71 distinct substitutions (Fig. 2 and 

Supplementary Tables 5 and 6). Most compensatory mutations evolved between one and 

five times in the dataset and were shared only among a limited number of strains (Fig. 

2). However, several mutations were shared by many strains and independently evolved 

multiple times (Fig. 2), indicating a strong selective benefit to MDR-TB strains harboring 

these mutations.

We next used the whole-genome sequences to identify transmission clusters based on 

the genetic distance between two given strains to determine whether MDR Mtb strains 

evolved de novo in patients or stemmed from transmission. We identified 212 transmission 

clusters with a median size of two strains (25th percentile = 2, 75th percentile = 4 and 

interquartile range (IQR) = 2), resulting in 63% (n = 1,018) of strains being clustered (Fig. 

1). The high proportion of strains in clusters indicates frequent transmission of MDR-TB 

in Georgia. We detected a cluster containing at least 183 pre-XDR strains, which is one 

of the largest transmission clusters of pre-XDR strains reported to date (Fig. 1). Moreover, 

we detected an XDR-TB transmission cluster with at least eight members, harboring the 

putative bedaquiline/clofazimine resistance mutation Rv0678 F93L30, potentially indicating 

transmitted bedaquiline/clofazimine resistance.

To test if compensatory mutations are associated with the transmission of MDR Mtb in 

Georgia, we performed multivariable Poisson regression on a subset of 1,263 strains for 

which complete epidemiological records were available (Supplementary Table 2), with the 

number of secondary cases generated per individual patient during the study timeframe as 

the outcome variable. The number of secondary cases generated per patient was inferred 

from the phybreak24 infector–infectee relationships (Supplementary Table 7). For the 
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phybreak analysis, we used a set of priors for the generation and sampling time intervals 

inferred by fitting a gamma distribution to real-world data on the time course of Mtb 
infections from the pre-antibiotic era31. We performed a sensitivity analysis using different 

sets of priors (Supplementary Table 8), resulting in similar infector–infectee relationships 

(Supplementary Tables 9–13) and multivariable Poisson regression results (Supplementary 

Tables 14–18). We found that compensatory mutations in the RNA polymerase were 

associated with the number of secondary cases generated per patient (adjusted incidence 

rate ratio (IRRadj) = 1.34, 95% confidence interval (CI95) = 1.05–1.71, P = 0.019; Table 

1 (posterior probability (PP) > 0.5) and Supplementary Tables 14–18). Other predictors of 

transmission success of MDR-TB strains included a patient being incarcerated (IRRadj = 

1.42, CI95 = 1.11–1.81, P = 0.005; Table 1 (PP > 0.5) and Supplementary Tables 14–18), 

in line with the known role of prisons in the epidemic of MDR Mtb in the former Soviet 

Union32–34. Age was negatively associated with the number of secondary cases generated 

(IRRadj = 0.98, CI95 = 0.97–0.99, P < 0.001; Table 1 (PP > 0.5) and Supplementary Tables 

14–18), as was female sex (IRRadj = 0.73, CI95 = 0.55–0.95, P = 0.022; Table 1 (PP > 0.5) 

and Supplementary Tables 14–18), consistent with the epidemiology of TB in middle- and 

high-burden countries35. In concordance with previous reports21,36, the Lineage 2/Beijing 

family of Mtb was associated with transmission (IRRadj = 2.24, CI95 = 1.48–3.53, P < 

0.001; Table 1 (PP > 0.5) and Supplementary Tables 14–18), supporting the notion that 

Lineage 2 strains might suffer from smaller drug resistance-related fitness costs5. To control 

for the possible overrepresentation of prison samples, we repeated this analysis excluding 

all incarcerated individuals (nincarcerated = 171 and nnon-incarcerated = 1,092), but the results 

remained unchanged (Table 1 and Supplementary Tables 14–18).

We next hypothesized that environments facilitating transmission of Mtb (for example, 

prisons; Table 1) also facilitate the evolution and persistence of compensatory mutations. 

Every new infection leads to cell division events during the growth of the bacterial 

population. Each cell division (that is, genome replication) offers the possibility to 

acquire a compensatory mutation. Clones carrying a compensatory mutation might then 

outgrow the uncompensated population within a single patient. In accordance with previous 

reports33,34,37,38, our results showed that prisons in Georgia were associated with the 

number of secondary cases generated (Table 1). These results indicate that Georgian 

prisons are environments conducive for Mtb transmission. In support of our hypothesis, 

we also found that compensatory mutations were overrepresented in strains isolated 

from incarcerated individuals (82% of prison isolates versus 67% of isolates from non-

incarcerated individuals harbored compensatory mutations; P < 0.001, two-tailed χ2 test; 

Supplementary Fig. 4). To test the hypothesis that prisons act as a source for newly 

compensated MDR-TB strains, we compared the number of compensatory mutations per 

genotype among incarcerated and non-incarcerated individuals. Incarcerated individuals 

tended to harbor more compensatory mutations per genotype than non-incarcerated 

individuals, but the difference was not statistically significant (0.71 versus 0.62; P = 0.19, 

two-tailed χ2 test). Given our initial hypothesis that transmission-conducive settings select 

for highly transmissible, fitness-compensated strains, we could also imagine that prison 

isolates carry additional compensatory mutations in other genes than the canonical targets: 

rpoA, rpoB and rpoC. In support of this possibility, the mean number of secondary cases 

Gygli et al. Page 4

Nat Med. Author manuscript; available in PMC 2022 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generated by incarcerated individuals harboring a compensated strain, which clustered with 

at least one incarcerated individual, was larger compared to non-incarcerated individuals 

with a compensated strain that clustered only with non-incarcerated individuals (0.78 

versus 0.55; P = 0.04, Wilcoxon rank-sum test). Moreover, clusters containing incarcerated 

individuals were larger than clusters containing only non-incarcerated individuals (median 

size of clusters: 4 versus 2; P < 0.001, Wilcoxon rank-sum test; Supplementary Fig. 5).

To further investigate the number of secondary cases derived from incarcerated and non-

incarcerated individuals, we used phybreak to estimate the most likely index cases of 

every transmission cluster24. We classified the clusters derived from incarcerated and non-

incarcerated individuals based on the index case and calculated secondary case rates and 

secondary case rate ratios, by incarceration status and presence of compensatory mutations. 

We observed that transmission clusters classified as being founded by incarcerated 

individuals had higher secondary case rates among non-incarcerated individuals, compared 

to clusters founded by non-incarcerated individuals (secondary case rate ratio = 10.6, CI95 

= 8.7–13.1, P < 0.01; Supplementary Table 19). This was particularly true for clusters 

founded by incarcerated individuals infected with a strain carrying a compensatory mutation 

in rpoA, rpoB and rpoC (secondary case rate ratio among strains carrying a compensatory 

mutation in rpoA, rpoB and rpoC = 13.6, CI95 = 10.8–17.1, P < 0.01; Supplementary Table 

19). However, in the absence of any compensatory mutations in rpoA, rpoB and rpoC, the 

secondary case rates among non-incarcerated individuals did not differ significantly between 

transmission clusters derived from incarcerated or non-incarcerated individuals (secondary 

case rate ratio among uncompensated strains = 1.0, CI95 = 0.3–2.4, P = 0.94; Supplementary 

Table 19).

Lastly, we aimed to quantify the spill-over of MDR-TB strains from prisons to the general 

public. For this, we analyzed the transmission networks (Fig. 3 and Supplementary Fig. 

6), identified events where incarcerated individuals infected non-incarcerated individuals 

and counted all non-incarcerated individuals downstream of the initial transmission event 

(Supplementary Fig. 7). Although the prison population declined during the study period, we 

were able to document multiple spill-over events from prisons and the establishment of these 

clones among the general public (Fig. 3a,b and Supplementary Fig. 7). Overall, we identified 

42 transmission events, where incarcerated individuals directly infected non-incarcerated 

individuals, 83% (35/42) of which carried compensatory mutations in rpoA, rpoB and 

rpoC. The non-incarcerated individuals, infected by incarcerated individuals, subsequently 

infected 159 non-incarcerated individuals (Supplementary Fig. 7). In total, 20% of all cases 

among non-incarcerated individuals sampled in this study originated from incarcerated 

individuals. Extrapolating to the whole population, based on the World Health Organization 

(WHO)-notified, culture-confirmed MDR-TB cases (n = 2,292; Supplementary Table 1), 

we estimated that, during the 6-year study period, 31% (n = 705) of MDR-TB cases were 

directly or indirectly linked to prisons.

Our study demonstrates that most MDR-TB cases in the country of Georgia are due 

to ongoing transmission of highly drug-resistant Mtb strains. Moreover, our results 

complement previous experimental findings by confirming that compensatory mutations in 

the RNA polymerase of Mtb contribute to the transmission fitness of MDR-TB strains in a 
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human population. The strong association between MDR-TB and incarceration is consistent 

with previous studies conducted in the former Soviet republics32–34. In addition, our study 

allowed us to quantify the effect of incarceration on the transmission of MDR-TB and 

further highlights the role of prisons in the epidemic of MDR-TB. Unfortunately, the limited 

metadata did not allow us to assess transmission in other marginalized populations, such 

as drug users and the homeless. Although the overall number of incarcerated individuals 

in Georgia declined during the study period, our analyses indicate that MDR-TB strains 

frequently spill over from prisons into the general public. This might be due either to the 

large proportion of incarcerated individuals who are lost to follow-up after release from 

prison, who might continue to transmit, or to the transmission from incarcerated individuals 

to employees working in the prison system. Moreover, our findings revealed a link between 

incarceration and compensatory evolution and suggest that forcing people into a crowded 

environment, highly conducive of TB transmission, might influence the evolutionary 

trajectories toward highly drug-resistant and fitness-compensated bacteria. Combined, these 

observations suggest that prisons serve as ecological drivers of compensatory mutations 

and might amplify the presence of these mutations among non-incarcerated individuals, 

highlighting the importance of infection control among the highly vulnerable prison 

population.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41591-021-01358-x.

Methods

Sample set and associated metadata.

The dataset consisted of 2,063 strains, including all culture-confirmed Mtb isolates 

demonstrating at least an MDR phenotype, collected between 2011 and 2016 and stored by 

the National Center for Tuberculosis and Lung Disease in Tbilisi, Georgia. The isolates were 

re-cultured and processed for DNA extraction for whole-genome sequencing. A total of 450 

strains were excluded from further analysis owing to failed sequencing, no MDR genotype, 

large numbers of unfixed positions (potential mixed infections/cross-contamination) or 

strains with multiple differing metadata entries (Supplementary Fig. 1). The final dataset 

consisted of 1,613 whole-genome sequences of MDR Mtb strains, representing 70% of all 

culture-confirmed MDR Mtb strains isolated between 2011 and 2016. The per-year sampling 

coverages are summarized in Supplementary Table 1. The per-year lineage proportions 

remained stable (Supplementary Fig. 8). Limited anonymized patient data, including sex, 

age, year released from prison, current incarceration status and prior TB diagnosis, were 

available (Supplementary Table 2). For the purpose of this study, prison isolates were 

defined as follows: patient was incarcerated at the time of sample collection or patient was 

released during the study timeframe (2011–2016), and the sample was collected at the latest 
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within the 6 months of the first year after release. For 22% of the analyzed strains, no 

matching metadata were available; for all other strains, complete records were available.

Ethical approval.

To be able to quantify TB transmission accurately, this study had to be population based 

and nationwide—that is, all culture-confirmed MDR-TB cases were included during all of 

the 6-year study period from the whole country of Georgia. Because, every year, thousands 

of patients with suspected TB are seen in 67 TB clinics distributed across the country, 

the logistics required for obtaining formal informed patient consent were prohibitive. As 

only pseudonymized samples and only limited pseudonymized patient data available at the 

National TB Reference Center were used, and because the project was of particular interest 

to the Georgian Ministry of Health and the National TB Control Program, we obtained 

formal exemption from the Georgian Ministry of Health for the need for individualized 

informed patient consent. The corresponding study protocol was then also formally reviewed 

and approved by the national ethics review boards in both Georgia and Switzerland.

Statistical analyses.

Identification of covariates associated with the number of secondary cases per patient 

was performed by multivariable Poisson regression. We tested the assumption of linearity 

between the continuous variables (age and number of drug resistance mutations, in addition 

to the resistance class (MDR, pre-XDR and XDR) determining mutations) and the log of the 

rate graphically. To investigate whether super-spreaders could be driving the associations in 

the Poisson regression model, we excluded all isolates with an outdegree >1 (n = 103) and 

repeated the regression analysis. The same explanatory variables, except for incarceration, 

remained associated with the outdegree (data not shown). Secondary case rates and 

secondary case rate ratios were calculated using the R package epitools (v0.5–10.1). 

Two-tailed χ2 tests were used to analyze the association of the number of compensatory 

mutations with incarceration as well as to compare the number of compensatory mutations 

per genotype. Wilcoxon rank-sum tests were used to assess differences in mean cluster sizes 

and mean number of secondary cases generated between clusters containing incarcerated 

individuals and clusters containing only non-incarcerated individuals. A two-sided z-

proportion test was used to assess differences in lineage proportions during the sampling 

time frame. All analyses were performed using R (v3.6.2) unless otherwise stated.

Whole-genome sequencing.

Sequencing libraries were prepared using the Illumina Nextera XT kit and subjected 

to massive parallel sequencing on the Illumina HiSeq 2500 platform, whereby 31–138-

bp paired-end reads were generated. All sequencing runs were performed at the core 

sequencing facility of the ETHZ/University of Basel in Basel, Switzerland. The reads 

were processed using an in-house pipeline as described previously39. Briefly, Trimmomatic 

(v0.33) was used to clip adapters and filter for quality, whereby <20-bp reads were 

discarded. Overlapping paired-end reads were merged with SeqPrep (https://github.com/

jstjohn/SeqPrep). The resulting reads were mapped to a reconstructed hypothetical ancestor 

of the Mtb complex10 with BWA (v0.7.12); duplicate reads were marked with Picard 

(v2.1.1) (https://github.com/broadinstitute/picard) with the MarkDuplicates module. To 
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enhance mapping of reads in the vicinity of indels, local realignments were performed 

with the GATK (v3.4.0) modules RealignerTargetCreator and IndelRealigner40. Pileups were 

generated with SAMtools (v1.2)41, and single-nucleotide variants (SNVs) were subsequently 

called with VarScan (v2.4.1)42, applying the following thresholds: minimum mapping / 

mimimum base quality of 20, minimum read depth 7× at a given position. SNVs were called 

if at least five reads supported the alternative allele without strand bias. A given SNV was 

considered fixed if its frequency reached 90%, and a position was called as ancestral if 

the frequency was below 10%. The effect of the SNV was inferred using SnpEff (v4.11)43 

using the Mtb H37Rv reference annotation (NC_000962.3). SNVs lying in regions that 

share ≥50-bp sequence identity with other regions in the genome were excluded39. SNVs in 

‘PPE/PGRS’ genes, regions annotated as ‘maturase’, ‘phage’ or ‘insertion sequence’, as well 

as regions that were previously identified to contain repetitive regions, were excluded.

The unfixed position outliers were defined as having >3× the IQR of the ratio between fixed 

and unfixed positions, and the IQR was calculated separately for Lineage 2 and Lineage 4 

strains.

Variable position alignment and phylogenetic analysis.

Variable SNV pseudo-alignments were generated by concatenating all quality filtered SNVs 

in the dataset. A position was encoded as an X in the alignment if it was covered by fewer 

than seven reads or if it fell into one of the excluded regions (see above) or if it was unfixed. 

If a position was not covered, it was encoded as a gap. Only positions that had less than 

90% encoded as X or gaps were investigated. A position was considered as variable if at 

least one isolate in the dataset had a fixed SNV at the position in question. Two separate 

alignments were produced: one including genes known to be involved in drug resistance 

and a separate alignment excluding variable positions in drug resistance-related genes. The 

former alignment was used for genetic distance-based transmission cluster inference (see 

below), and the latter was used to infer a maximum likelihood phylogeny using RAxML 

(v8.2.8)44. The phylogeny was inferred using the general time-reversible model of sequence 

evolution and rooted on Mycobacterium canettii (SRR011186). Strains were classified into 

main- and sub-lineages based on the presence of previously established markers45.

Drug resistance profile prediction.

We collated a list of high-confidence drug resistance mutations (mutations and sources 

summarized in Supplementary Table 3), which we used to screen the genomes. In addition, 

all non-synonymous substitutions in ethA, pncA and Rv0678/mmpR were regarded as 

conferring resistance to ethionamide, pyrazinamide and bedaquiline, respectively.

Identification of compensatory mutations.

We screened the genes rpoA, rpoB and rpoC, encoding the DNA-dependent RNA 

polymerase, for the presence of non-synonymous mutations. This resulted in a list of 

rifampicin resistance-conferring, phylogenetic and putative compensatory mutations. Per 

definition, compensatory mutations must co-occur with rifampicin resistance-conferring 

mutations but are never found on their own. To remove phylogenetic markers, we collated 

a list of non-synonymous mutations in rpoA, rpoB and rpoC identified in rifampicin-
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susceptible strains (defined as harboring none of the high-confidence rifampicin resistance-

conferring mutations listed in Supplementary Table 3), using a large collection of published 

genomes39 and an in-house collection of genomes, including drug-susceptible strains from 

Georgia. After filtering for phylogenetic and rifampicin resistance-conferring mutations, 

every mutation identified in rpoA, rpoB and rpoC was assumed to be a secondary and 

compensatory mutation if it met one of the following criteria: the mutation occurred multiple 

times independently; more than one distinct amino acid substitution affected the same 

codon; the mutation was present in the rifampicin resistance-determining region consisting 

of RpoB codons 426–452 in addition to a known rifampicin resistance-conferring mutation; 

the mutation was present in the RNA exit tunnel consisting of RpoA codons 172–192 

and RpoC codons 423–563 (refs. 7,46); or the mutation was reported previously10,16,21. 

Furthermore, strains harboring two mutations affecting the same codon in rpoB were 

assumed to be compensated if one of the mutations conferred rifampicin resistance on its 

own—for example, rpoB c.1349T>C (S450L confers rifampicin resistance; Supplementary 

Table 3) and rpoB c.1350G>C (S450S); combined, these two mutations result in the 

substitution RpoB S450F.

Genetic distance-based transmission cluster definition.

The likelihood of two strains being members of a transmission chain decreases with the 

number of genetic differences between two strains. Previous analyses have demonstrated 

that two Mtb strains, isolated from patients with a proven epidemiologic link, rarely differ 

by more than five mutations from each other47. A distance matrix, based on pairwise 

SNV distances between any given two strains, was inferred using the variable position 

pseudo-alignment including variable positions in drug resistance-related genes with custom 

scripts (https://git.scicore.unibas.ch/TBRU/tacos). Insertions and deletions were considered 

as missing data. Agglomerative clustering was performed using the R package cluster 

(v2.0.6) with the agnes function using the unweighted pair group average method. A 

threshold of five SNVs, on average, was used as a cutoff for likely patient-to-patient 

transmission47. The function hclust was used to cut the tree at a height of five SNVs.

Transmission networks, index case inference and infector–infectee relationships.

Transmission graphs, index cases and infector–infectee relationships were inferred 

using the R package phybreak (v0.2.0)24 running under R (v3.3.1). phybreak infers 

consensus transmission trees by combining transmission models, within-host dynamics, case 

observation and mutation rate using Bayesian inference combined with Markov chain Monte 

Carlo (MCMC) sampling of the posterior distribution of model parameters, transmission 

and phylogenetic trees. Priors for the mean of the sampling time for both distributions 

were inferred from collated data on the time course of Mtb infections31 by fitting a gamma 

distribution with the R package fitdistrplus (v1.0–11). The mutation rate prior was set at 1 

mutation per genome and year47,48. We ran 20 independent MCMC chains with a burn-in 

set at 10,000 cycles, and the sampling of the independent chains was set at 50,000 cycles 

to ensure that most estimated parameters reached an effective sample size >200 (ref. 49). 

We excluded infector–infectee relationships for which the effective sample size did not 

reach at least 200. This frequently occurred when sampling dates of cluster members in 

small clusters were identical or within a short time period. As a sensitivity analysis, we 
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repeated the phybreak analysis with different sets of priors for the generation/sampling time 

distributions and mutation rate (Supplementary Table 8). The infector–infectee relationships 

based on the different phybreak runs are summarized in Supplementary Tables 7 and 9–

13, and the results of the regression analyses are summarized in Supplementary Tables 

14–18. The Python package NetworkX (v2.2) was used to transform the infector–infectee 

relationships inferred by phybreak into a network. The software Gephi (v0.9.2) was then 

used to plot and annotate the networks.

Number of compensatory mutations per genotype.

We aimed to assess whether there were more compensatory mutations among genotypes 

associated with incarcerated compared to non-incarcerated individuals. A genotype was 

defined as follows. Every unclustered strain and every transmission cluster represents an 

opportunity to acquire a compensatory mutation and was counted as an individual genotype. 

We divided the dataset into an incarcerated and a non-incarcerated cohort. Every cluster 

containing at least one incarcerated individual was counted as a prison cluster/genotype. 

The number of compensatory mutations per genotype among incarcerated individuals and 

non-incarcerated individuals was given as follows:

Cinc =
∑Iucl ∩ Icomp + ∑ClI ∩ Clcomp

∑ClI + ∑Iucl

Cnon − inc =
∑NIucl ∩ NIcomp + ∑ClNI ∩ Clcomp

∑ClNI + ∑NIucl

where Cinc denoted the number of compensatory mutations per genotype linked to the 

incarcerated population, and Cnon-inc denoted the number of compensatory mutations per 

genotype among the non-incarcerated population. The variables denote the following: Iucl, 

set of unclustered incarcerated individuals/genotypes; Icomp, set of incarcerated individuals/

genotypes harboring compensated MDR-TB strains; ClI, set of clusters/genotypes 

containing at least one incarcerated individual; Clcomp, set of clusters/genotypes harboring 

compensatory mutations; NIucl, set of unclustered non-incarcerated individuals/genotypes; 

NIcomp, set of non-incarcerated individuals/genotypes harboring compensated MDR-TB 

strains; and ClNI, clusters containing only non-incarcerated individuals/genotypes. To 

calculate Cnon-inc, we sampled 181 non-incarcerated individuals, corresponding to the total 

number of incarcerated individuals in the dataset, and repeated the sampling 10,000 times. 

We reported the mean number of compensatory mutations per genotype.

Secondary case rates, case rate ratios and estimation of prison effect.

For this, we first used the phybreak output to estimate the most likely index case (PP > 

0.5) and classify the cluster as derived from either an incarcerated or a non-incarcerated 

individual. To obtain the secondary case rates among non-incarcerated individuals infected 

by incarcerated individuals, we divided the total number of secondary cases among non-

incarcerated individuals infected by incarcerated individuals by the sum of all prison-related 

index cases (the number of prison-derived clusters plus all unique cases among incarcerated 

Gygli et al. Page 10

Nat Med. Author manuscript; available in PMC 2022 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individuals). We performed the same calculation for clusters derived from non-incarcerated 

individuals. The rate ratio was obtained by dividing the two rates. We further subclassified 

the secondary cases among non-incarcerated individuals by their compensation status 

(compensatory mutation yes/no). Secondary case rates and secondary case rate ratios were 

calculated using the R package epitools (v0.5–10.1). To quantify the effect of prisons on 

the MDR-TB epidemic in Georgia, we used the phybreak infector–infectee relationships to 

identify transmission events where an incarcerated individual infected a non-incarcerated 

individual (PP > 0.5). We then followed the transmission chain from the non-incarcerated 

individual infected by an incarcerated individual and counted all downstream cases (NNIds, 

PP > 0.0; Supplementary Fig. 7).

We used the formula below to estimate the burden of MDR-TB attributable to prisons. The 

extrapolated number of incarcerated individuals (NIe) in the 6-year study period is given by:

NIe =
NI

NNI + NI
× Ntot

where NIe denotes the extrapolated number of incarcerated individuals during the 6-year 

sampling time frame; NI is the number of incarcerated individuals identified; NNI is the 

number of non-incarcerated individuals; and Ntot is the WHO-notified, culture-confirmed 

MDR-TB cases.

The extrapolated number of non-incarcerated individuals (NNIe) is given by:

NNIe = Ntot − NIe

The proportion of cases among non-incarcerated individuals directly or indirectly linked to 

incarcerated individuals (PNI-I) is given by:

PNI − I =
NNIds
NNI

The extrapolated number of cases among non-incarcerated individuals directly or indirectly 

associated to incarcerated individuals (NNI-Ie) is given by:

NNI − Ie = NNIe × PNI − I

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Data availability

The raw sequences were deposited at the European Nucleotide Archive under BioProject ID 

PRJEB39561. Accession numbers are listed in Supplementary Table 2. Metadata associated 

with the genomes are provided in Supplementary Table 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Phylogeny of 1,613 MdR M. tuberculosis strains.
The blue clade corresponds to Lineage 2 (Beijing sublineage); the red clade corresponds 

to Lineage 4. The phylogeny is rooted on M. canettii. Scale bar indicates substitutions per 

site. The largest transmission cluster is highlighted in yellow (n = 183 strains). The outer 

rings indicate the status of incarceration (purple), compensation (dark gray) and clustering 

(green).
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Fig. 2 |. Putative compensatory mutations identified in the three subunits of the RNA 
polymerase.
Mutations remaining after filtering for phylogenetic markers. The homoplasy index indicates 

the number of independent evolution events of the mutation in question. The frequency of 

the mutation indicates the number of strains harboring the respective mutation.
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Fig. 3 |. Spill-over of MdR-TB from prisons into the general public.
a, Illustration of the transmission chain for the largest transmission cluster (n = 183). 

Isolates from incarcerated individuals have purple-colored nodes; isolates from non-

incarcerated individuals have orange-colored nodes. Darker colors represent more recently 

sampled isolates. The most likely index case of the cluster is circled in red. Arrows indicate 

the directionality of the transmission events. High-confidence transmission events with 

probabilities >0.5 have a black arrow. b, Proportion of isolates from incarcerated and 

non-incarcerated individuals across the years in clusters containing at least one incarcerated 
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individual. Orange represents non-incarcerated individuals; purple represents incarcerated 

individuals.
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Table 1 |

Estimated association among bacterial and patient factors and the rate of secondary cases generated

Dependent variable: rate of secondary cases

All isolates with metadata (PP > 0.5), n = 
1,263

Excluding isolates 
from incarcerated 
individuals (PP > 
0.5), n = 1,092

All isolates with 
metadata, n = 1,263

Explanatory 
variables

Levels Total Univariable IRR 
(CI95, P value) Multivariable 

a
IRRadJ 

(CI95, P value)

Multivariable 
a
IRRadJ (CI95, P 

value)

Multivariable 
a
IRRadJ 

(CI95, P value)

Putative 
compensatory 
mutation in rpoA, 
rpoB and rpoC

0 389 
(30.80)

– – – –

1 874 
(69.20)

1.68 (1.34–2.12, P 
< 0.001)

1.34 (1.05–1.71, P = 
0.019)

1.30 (1.01–1.69, P = 
0.046)

1.37 (1.11–1.70, P = 
0.003)

Incarcerated 
individual

0 1092 
(86.46)

– – – –

1 171 
(13.54)

2.14 (1.71–2.64, P 
< 0.001)

1.42 (1.11–1.81, P = 
0.005)

– 1.51 (1.22–1.87, P < 
0.001)

Lineage 2 strain 0 180 
(14.25)

– – – –

1 1083 
(85.75)

2.75 (1.88–4.23, P 
< 0.001)

2.24 (1.48–3.53, P < 
0.001)

2.44 (1.53–4.12, P < 
0.001)

2.64 (1.82–3.98, P < 
0.001)

Age Mean 
(s.d.)

38.54 
(13.75)

0.98 (0.97–0.99, P 
< 0.001)

0.98 (0.97–0.99, P < 
0.001)

0.98 (0.97–0.99, P < 
0.001)

0.98 (0.97–0.99, P < 
0.001)

Female sex 0 981 
(77.67)

– – – –

1 282 
(22.33)

0.67 (0.52–0.86, P 
= 0.002)

0.73 (0.55–0.95, P = 
0.022)

0.74 (0.56–0.97, P = 
0.033)

0.96 (0.77–1.19, P = 
0.735)

Number of 
additional drug 
resistance 
mutations

Mean 
(s.d.)

2.02 
(0.68)

1.18 (1.03–1.36, P 
= 0.020)

1.04 (0.87–1.24, P = 
0.686)

1.05 (0.86–1.26, P = 
0.647)

1.00 (0.85–1.16, P = 
0.983)

Drug resistance 
profile

MDR 512 
(40.54)

– – – –

Pre-
XDR

534 
(42.28)

1.15 (0.93–1.42, P 
= 0.192)

0.91 (0.73–1.14, P = 
0.423)

0.94 (0.73–1.22, P = 
0.645)

0.91 (0.75–1.10, P = 
0.314)

XDR 217 
(17.18)

1.25 (0.95–1.61, P 
= 0.101)

1.17 (0.88–1.54, P = 
0.266)

1.14 (0.84–1.55, P = 
0.396)

0.98 (0.76–1.25, P = 
0.859)

TB diagnosis in the 
past

0 716 
(56.69)

– – – –

1 547 
(43.31)

0.99 (0.82–1.19, P 
= 0.913)

0.94 (0.77–1.15, P = 
0.544)

0.89 (0.71–1.12, P = 
0.341)

0.95 (0.80–1.13, P = 
0.566)

a
IRRs were estimated by multivariable Poisson regression adjusting for the presence of putative compensatory mutations, incarceration status, Mtb 

lineage, patient age, patient sex, number of additional drug resistance mutations, drug resistance profile and TB diagnosis in the past. We corrected 
for unequal observation time of the isolates by including the isolation time as a category. For the 6-year study period, we included 12 half-year 
categories.
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