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COVID-19 breakthrough cases among vaccinated individuals 
demonstrate the value of measuring long-term immunity to 
SARS-CoV-2 and its variants. We demonstrate that anti-spike 
T-cell responses and IgG antibody levels are maintained but de-
crease over time and are lower in BNT162b2- versus mRNA-
1273–vaccinated individuals. T-cell responses to the variants 
are relatively unaffected.
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BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) 
mRNA vaccines are highly protective against severe disease 
and hospitalization from coronavirus disease 2019 (COVID-
19) while also reducing the risk of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) infection [1]. As time 
postvaccination lengthens, the vaccines remain protective 
against severe disease, but breakthrough cases are becoming 
more frequent—especially in BNT162b2-vaccinated individ-
uals [2]. This could stem from the emergence of SARS-CoV-2 
variants of concern (VOCs) that are more infectious and re-
sistant to vaccine-induced immunity and/or general waning of 
immunity postvaccination. Both vaccines induce strong neu-
tralizing antibody and T-cell responses against SARS-CoV-2 
within 2 weeks of full vaccination, which decline over time [3–
8]. Vaccine-induced antibodies only partially neutralize certain 
VOCs (B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.1.529) compared 
with the original SARS-CoV-2 virus [5–7, 9–12].

To date, long-term T-cell responses to SARS-CoV-2 and 
VOCs have mostly been assessed by flow cytometry using pre-
viously cryopreserved samples [6, 7, 11, 13] and measuring 
absolute frequencies at the lowest limits of quantifiable detec-
tion. In contrast, ELISpot assays have higher sensitivity and 
dynamic range at low frequencies and are the clinical standard 
for quantifying low levels of functional memory T cells (eg, the 
clinical test for prior exposure to Mycobacterium tuberculosis). 
Here, we developed an interferon-gamma (IFN-γ) ELISpot 
assay as a laboratory-developed test and used it to measure 
T-cell immunity over time following vaccination and in re-
sponse to SARS-CoV-2 VOCs that were salient at the time.

METHODS

Study Participants

All donors participated voluntarily and were consented ac-
cording to our approved Partners Institutional Review Board 
protocol. The vaccination cohort (Supplementary Table 1) 
included 13 donors (6 male, 7 female) after their first dose 
(post-V1; 2 BNT162b2, 11 mRNA-1273) with a median age 
of 35.6 (range: 23.0–61.6) years; 30 donors (15 male, 15 fe-
male) following their second dose (post-V2; 14 BNT162b2, 
16 mRNA-1273) with a median age of 35.6 (23.0–81.0) years; 
and 32 donors for long-term follow-up: 15 BNT162b2 (7 male, 
8 female) with a median age of 59.0 (21.6–73.3) years and 17 
mRNA-1273 (7 male, 10 female) with a median age of 35.3 
(23.0–73.0) years. The antibody quantification cohorts were the 
same, except the post-V2 follow-up containing 30 donors (14 
male, 16 female; 13 BNT162b2, 17 mRNA-1273; median 57.5 
days after initial dose; range: 38–91 days) with a median age 
of 35.6 (23.0–81.0) years. No donors in the vaccinated cohorts 
had confirmed history of COVID-19 or tested positive by pol-
ymerase chain reaction (PCR) or rapid antigen test during the 
study. The healthy donor and convalescent cohorts used to es-
tablish the positive cutoff for the ELISpot are described in the 
Supplementary Methods.

IFN-γ ELISpot Assay

Freshly collected peripheral blood mononuclear cells (PBMCs) 
were isolated from whole blood (Supplementary Methods), re-
suspended in serum-free T-cell assay media (ImmunoSpot) at 
2.5 × 106/mL, and 100 μL/well was added to a human IFN-γ 
single-color ELISpot plate (ImmunoSpot). Cells were incu-
bated with 1:1 dimethyl sulfoxide:phosphate-buffered saline 
(DMSO:PBS; negative control); 2 μg/mL of the spike A, spike 
B, or nucleocapsid peptide pools (Supplementary Methods); or 
5 μg/mL phytohemagglutinin (PHA; positive control; Sigma-
Aldrich). Plates were incubated at 37oC for 16–20 hours, 
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developed according to the manufacturer’s instructions, and 
air dried before counting on an ImmunoSpot CoreS6 ELISpot 
counter (ImmunoSpot). A laboratory member not involved in 
the assay set-up performed quality control of the automated 
count data. The background spot-forming unit (SFU) count 
was subtracted from the SFU of antigen wells. The average SFU 
for spike pool A, spike pool B, and the nucleocapsid pool are 
reported. In some instances, the responses to spike pool A and 
B were added together to better reflect responses to the entire 
spike protein. In cases where there were no spot responses to 
antigen, the PHA well was always strongly positive. The median 
background in the negative control was 0 SFU/2.5 × 105 cells 
(range: 0–6). A positive threshold of 6 SFU per 2.5 × 105 PBMCs 
was determined via receiver operator characteristic (ROC) 
curve analysis (Supplementary Methods and Supplementary 
Figure 1E).

Statistical Analysis

Statistical analysis was performed using Prism version 8.0 
(GraphPad Software, Inc). Normality of data was evaluated 
using the Shapiro-Wilk test. The differences between groups 
were compared using the Mann-Whitney U test.

RESULTS

To establish a positivity threshold for SARS-CoV-2 spike-
reactive T cells, we compared responses in prevaccinated healthy 
donors with no known SARS-CoV-2 exposure (Supplementary 
Table 2) with COVID-19 convalescent donors (Supplementary 
Table 3). The PBMCs were stimulated with overlapping SARS-
CoV-2 wild-type (WT) spike peptide pools (Supplementary 
Figure 1A–D) within 8 hours of collection, without freezing the 
cells, and reactivity was quantified by IFN-γ ELISpot. An av-
erage SFU of 6 provided the optimal balance between sensitivity 
(92.0%) and specificity (90.0%) (Supplementary Figure 1E).

We then measured functional T-cell responses to spike 
protein in BNT162b2 and mRNA-1273 vaccine recipients 
(Supplementary Table 1) before vaccination (V0), between 
the first and second dose (post-V1; median of 22.0 days; 
mRNA-1273: 21.5 days; BNT162b2: 22.5 days), following the 
second dose (post-V2; median of 58 days after the first dose; 
mRNA-1273: 59 days; BNT162b2: 55 days), and at long-term 
follow-up (median of 223 days after the first dose; mRNA-
1273: 220 days; BNT162b2: 230 days). Following vaccination, 
spike-reactive T cells increased after the first dose and peaked 
following the second dose (Figure 1A). Fully vaccinated indi-
viduals had similar T-cell responses compared with convales-
cent individuals who had mild symptoms and were at a similar 
long-term time point after COVID-19 diagnosis (median of 
223 days) (Supplementary Figure 1F). The median decrease in 
T-cell response between post-V2 and long-term follow-up was 
35.1% (range: −216.7% to 100% change, with 8 of 24 individ-
uals having higher or the same T-cell response). At long-term 

follow-up, T-cell responses in BNT162b2-vaccinated individ-
uals were lower than in mRNA-1273-vaccinated individuals 
(median SFU: 38.5 vs 86.0, respectively) (Figure 1B).

Levels of anti-spike immunoglobulin G (IgG) antibodies 
in serum were found to be increased post-V2 but decreased 
by a median of 90.5% (range: 63.0–97.3%) at long-term fol-
low-up (Figure 1C). BNT162b2-vaccinated individuals had 
lower serum antibody levels over the long term compared with 
mRNA-1273–vaccinated individuals (Figure 1D). Although 
there was not a significant difference in age between the vac-
cine groups (P = .0623), the median age of the BNT162b2 group 
was higher than that in the mRNA-1273 group; yet, there was 
no correlation between age and T-cell response or serum an-
tibody levels (Supplementary Figure 2). This may be a feature 
of our relatively small cohort, since other studies observed de-
creased antibody titers and/or T-cell responses with increasing 
age following vaccination [4, 7, 8]. However, another study sim-
ilarly saw no correlation [5]. One BNT162b2-vaccinated indi-
vidual had very few SFU at long-term follow-up and received an 
mRNA-1273 booster, which increased their T-cell response and 
antibody levels to higher than post-V2. Another individual was 
receiving rituximab (a B-cell–depleting antibody) treatment at 
the time of vaccination and failed to develop an antibody re-
sponse but had a positive T-cell response, which peaked at long-
term follow-up (Figure 1A, 1C).

The T-cell response to B.1.1.7 (Alpha), B.1.1.248 (P.1, 
Gamma), B.1.351 (Beta), and B.1.617.2 (Delta) SARS-CoV-2 
VOCs was also measured post-V2 and at long-term follow-up 
(Supplementary Table 4). The responses were reduced by 29.0%, 
24.4%, 15.6%, and 19.6%, respectively at long-term follow-up 
(Figure 1E). Whether these decreases are enough to have a clin-
ical impact on vaccine effectiveness remains to be determined, 
but these data demonstrate that T-cell responses to SARS-
CoV-2 VOCs are relatively conserved compared with the large 
decreases in neutralizing antibodies observed against the same 
variants [5, 6]. The conservation of T-cell response could ex-
plain the continued protection against severe COVID-19 in 
vaccinated individuals.

DISCUSSION

At the time of writing, 99% of COVID-19 cases in the United 
States were caused by the B.1.617.2 variant. However, the dom-
inant variant has since shifted rapidly with the emergence 
B.1.1.529 (Omicron). One study indicates that T-cell responses 
are preserved to the B.1.1.529 variant in most individuals, al-
though a proportion demonstrate a significantly reduced re-
sponse [14]. Breakthrough cases in vaccinated individuals occur 
due to a combination of the earlier mentioned factors (increased 
variant infection rate, waning vaccine immunity, and decreased 
immune response to variants vs ancestral SARS-CoV-2). Here 
we demonstrate that humoral and cellular immunity to SARS-
CoV-2 are decreased long-term postvaccination with either 
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Figure 1. BNT162b2 (Pfizer-BioNTech) has significantly lower T-cell and antibody responses compared with mRNA-1273 (Moderna) in a long-term follow-up postvaccination. 
A, T-cell responses from spike peptide pools (sum of the average SFU in response to pool A plus pool B) versus sample collection date in relation to first vaccine dose as evalu-
ated by IFN-γ ELISpot. B, Comparison of long-term follow-up T-cell responses after vaccination with mRNA-1273 and BNT162b2. C, Quantified anti-spike IgG values versus 
sample collection date in relation to first vaccine dose, determined by ELISA. The dotted line represents the positivity cutoff of 35.2 BAU/mL. D, Comparison of mRNA-1273 
and BNT162b2 anti-spike antibody values at long-term follow-up after vaccination. E, ELISpot response to variant peptide pools relative to the individual subject’s WT re-
sponse at long-term follow-up after vaccination. The dotted line represents response to WT. Statistical comparisons were made using unpaired, 2-tailed Mann-Whitney test. 
Medians are shown as black lines: mRNA-1273 in red, BNT162b2 in blue; ☆ = rituximab-treated patient; * = received a third vaccination dose. Abbreviations: BAU, binding 
antibody units; ELISA, enzyme-linked immunosorbent assay; IFN-γ, interferon-gamma; IgG, immunoglobulin G; PBMC, peripheral blood mononuclear cells; SFU, spot-forming 
units; SP, spike pool; WT, wild-type.

871e• CID 2022:75 (1 July) •BRIEF REPORT



mRNA vaccine, and appear lower in BNT162b2-vaccinated 
compared with mRNA-1273–vaccinated individuals, with a 
greater magnitude of difference in the T-cell response between 
vaccines compared with antibody levels. Given the relatively 
small size of our study, it would be valuable to confirm our 
findings in larger and more age-diverse populations. One group 
found similar differences at earlier time points postvaccination, 
with mRNA-1273–vaccinated individuals having higher T-cell 
responses and anti-spike IgG compared with BNT162b2 [8], al-
though we did not observe a difference between vaccines at early 
time points. The differences we observed are in contrast to a 
previous report that used flow cytometry to show similar T-cell 
responses between the BNT162b2 and mRNA-1273 vaccines 
6 and 8 months following vaccination [6]. Our findings could 
help explain the increased breakthrough cases with BNT162b2 
vaccination [2] and highlight the importance of analyzing both 
the cellular and humoral response to SARS-CoV-2 in popula-
tions and in individuals.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding author.
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