Table 1. Multi-class image classification performances of CNN algorithms on the test sets compared with the average performance of clinicians; ‘oral and maxillofacial surgeons’ vs. ‘GPs’.
Class | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
OSCC | OPMDs | |||||||||
Precision | Recall (Sensitivity) | Specificity | F1 score | AUC of ROC curve | Precision | Recall (Sensitivity) | Specificity | F1 score | AUC of ROC curve | |
DenseNet-169 | 0.98 | 0.99 | 0.99 | 0.98 | 1.0 | 0.95 | 0.95 | 0.97 | 0.95 | 0.98 |
ResNet-101 | 0.96 | 0.92 | 0.94 | 0.94 | 0.99 | 0.97 | 0.97 | 0.94 | 0.97 | 0.97 |
SqueezeNet | 0.85 | 0.72 | 0.92 | 0.78 | 0.88 | 0.76 | 0.78 | 0.88 | 0.77 | 0.87 |
Swin-S | 0.69 | 0.73 | 0.83 | 0.71 | 0.71 | 0.63 | 0.74 | 0.88 | 0.68 | 0.80 |
Oral and maxillofacial surgeons | - | 0.90 | 0.89 | - | - | - | 0.74 | 0.93 | - | - |
GPs | - | 0.77 | 0.87 | - | - | - | 0.68 | 0.86 | - | - |
AUC, area under the curve; ROC, receiver operating characteristics; GPs, General practictioners.