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Abstract

Purpose

To evaluate the value of convolutional neural network (CNN) in the diagnosis of human

brain tumor or Alzheimer’s disease by MR spectroscopic imaging (MRSI) and to compare its

Matthews correlation coefficient (MCC) score against that of other machine learning meth-

ods and previous evaluation of the same data. We address two challenges: 1) limited num-

ber of cases in MRSI datasets and 2) interpretability of results in the form of relevant

spectral regions.

Methods

A shallow CNN with only one hidden layer and an ad-hoc loss function was constructed

involving two branches for processing spectral and image features of a brain voxel respec-

tively. Each branch consists of a single convolutional hidden layer. The output of the two

convolutional layers is merged and fed to a classification layer that outputs class predictions

for the given brain voxel.

Results

Our CNN method separated glioma grades 3 and 4 and identified Alzheimer’s disease

patients using MRSI and complementary MRI data with high MCC score (Area Under the

Curve were 0.87 and 0.91 respectively). The results demonstrated superior effectiveness

over other popular methods as Partial Least Squares or Support Vector Machines. Also, our

method automatically identified the spectral regions most important in the diagnosis process

and we show that these are in good agreement with existing biomarkers from the literature.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0268881 August 24, 2022 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Acquarelli J, van Laarhoven T, Postma

GJ, Jansen JJ, Rijpma A, van Asten S, et al. (2022)

Convolutional neural networks to predict brain

tumor grades and Alzheimer’s disease with MR

spectroscopic imaging data. PLoS ONE 17(8):

e0268881. https://doi.org/10.1371/journal.

pone.0268881

Editor: Yuchen Qiu, University of Oklahoma,

UNITED STATES

Received: May 13, 2021

Accepted: May 10, 2022

Published: August 24, 2022

Copyright: © 2022 Acquarelli et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data relevant to

this study are available from Zenodo at DOI: 10.

5281/zenodo.6790036 (https://doi.org/10.5281/

zenodo.6790036).

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-5870-4973
https://doi.org/10.1371/journal.pone.0268881
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268881&domain=pdf&date_stamp=2022-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268881&domain=pdf&date_stamp=2022-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268881&domain=pdf&date_stamp=2022-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268881&domain=pdf&date_stamp=2022-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268881&domain=pdf&date_stamp=2022-08-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268881&domain=pdf&date_stamp=2022-08-24
https://doi.org/10.1371/journal.pone.0268881
https://doi.org/10.1371/journal.pone.0268881
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.6790036
https://doi.org/10.5281/zenodo.6790036
https://doi.org/10.5281/zenodo.6790036
https://doi.org/10.5281/zenodo.6790036


Conclusion

Shallow CNNs models integrating image and spectral features improved quantitative and

exploration and diagnosis of brain diseases for research and clinical purposes. Software is

available at https://bitbucket.org/TeslaH2O/cnn_mrsi.

Introduction

Brain diseases are commonly diagnosed by Magnetic resonance imaging (MRI) to identify

anatomical deviations, and in selected cases by MR spectroscopy (MRS) to assess metabolic

abnormalities [1, 2]. MR spectroscopic imaging (MRSI) provides metabolic information in

spectra from voxels in a 2 or 3D grid overlaying the brain. MRS can aid in the determination

of type and severity of brain diseases and in the case of local or heterogeneous lesions to clas-

sify voxels into healthy versus non-healthy or degrees of disease severity, such as in brain

tumors [3–12].

In the diagnosis of brain diseases by MRI, proper image segmentation is important to visu-

alize anatomical structures and to identify pathological areas. Instead, in the diagnosis by

MRSI the focus has been more on feature selection algorithms to identify metabolic abnormal-

ities [13, 14]. In most MRSI studies, MRI is used for anatomical guidance, but it has been dem-

onstrated that combining it with information of MRI’s improves diagnosis [4, 10, 13, 15–18].

Convolutional neural networks (CNNs) [19] are successful in medical image segmentation

[20–23]. CNNs are a type of artificial neural network [24] and are the current state-of-art for

image classification [25–27]. They work as feature extractors by means of convolution. The

input is convolved with one or more kernels and the new representation is used to predict

which class the input belongs to. Therefore, after training, the kernels generate a representa-

tion of the original input that is more suitable for discriminating samples assigned to different

classes. Recently, CNNs have been applied to MRS(I) data to estimate tissue concentration of

metabolites [28–30], to enhance spatial resolution of MRSI [31] and to asses MRSI spectral

quality and filter artifacts [32, 33], but they have not yet been used in the classification of dis-

ease by MRSI. A challenge in the development of classification models with MRSI data is the

limited number of cases available. MRSI data is in general scarce, preventing the use of deep

neural network architectures with many parameters to learn. Therefore, in this paper we inves-

tigate the use of shallow CNN’s with only one hidden layer for classification of disease by

MRSI.

Even though spectra and images are different data types, they are both characterized by fea-

ture locality: spatially for images and spectroscopic for spectra [34]. Feature locality means that

values of neighboring features are highly correlated. These neighboring features are adjacent

frequencies for spectra and nearby pixels for images. In this paper, we present a CNN method

based on [35] to classify brain voxels exploiting such feature locality. To achieve this, we

designed a type fusion approach, where spectroscopic and image data are jointly used to train

a CNN with a single hidden convolutional layer that accounts for spectral locality for spectra

and spatial locality for the images. Furthermore, we added a regularization term to the loss

function to penalize large variations in weight values to avoid overfitting. Specifically, we con-

sidered a CNN with two input branches, each with a single hidden convolutional layer, in

order to process both spectroscopic and image features of a brain voxel at the same time. Each

branch consists of a single hidden convolutional layer. The output of these two branches is

PLOS ONE Convolutional neural networks to predict brain tumor grades and Alzheimer’s disease with MRSI data

PLOS ONE | https://doi.org/10.1371/journal.pone.0268881 August 24, 2022 2 / 19

https://bitbucket.org/TeslaH2O/cnn_mrsi
https://doi.org/10.1371/journal.pone.0268881


then merged and used as input to a prediction layer which outputs class predictions for the

given brain voxel.

In this study, we applied our CNN method to 1H MRSI data from patients with brain

tumors of different grades and to 31P MRSI data of Alzheimer’s disease patients and age-

matched controls with the aim to classify tumor grades and to distinguish Alzheimer’s disease

from healthy controls. This relatively simple CNN architecture is used to match the limited

number of cases in the datasets and to facilitate the interpretability of the results in the form of

relevant spectral regions.

We compared the Matthews correlation coefficient (MCC) score of the classification by

CNN against classification with three other popular machine learning (ML) methods: Support

Vector Machines with radial basis function kernel (SVM) [36], and two variations of Partial

Least Squares Discriminant Analysis (PLS-DA) [37–40]. For further validation and interpreta-

tion of our model, we identified regions of the spectrum that are most informative for the clas-

sification as identified by the trained model. For this purpose we used stability selection [41]

on the output of the hidden layer of the trained model to select relevant features. Then, we

used deconvolution to map these selected features back into regions of the original spectrum.

We evaluated whether the spectral regions mostly contributing to the classification are of clini-

cal importance and whether the addition of MR images to the spectra improves the classifica-

tion MCC score.

Materials and methods

Datasets

In this study, a brain tumor dataset [3] and an Alzheimer’s disease dataset [42] with both MR

spectroscopic image and MR image data were explored. A summary of these datasets is pre-

sented in Table 1.

The brain tumor dataset consists of 25 patients and 4 volunteers and was acquired under

the INTERPRET protocol and quality control procedure [7, 43]. Two-dimensional 1H MR

spectroscopic images (MRSI) were obtained at 1.5 T of a single slice of 12.5–15 mm covering

the tumor area with a field of view (FOV) of 200 mm, a matrix size of 16 × 16, zero filled to

32 × 32 and STEAM region of interest (ROI) selection with a TE of 20 ms. Four different MR

images (i.e. T1 Fig 1, T2, Pd and Gd) were used for the brain tumor dataset.

Postprocessing of the MR data was performed as described in [3, 4, 13]. Voxels were

selected for six tissue classes as described in [3, 4]. Three classes correspond to the grade of the

glial tumor (Grade II to grade IV), one corresponds to meningiomas, one to cerebral spinal

fluid and one to normal tissue. The dataset contains on average 27.25 voxels per subject, but

patients with grade II/III/IV tumor had fewer voxels per subject: respectively 17.60, 13.80 and

Table 1. Description of the MRSI datasets that have been used in our analysis. Metabolites peaks are quantified

from MR spectra and these peaks correspond to brain metabolites. Spectra refer to MR spectra. Images refer to MR

images.

Summary of MRSI Datasets brain tumor Alzheimer’s disease

# Healthy Subjects 4 31

# Patient Subjects 25 31

# Voxels 669 248

# ROIs 1 4

# Tissue classes 6 2

Data types Metabolite Peaks/Spectra/Images Spectra/Images

https://doi.org/10.1371/journal.pone.0268881.t001
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10. Apart from whole spectra also metabolite peak integrals, as extracted from these spectra in

[13], were used in this study.

The Alzheimer’s disease dataset consists of 62 subjects, of which half were diagnosed with

mild Alzheimer’s disease (n = 31, mean age 73.4 years, 13 men) and half were healthy control

subjects, age and gender-matched to the Alzheimer’s disease group. Three dimensional 31P

MRSI of the whole brain was obtained at 3 T with a nominal voxel size of 17.5 mm3. T1

weighted anatomical MR images were obtained at 1 mm isotropic voxels resolution.

For each subject, four ROIs were selected from the MRSI dataset, (each comprising a single

voxel centered on the retrosplenial cortex (RSC), the anterior cingulate cortex (ACC), and the

left and right hippocampus (HL and HR). Therefore, we have five different datasets, one for

each brain area and a multi-region dataset consisting of all the four regions combined together

as if they were different channels. After Fourier transformation of the raw MR data into the

frequency domain, zero filling, apodization with a Gaussian filter and phase correction were

applied. All post-processing was done in Matlab using MRS_MRI_libs libraries in which phase

correction was partly automated.

For both datasets, full spectra, quantified peaks and images corresponding to each voxel

have been considered for evaluating classification performances of our method and existing

methods used for comparison.

Fig 1. 1H MRSI of the brain of a patient with a low grade glioma. (A) Post gadolinium T1 weighted MRI. The tumor

appears as low intensity signal on the image. The 1H MRSI acquisition grid is shown on top of the image with the

selected region of interest (white box). (B) Map of 1H MR spectra from selected box (blue) covering the tumorous area.

(C) 1H MR spectrum of voxel in tumor. (D) 1H MR spectrum of voxel from an apparently benign brain area. The

resonances of the methyl protons of lactate (Lac); N-aspartylaspartate (NAA); creatine (Cr) and choline (Cho) are

indicated together with those of protons of myo-inositol (mI) and glycine (Gly).

https://doi.org/10.1371/journal.pone.0268881.g001
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Convolutional neural networks

A convolutional neural network (CNN) uses hidden layers in which a convolution between

their input and a set of K kernels of a certain size N is performed. After each convolutional

layer, pooling layers can be used to progressively reduce the spatial size of the representation

to reduce the number of parameters and computation in the network, and hence to also con-

trol overfitting. It is worth mentioning a few important hyper-parameters of CNNs:

• the size N of a kernel defines the range of action of the convolution and depends on the dis-

tribution of neighboring resonance frequencies;

• the stride s defines the step of the convolution when shifting the kernel over the whole input;

• the learning rate η determines how fast the optimization should converge to a local

optimum;

• the regularization terms λ1 and λ2 determine the amount of regularization applied to the

objective function optimized for reaching a local optimum.

N and s are related to convolution performed in the convolutional layer. η, λ1 and λ2 are

parameters used for the whole CNN.

CNNs can use the structure of neighboring resonance frequencies to build a feature repre-

sentation. This can be obtained by training a CNN to solve a prediction task. Thus, this new

representation contains features that can lead to better predictions.

We applied a single-layer Convolutional Neural Network (SL-CNN) architecture that we

introduced for vibrational spectroscopic data classification [35]. A SL-CNN has a single hidden

convolutional layer and uses an extra custom regularization term which penalizes large varia-

tions of values of neighboring kernels weights. Its architecture and functioning are shown in

Fig 2. The architecture of SL-CNN allows it to tackle small and class-unbalanced datasets for

which deeper CNNs would be likely to overfit on the most common class.

SL-CNN for multiple data types. The very flexible architecture of artificial neural net-

works allows a design of various architectures for different data types. We integrated both

spectra and images by merging different networks for image and spectral data. The SL-CNN

architecture which works with spectra as inputs (see Fig 2) is modified by adding another

branch that evaluates the spatial distribution of signal intensity in T1, T2, PD and Gd images

(see Fig 3). The new branch of the neural network has a 2D convolutional and a pooling layer

whose output is merged to the output of the other branch of the network. An MRI image and

spectrum belonging to the same brain voxel are presented simultaneously to the two branches

of the network. Next, the merged features are used as input for the last layer of the network,

which outputs a classification.

Identifying relevant spectral regions

An important part of the assessment and interpretation of a model is to find out which input

features mostly determine its classification decision. Particular compounds (identifiable in

spectra) are associated with a certain disease progression and we would like to determine

whether this is also true for our model. On the other side, our analysis might identify com-

pounds to be of importance for certain disease conditions, which were previously unknown to

be involved.

In order to identify important regions in the original spectra we applied stability feature

selection [41]. In problems where the number of features is much larger than the number of

samples, which is the case for most MR spectroscopic datasets, stability selection is particularly

effective.
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Stability feature selection works as follows: feature selection is applied many times to differ-

ent randomly selected subsets of the data (in our case we apply it to the convolutional layer

output of the trained CNN). This feature selection is performed by retraining the last layer of

CNN which can be seen as a logistic regression network having as input the output of the con-

volutional layer in response to different subsets of spectra, and as output the class prediction.

After each retraining, features with positive coefficients are selected. The results over the sub-

sets are then merged by considering for each feature the fraction of times it was selected. The

features with the highest scores are considered to be the important ones [41].

After applying stability selection, we can unequivocally map the selected features of the con-

volutional layer output back to regions of the original input spectrum as schematically shown

in Fig 4. In fact, each feature of the convolutional layer output has been obtained using a kernel

of a certain size applied to a certain region of the original input spectrum, thus it is possible to

find out which region of the original input spectrum contributed to each feature of the convo-

lutional layer output.

Other machine learning methods applied for comparison with SL-CNN

Support vector machines (SVMs) are applied in a large variety of classification problems

because they are easy to use and commonly achieve very good results [44–46]. SVMs use the

kernel trick to map the original data into a higher dimensional feature space in order to be

able to separate samples belonging to different classes. Various non-linear functions can be

used to specify the kernel. For this work, we used a common kernel function, the radial basis

function (RBF). The kernel has a parameter γ that determines how far the influence of a single

training example reaches. This kernel parameter is optimized along with the SVM regulariza-

tion parameter C. Partial least squares analysis PLS-DA is a variant of Partial Least Squares

Fig 2. SL-CNN architecture and functioning for a 2 classes classification task (T or F to separate Alzheimer’s

disease and normals). The convolution is performed by sliding each kernel of the convolutional layer over the input

spectrum of the dataset. At every location (yellow), a vector multiplication is performed and sums the result onto the

feature map (orange). Then, the output of the convolutional layer is reshaped into a vector (flattening) and used for

prediction (T or F). In this example, 2 kernels (red) are applied.

https://doi.org/10.1371/journal.pone.0268881.g002
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PLS that uses discriminant analysis to perform classification. PLS is a regression method that

aims to find a model by projecting the predicted and observed variables into a latent space [37,

47]. N-dimensional partial least squares discriminant analysis NPLS-DA is a generalization of

PLS-DA for tensor data [38]. In a tensor dataset, data are available along multiple dimensions.

For example in the Alzheimer’s disease dataset, for each subject, there are four spectra corre-

sponding the four different regions of the brain. Therefore, each subject is represented by a

vector of four spectra and the whole dataset is a rank 3 tensor (samples, wavelengths, regions).

Using PLS-DA would require reshaping this rank 3 tensor to a matrix (samples, wavelengths

of the four regions), while with NPLS-DA the tensor can be used directly.

Kernel partial least squares discriminant analysis KPLS-DA, like SVM, uses the kernel trick

to transform the original data [40]. The resulting non-linear mapping should provide a repre-

sentation of the data with improved capability to discriminate the classes. In this paper, we use

the RBF kernel.

A crucial step in KPLS-DA is the optimization of the kernel which consists of selecting the

best kernel hyper-parameters based on the MCC score of the resulting method.

KPLS-DA can also work with multiple views. An interesting advantage of KPLS-DA over

NPLS-DA is that different views can be analyzed independently and then the resulting

Fig 3. SL-CNN architecture and functioning for spectra and images for a 2 classes classification task (T or F to

separate Alzheimer’s disease and normals). The convolution is performed by sliding each kernel of the convolutional

layer over the input spectrum and the corresponding image. At every location (yellow), a vector or matrix

multiplication for spectra or images respectively is performed and sums the result onto the feature map (orange).

Then, a pooling layer is used to reduce the dimensionality of the convolutional layer output for images. Finally, the

outputs from the different network branches are reshaped into a vector (flattening), merged and used for prediction (T

or F). In this example, 2 kernels (red) are applied for spectra and 3 kernels (red) for images.

https://doi.org/10.1371/journal.pone.0268881.g003
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optimized kernel can be merged using a weighted average into a unique kernel as follows:

K ¼
XM

i

aiKi;

where M is the number of kernels to merge, and ai is the weight associated with kernel Ki.

These weights ai are tuned using the L1 norm
PM

i kai k1 ¼ 1 [48]. Multi-block partial least

squares discriminant analysis MBPLS-DA is a version of PLS-DA that handles different data

types in a non-trivial way (i.e. by reshaping and then concatenating features of different types)

[39]. MBPLS-DA weighs different types for improving classification over the classical PLS-DA.

This allows it to penalize or favor types that otherwise would give the same contribution for

classification which can be disadvantageous when some data types are less informative than

the rest.

MBPLS-DA is a widely used technique in the field of chemometrics for the purpose of

exploring and modeling the relationships between several datasets to be predicted from several

other datasets. In the case of only one data type available, MBPLS-DA is equivalent to

PLS-DA.

Validation protocol

For both datasets, we accounted for the potential classification bias that could result from

using voxels of the same patient in the training and validation set [13]. In fact, voxels of a

patient have similarities that are related to the specific patient and not ascribable to the whole

group involved in the classifications. Specifically, we use leave-one-patient-out with two stages

of nested cross-validation (LOPO-CV). Nested cross-validation has become a common and

recommended a method of choice for algorithm comparisons for small to moderately-sized

datasets [49]. Leave one out cross validation is a widely used technique to assess classification

especially with small datasets [50–53]. The inner cross-validation is used to find the best

Fig 4. Example of identification of important spectral regions using stability selection on the output of SL-CNN.

Stability selection is applied to the output of the convolutional layer after the neural network has been trained. Based

on the convolutional layer parameters (i.e. number and size of the kernels and stride of the convolution), it is possible

to map them to a specific region of the input spectrum.

https://doi.org/10.1371/journal.pone.0268881.g004
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combination of hyper-parameters values. To this aim, multiple runs of cross-validation are

repeated with different hyper-parameters values. The outer cross-validation then uses the best

hyper-parameters to asses the performances of the methods, in terms of MCC. The coefficient

provides a balanced measure which can be used even if the classes are of very different sizes

[54].

Given that LOPO-CV procedure maximizes test-set variance and does not yield stable esti-

mates of predictive accuracy, we also considered 3-fold cross validation on the best performing

method for each dataset and reported the resulting MCC.

Results

We used single spectroscopic imaging and MR imaging data and their combination to com-

pare the SL-CNN method with the other machine learning methods. The data were rescaled in

a range between [0, 1] before being used. For SVM we concatenated images and spectra into a

unique sample.

Depending on the number of types and data views, we employed different versions of

PLS-DA:

• PLS-DA, for single type, single view data;

• NPLS-DA, for single type, multiple views data;

• MBPLS-DA, for multiple types.

Only MBPLS-DA can handle both multiple types and multiple views and treat data views as

different types. We refer to all these methods as PLS-DA in the tables and specify which variant

was used if needed.

We also compared our SL-CNN results on brain tumor typing with results published previ-

ously, in which quadratic discriminant analysis was used on metabolite peaks and average sig-

nal intensity of MRI T1, T2, PD and Gd images of the same voxel location [13]. For a proper

comparison we had to submit the results of this analysis to the same LOPO-CV evaluation pro-

cedure as used in the present study.

In order to tune the hyper-parameters of the models (see Supporting information Section

‘Hyper-parameters’), we used the Random Grid Search Cross-Validation framework

(RGS-CV) [55]. The optimal hyper-parameter values we found for the SL-CNN algorithm

applied to MR data of patients with a brain tumor or Alzheimer’s disease are presented in

Table S1 in S1 File. As can be seen, the ranges of optimal values do not substantially differ

between the considered datasets except for the regularization parameters λ1 and λ2 which are

intrinsically dependent on the type of dataset.

Brain tumor dataset

A T1 weighted MR image and 1H MRSI data of the brain of a patient with a low grade oligo-

dendroglioma are shown in Fig 1. 1H MR spectra of voxels from the MRSI recording of that

tumor and resonance peaks for various brain metabolites can be observed such as the methyl-

protons of choline, creatine, N-acetylaspartate and lactate (see also Fig 1C and 1D). In tumors

typically the N-acetylaspartate signal is decreased and the choline signal increased, whereas a

resonance for lactate may appear. The spectral region close to lactate also contains resonances

for lipids and alanine, which may also increase in tumors [1]. The MRI and MRSI information

sampled from multiple glioma patients for a complete brain tumor dataset was used to assess

two challenging classification tasks: between gliomas with grade II and grade III (Table 2) and

between gliomas with grade III and grade IV (Table 3). The results demonstrate that for each

PLOS ONE Convolutional neural networks to predict brain tumor grades and Alzheimer’s disease with MRSI data

PLOS ONE | https://doi.org/10.1371/journal.pone.0268881 August 24, 2022 9 / 19

https://doi.org/10.1371/journal.pone.0268881


type of data or combination of data the SL-CNN MCC score to discriminate between these

grades was comparable to or better than that of the other existing methods. In particular the

SL-CNN result of the combination of the full MR spectra and signal intensity T1, T2, PD and

Gd MRI data was superior to that of the other methods. The SL-CNN accuracies of this combi-

nation and its ROC analysis (Fig 5a) reveals that the SL-CNN applied to this data performs

best for the discriminative classification of the glioma grades III and IV with an AUC of 0.87

as compared to 0.74 for the discrimination of grades II and III.

A quadratic discriminant classification analysis of the same glioma dataset [13], but using

the same LOPO-CV evaluation as applied in the current paper, resulted in 0.3659 MCC score

in separating grade II and grade III and 0.1445 MCC score in separating grade III and grade

IV, which is significantly worse than our results using SL-CNN.

The MCC score obtained using 3 fold cross-validation protocol for SL-CNN with MR spec-

tra and images as input is 0.7151 for the classification of grade II and grade III and 0.8822 for

the classification of grade III and grade IV.

The stability feature selection applied to the output of the SL-CNN convolutional layer

identified the spectral region at the lactate and lipid signals and a region at the choline and cre-

atine signals as contributing most to the discrimination between of grade II and III (Fig 6).

The highlighted spectral areas were selected using a very conservative selection threshold

(0.96) as specified in [41].

Table 2. Average classification MCC score assessed by LOPO-CV to separate voxels with grade II versus grade III tissue in the brain tumor dataset. MBPLS-DA is

used instead of PLS-DA for the last line given the multiple types (i.e. MR spectra and MR images). Average MRI data are obtained from MR images by averaging pixels

intensities for all voxels. Metabolites peaks, corresponding to brain metabolites, are quantified from MR spectra. Full MR spectra means that complete spectra are used as

input data. Standard deviation is reported below each score between brackets. The best results are underlined.

Input Data SL-CNN SVM PLS-DA KPLS-DA

Metabolite peaks and average MRI data 0.3697

(0.0078)

0.2968

(0.0048)

0.2968

(0.0088)

0.3697

(0.0079)

MR spectra 0.5822

(0.0017)

0.4096

(0.0075)

0.2432

(0.001)(N)
0.3882

(0.0069)

MR images 0.3697

(0.0046)

0.3697

(0.0067)

0.1903

(0.0078)

0.2968

(0.0036)

MR spectra and MR images 0.6657

(0.0078)

0.3697

(0.0008)

0.2434

(0.0045)(MB)
0.4636

(0.0068)

https://doi.org/10.1371/journal.pone.0268881.t002

Table 3. Average classification MCC score assessed by LOPO-CV to separate voxels with the grade III versus grade IV in the brain tumor dataset. MBPLS-DA is

used instead of PLS-DA for the last line given the multiple types (i.e. MR spectra and MR images). Average MRI data are obtained from MR images by averaging pixels

intensities for all voxels. Metabolites peaks, corresponding to brain metabolites, are quantified from MR spectra. Full MR spectra means that complete MR spectra are used

as input data. Standard deviation is reported below each score between brackets. The best results are underlined.

Input Data SL-CNN SVM PLS-DA KPLS-DA

Metabolite peaks and average MRI data 0.6600

(0.0077)

0.6580

(0.0079)

0.5180

(0.0033)

0.6580

(0.0004)

MR spectra 0.7382

(0.0014)

0.6580

(0.009)

0.4381

(0.0021)(N)
0.6580

(0.0043)

MR images 0.6580

(0.002)

0.6561

(0.0018)

0.3384

(0.0017)

0.4381

(0.004)

MR spectra and images 0.8387

(0.0093)

0.7985

(0.0028)

0.4381

(0.0066)(MB)
0.6981

(0.0053)

https://doi.org/10.1371/journal.pone.0268881.t003
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Fig 5. ROC curves corresponding to the best SL-CNN’s classification models. (a) corresponds to the separation of brain

glioma tumor grades and (b) to Alzheimer’s disease from normal brain. The highest AUC for the separation of brain tumor

grades was achieved for grade 3 versus grade 4. The highest AUC to identify Alzheimer’s disease was achieved for a

combination of all 4 investigated areas. AUC is the area under the ROC curve. AUC measures how true positive rate and

false positive rate trade off.

https://doi.org/10.1371/journal.pone.0268881.g005

Fig 6. Important spectral regions for the separation of brain tumor dataset grade II vs grade III. The average

spectrum for each area is plotted as a reference in (solid) black and the gray zone around it shows the standard

deviation. The red dotted lines indicate the center of the most important regions (found by stability selection) and the

red shaded areas around them indicate their size. These areas were obtained using stability feature selection on the

output of the convolutional layer of the trained SL-CNN using only spectra as inputs.

https://doi.org/10.1371/journal.pone.0268881.g006
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Alzheimer’s disease dataset

The binary task of discriminating Alzheimer’s disease patients from healthy age-matched sub-

jects was addressed by considering 31P MR spectra of single voxels for each of four selected

brain regions of interest (ROIs). Therefore, we have five datasets, one for each brain ROI and a

multiple ROI dataset built by merging these four datasets. An example of 31P MR spectra of

multiple regions, showing resonances for various phosphorylated metabolites indicated, is pre-

sented in Fig 7. The results of the machine learning analysis demonstrate (see Table 4) that the

Fig 7. 31P MR spectra of the brain of patients with Alzheimer’s disease. Important spectral regions identified for the

Alzheimer’s disease dataset are shown for the ACC (a), the RSC (b), the HL (c), the HR (d) and their combination (e).

A reference spectrum with annotated peaks is shown in (f). The average spectrum for each area is plotted as a reference

in (solid) black and the gray zone around it shows the standard deviation.

https://doi.org/10.1371/journal.pone.0268881.g007
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SL-CNN method is superior in the classification of Alzheimer’s disease compared to the other

methods for each ROI, each type of data and for the combination of data. The best MCC score

(0.7156) was achieved for the combination of MR spectra and images of all four ROIs together.

The MCC score using the T1 weighted MR image data was the least and this data hardly con-

tributed to the MCC score of detecting Alzheimer’s disease for any data type combination. An

ROC analysis of the discrimination between Alzheimer’s disease and healthy persons resulted

in an AUC of 0.91 using the combination of all four areas. ROC AUC curve of combined brain

areas is statistically significantly different (i.e. p-value <0.05) with respect to AUC ROC curves

of single areas according to the DeLong’s algorithm for comparing AUC ROC curves [56].

The MCC scores obtained using 3 fold cross-validation protocol for SL-CNN with MR

spectra and images as input of all the brain areas is 0.7589 for the classification of Alzheimer’s

disease patients from healthy age-matched subjects.

Stability selection applied to the output of the convolutional layer, again using a very con-

servative selection threshold of 0.96, revealed that the spectral regions with the phosphocrea-

tine (PCr) and inorganic phosphate (Pi) peaks are the most important contributions to the

classification of Alzheimer’s disease and healthy persons (Fig 7).

Table 4. Average classification MCC score assessed by LOPO-CV to separate Alzheimer’s disease patients (31) from healthy controls (31). (N) steads for NPLS-DA

(PLS-DA for tensor data), (MB) steads for MBPLS-DA (PLS-DA for data with multiple types). Standard deviation is reported below each score between brackets. The best

results are underlined.

Input Data Brain Areas SL-CNN SVM PLS-DA KPLS-DA

MR spectra ACC 0.4610

(0.0039)

0.2113

(0.0086)

0.1000

(0.0014)

0.3592

(0.0072)

RSC 0.6247

(0.0047)

0.4600

(0.0036)

0.4800

(0.0075)

0.5400

(0.0039)

HL 0.5649

(0.0048)

0.1200

(0.0065)

0.1268

(0.0053)

0.1600

(0.001)

HR 0.6647

(0.0036)

0.2200

(0.0085)

0.0600

(0.0085)

0.2200

(0.005)

ALL 0.7096

(0.0018)

0.4712

(0.0012)

0.4780

(0.0083)(N)
0.5303

(0.0013)

MR Images ACC 0.3000

(0.0064)

0.0423

(0.0052)

0.0423

(0.0001)

0.1000

(0.0042)

RSC 0.3400

(0.0097)

0.0400

(0.0052)

0.0423

(0.0099)

0.1056

(0.0035)

HL 0.2336

(0.0099)

0.0400

(0.0008)

0.0400

(0.0057)

0.0423

(0.0051)

HR 0.2400

(0.0067)

0.0423

(0.0047)

0.0423

(0.0026)

0.1056

(0.0054)

ALL 0.2336

(0.0021)

0.0400

(0.0021)

0.0423

(0.0091)(N)
0.1056

(0.0071)

MR spectra and images ACC 0.4689

(0.0081)

0.2241

(0.0018)

0.4451

(0.0071)(MB)
0.4597

(0.0003)

RSC 0.6319

(0.0006)

0.4711

(0.0087)

0.4800

(0.0041)(MB)
0.5521

(0.0006)

HL 0.5649

(0.009)

0.1423

(0.0031)

0.2829

(0.0081)(MB)
0.3976

(0.0034)

HR 0.6724

(0.0039)

0.2400

(0.009)

0.4869

(0.0001)(MB)
0.4992

(0.0055)

ALL 0.7156

(0.0066)

0.4712

(0.0025)

0.4376

(0.0064)(MB)
0.5500

(0.0086)

https://doi.org/10.1371/journal.pone.0268881.t004
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Although our previous study on this Alzheimer’s disease dataset did not report classifica-

tion MCC score values [42], we estimated this MCC score by using the PCr peak values

reported in this study, as these showed a statistically significant difference between healthy and

Alzheimer’s disease subjects. Assuming that the reported PCr peak values are normally distrib-

uted and using the mean and standard deviation values for each brain area we estimate MCC

score of 0.0528 for ACC, 0.3185 for RSC, 0.3447 for HL, 0.4125 for HR and 0.0954 for their

combination. These classification MCC scores are far below for what we achieved with the

SL-CNN method in the present study Table 4.

Discussion

In this paper we present a new SL-CNN algorithm to analyze MRSI data and demonstrate that

it can successfully be applied for diagnostic purposes in the classification of diseases in the

human brain. The method, which is based on a CNN algorithm introduced to analyze vibra-

tional spectroscopy data [35], can integrate spectral and image features. Commonly, in appli-

cations, CNNs have a complex structure with several layers (e.g U-Net [31]) requiring a lot of

data to properly train the network. We developed a less complex CNN, facilitating that less

data is required to train the network model. Specifically, this algorithm was able to classify gli-

oma grades from 1H MRSI data and patients with Alzheimer’s disease from 31P MRSI data.

The SL-CNN algorithm outperformed the application of other popular ML methods in its clas-

sification MCC score of both investigated datasets. There are several reasons why it is prefera-

ble to use convolutional layers for the analysis of MRSI data instead of artificial neural

networks with fully connected layers. The main reason is that neighboring resonance frequen-

cies of the spectra are correlated. In fact, it is reasonable to assume that values of neighboring

resonance frequencies cannot differ substantially. The same principle applies to neighboring

pixels in MRI. Therefore, we exploited spectral locality with convolutions while doing feature

extraction facilitating interpretation of the developed model. Additionally, such a network

structure has the advantage of a reduced set of network parameters that need to be trained

from the data [35].

In general, the combined use of different MR data types (spectra and images) improves the

performance of the SL-CNN method, which was also noted in the application of other ML

methods [4]. Both for the brain tumor and Alzheimer’s disease datasets the information of the

MR image in the voxels that were analyzed performed poorly compared to that of the MRS.

Apparently the MR spectra contain information about metabolites that is more specific for the

diseases examined here than the information in the rudimentary MR images used in this

study. Obviously, the inclusion of data obtained by more advanced MRI methods, such as dif-

fusion- and perfusion-weighted imaging in the case of the brain tumors [57, 58], may further

improve the performance of the SL-CNN algorithm. In addition, in particular for the Alzhei-

mer disease dataset, we only used image information from the selected voxels, instead of larger

areas defined by anatomical (lesion) boundaries. In the case of the brain tumor dataset the het-

erogeneity of tumor lesions may have hampered proper classification of voxels. Although the

tumors have been generally classified to a specific grade by consensus in the pathologist panel,

including in most cases a biopsy report [43, 59], tumor lesion are often heterogenous. Assum-

ing that the tumor voxels have been properly selected, avoiding CSF and healthy tissue contri-

butions, it still may be that the identified lesions contain tissue with more than one tumor

grade [60]. For instance, nosologic imaging of the current MRSI dataset indicated that lesions

identified as grade II may contain grade III components and vice versa [9].

Furthermore, the limited number of subjects and the variable number of voxels per subject

for some classes is expected to hamper the classification of tumor grades. For example, since
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there are limited grade III voxels/patient and only very few patients having grade III voxels,

the nested cross-validation might influence negatively their correct classification.

Previous classification studies employing this brain tumor dataset did not account for simi-

larities related to the specific patient and not ascribable to the whole group involved in the clas-

sifications. For example, multi-class classification using SVM was performed without applying

LOPO-CV [17]. The chosen validation protocol (i.e. stratified random sampling) is expected

to bias the classification results. Furthermore since the problem was approached by a multi-

class classification, the chances for the trained model to overfit were higher. Because of the

chosen validation protocol, the trained model will be biased by modeling similarities of voxels

of the same patient rather than determined by characteristics of classes to improve classifica-

tion MCC score.

In [13], the LOPO-CV procedure was not implemented correctly. This mostly affected the

grade II vs grade III and grade III vs grade IV classification. We fixed the issue and computed

the new classification results to be able to compare with SL-CNN classification MCC score. The

resulting classification accuracies are: 68.3% and 57.8% for grade II vs grade III and grade III vs

grade IV respectively, which are lower than the classification accuracies achieved with SL-CNN.

The stability selection of the SL-CNN method identified spectral regions that were impor-

tant in the classifications. These regions are similar to those reported in previous studies of the

same datasets of brain tumor POSTMA201187 and Alzheimer’s disease alzheimer dataset.

The highlighted important regions for the brain tumor dataset to discriminate grade II vs

grade III correspond to the following spectroscopic ranges mentioned in [13]: 3.115–

3.265 ppm (Cho), 2.955–3.105 ppm (Cr2) and 1.395–1.545 ppm (lactate + lipids + alanine). In

a previous study of the same data, Cr2 and lactate + lipids + alanine were also important in the

grade classification but not Cho [13]. However, differences in the intensity of the Cho signal

have been consistently found to be important in the differentiation of grade II and grade III

[58, 61]. The levels of the resonances of other compounds, such myo-inositol/glycine and

NAA, msy also contribute to grade differentiation, but are less important.

The Alzheimer’s disease dataset consists of multiple brain areas. Thus, we used the single

and combined data from all the areas to investigate which spectral regions are important

according to stability selection. The main peak (PCr) located at 0.0 ppm was always

highlighted as an important spectral region. This is in agreement with the analysis by [42]

where PCr, a metabolite involved in brain energy metabolism, was found to be the main indi-

cator of Alzheimer’s disease for all the brain areas except ACC. Thus, stability selection sug-

gests that our method bases its predictions mostly on the PCr peak for all the brain areas and

their combination. Only for the RSC brain area, stability selection highlights inorganic phos-

phate (Pi) (also involved in brain energy metabolism) as well as PCr. By including more brain

regions and more advanced MRI data it is expected that the performance of the SL-CNN will

be improved.

By looking at the average best hyper-parameter values identified using RGS-CV in Table S1

in S1 File, we can see that they are very similar for both the datasets. Only the stride value s is

higher for the brain tumor dataset than for the Alzheimer’s disease dataset. This is probably

due to a different distribution of important spectroscopic regions in MR spectra of Alzheimer’s

disease compared to those of the brain tumors.

Conclusion

In this work, we explored the use of convolutional neural networks for the classification of

brain diseases using MRSI data, complemented by MRI data. We demonstrated the benefit of

considering spectroscopic and image modalities together leading to an improved MCC score.
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We validated and interpreted our models by investigating spectroscopic regions important

in classification as identified by stability feature selection and by comparing the identified

regions with those reported by others. Although a full proof of the diagnostic practicality of

our new CNN approach requires inclusion of more data, it is encouraging that a simple CNN

architecture with an ad-hoc loss function enabled to uncover regions important in the diagno-

sis of both brain tumor and Alzheimer’s disease, in agreement with previous findings reported

in the literature.

Future work includes the use of more modalities. When available, such information could

help to increase diagnostic performance, as shown by studies on Alzheimer’s disease notably

ADNI, which utilizes data, including MRI and PET images, genetics, cognitive tests, CSF and

blood biomarkers as predictors of the disease. Also, it might be interesting to investigate

whether coupling the latent features with a classical radiomics approach can improve the clas-

sification performance.
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