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Abstract
Aims We evaluated the performance of contrast-enhanced ultrasound (CEUS) based on radiomics analysis to distinguish 
benign from malignant breast masses.
Methods 131 women with suspicious breast masses (BI-RADS 4a, 4b, or 4c) who underwent CEUS examinations (using 
intravenous injection of perflutren lipid microsphere or sulfur hexafluoride lipid-type A microspheres) prior to ultrasound-
guided biopsies were retrospectively identified. Post biopsy pathology showed 115 benign and 16 malignant masses. From 
the cine clip of the CEUS exams obtained using the built-in GE scanner software, breast masses and adjacent normal tissue 
were then manually segmented using the ImageJ software. One frame representing each of the four phases: precontrast, early, 
peak, and delay enhancement were selected post segmentation from each CEUS clip. 112 radiomic metrics were extracted 
from each segmented tissue normalized breast mass using custom  Matlab® code. Linear and nonlinear machine learning 
(ML) methods were used to build the prediction model to distinguish benign from malignant masses. tenfold cross-validation 
evaluated model performance. Area under the curve (AUC) was used to quantify prediction accuracy.
Results Univariate analysis found 35 (38.5%) radiomic variables with p < 0.05 in differentiating between benign from 
malignant masses. No feature selection was performed. Predictive models based on AdaBoost reported an AUC = 0.72 95% 
CI (0.56, 0.89), followed by Random Forest with an AUC = 0.71 95% CI (0.56, 0.87).
Conclusions CEUS based texture metrics can distinguish between benign and malignant breast masses, which can, in turn, 
lead to reduced unnecessary breast biopsies.
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Key Points 

CEUS based texture metrics may contribute as a 
promising tool for distinguishing benign and malignant 
breast masses Future research in CEUS based breast 
mass discrimination may potentially help in reducing 
unnecessary breast biopsies CEUS radiomics can be a 
helpful adjunct tool to CEUS and conventional imag-
ing.

Introduction

Breast cancer accounts for nearly 30% of all cancers in 
women [1]. Currently, mammography and conventional 
grayscale ultrasound are the standard imaging techniques 
used to diagnose breast cancer. However, only 15–40% of 
abnormal screening mammograms and 25–50% of palpable 
lumps that result in recommendations for biopsy are reported 
to be malignant [2]. While more commonly used to evaluate 
liver and renal masses, newer imaging techniques, such as 
contrast-enhanced ultrasound (CEUS) have also been used 
for breast masses as it can offer good temporal resolution 
in tracing the microcirculation perfusion of breast masses 
[3–6]. Previous studies revealed that certain quantifiable pat-
terns of CEUS could help differentiate benign from malig-
nant breast masses [7–10].

Radiomics, the high-throughput extraction of quantita-
tive metrics from routine clinical images using a panel of 
data characterization algorithms, is emerging as a valuable 
tool in evaluating and managing various diseases, particu-
larly cancer [11, 12]. Despite the widespread application 
of radiomics, the limited knowledge of its basics concepts 
among radiologists and the lack of efficient and standardized 
systems of performing radiomics and data sharing hinder its 
clinical translation, even in breast imaging [13].

In this study, we hypothesized that the heterogeneity 
of breast masses as captured by texture radiomic metrics 
and their change over the CEUS scan duration is associ-
ated with tumor malignancy status. Interpretation of this 
heterogeneity may provide additional tools for increasing 
the precision of identifying breast masses as benign or 
malignant. To improve the use of CEUS to answer the 
specific question of whether a breast mass is malignant, we 
developed a machine-learning (ML)-based radiomics strat-
egy (radiomics signature) using its CEUS data. Although 
CEUS radiomics in combination with artificial intelligence 
(ML or deep-learning) have been reported [14, 15], to the 
best of our knowledge, no previous study has investigated 

whether a radiomics signature would reliably distinguish 
benign from malignant breast masses using breast CEUS 
images [16].

Materials and methods

Patient cohort

In this IRB-approved study, we retrospectively selected 
a cohort of 131 women (median age in years = 46; 18–76 
years) with suspicious breast masses on either conventional 
breast US or 2D mammography who underwent CEUS 
examinations prior to US guided-biopsies (Table 1) between 
October 2016 and June 2017. The CEUS examinations were 
performed on the same day immediately prior to US guided-
biopsies. Our inclusion criteria were: (a) Women ≥ 18 years 
of age with a BI-RADS 4 breast mass considered for US 
guided biopsy. (b) Subjects able to provide written informed 
consent. (c) Subjects willing to comply with the protocol. 
Our exclusion criteria were: (a) Contraindications to micro-
bubble contrast- specifically, patients who have known 
severe pulmonary hypertension or hypersensitivity to US 
contrast agent, (b) Pregnant or lactating patients or minors 
and (c) history of prior cancer in the same breast or under-
going neoadjuvant chemotherapy. All patients underwent a 
clinically age-appropriate imaging workup including gray-
scale US, mammography and study-specific CEUS.

Table 1  Cohort details

Parameter Biopsy histopathologic result

Benign Malignant

(n = 115) (n = 16)

Age, years (min, max) 46 (18, 74) 54 (38, 76)
Age, years
 18–29 14 (13%) 0 (0%)
 30–39 18 (15%) 2 (13%)
 40–49 43 (38%) 4 (25%)
 50–76 40 (34%) 10 (62%)

Grayscale US size, mm 12.0 (4.0, 48.0) 14.0 (7.0, 48.0)
BI‐RADS
 4a 104 (91%) 4 (25%)
 4b 10 (9%) 1 (6%)
 4c 1 (0) 11 (69%)

CEUS
 Nonenhanced 36 (33%) 2 (13%)
 Enhanced 79 (67%) 14 (87%)
 CEUS, nonenhancing mass size, 

mm
9.0 (4.0, 30.0) 11.0 (8.0, 14.0)

 CEUS, enhancing mass size, mm 12.0 (4.0, 36.0) 15.0 (7.0, 36.0)
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CEUS procedure

CEUS examinations were performed on a LOGIQ E9 US 
machine with high‐definition clear technology (GE Health-
care) with a 9‐ or 15‐MHz linear transducer to maximize 
breast mass visibility. First conventional B‐mode US was 
used to identify the mass and determine its longest dimen-
sion and most suspicious part. Subsequently, real‐time 
CEUS imaging using a low mechanical index (automatically 
selected by the machine in the CEUS mode) was performed. 
A peripheral IV line with 20-gauge needle or larger was 
placed. A 3-way stopcock was attached to the peripheral IV 
line. A 5-cc syringe with agitated ultrasound contrast agent 
(UCA) and a 10 cc syringe with normal saline were attached 
to the stopcock. For all cases, either Definity (perflutren 
lipid microspheres; Lantheus Medical Imaging) or Luma-
son (sulfur hexafluoride lipid-type A microspheres; Bracco 
Diagnostics Inc), purely intravascular agents, both of which 
are approved by the Food and Drug Administration for use 
in cardiac studies (and Lumason for liver imaging) was 
injected intravenously. In our study, we used these CEUS 
agents off label, owing to the non-availability of approved 
CEUS agents in the United States market for breast imag-
ing. When Definity was used, the solution was agitated per 
the protocol, and 10 μL/kg was administered intravenously. 
When Lumason was used, the contrast agent was reconsti-
tuted per protocol. A bolus injection of 2.4 or 4.8 mL UCA 
was given followed by a 10 mL normal saline flush. The 
transducer was positioned over the suspicious breast mass 

and dual-image mode with grayscale and contrast images 
ensured optimal visualization of the breast mass during the 
exam. Images were recorded in the same position with cine 
clip function for 90 s following administration of contrast. 
Video clips of the CEUS examination were recorded and 
postprocessing was performed using the built-in GE scanner 
software and then temporarily stored on the LOGIQ E9 US 
machine. These were later transferred to the Picture archiv-
ing and communication system (PACS) as cine clips. Native 
DICOM format of the cine clips were stored in an encrypted 
hard-drive for archiving. In the patient cohort, 29 patients 
received Definity and 102 patients received Lumason.

Confirmatory diagnosis

Histopathology by samples obtained by US-guided core 
needle biopsy and/or surgery was used as the confirma-
tory diagnosis (gold standard). The masses were biopsied 
after completion of the CEUS exam. All 131 women had 
BI-RADS 4A, 4B, or 4C breast masses detected by mam-
mography, conventional ultrasound (US), or both (Table 1). 
The final diagnosis included 115 benign and 16 malignant 
masses (Table 2).

Image segmentation and selection of images 
representing the multiple phases of CEUS

Using the ImageJ (U. S. National Institutes of Health) [17] 
software one trained radiologist (5 years of experience in 

Table 2  Histopathology of the 131 breast masses

a Six of the 131 lesions were recommended for surgical excisional biopsy. 4 of the 6 patients obtained surgical excisional biopsy and none were 
upgraded to malignancy

Histopathology Samples Percent (%)

Malignant (N = 16)
 Invasive ductal carcinoma (with and without associated ductal carcinoma in situ) 14 87.50
 Mixed pleomorphic invasive lobular and ductal carcinoma 1 6.25
 Intraductal papillary carcinoma 1 6.25

Benign (N = 115)
  Fibroadenomaa 51 44.35
 Fibrocystic changes 21 18.26
 Inflammatory process (including chronic inflammation, abscess and idiopathic granulomatous mastitis) 11 9.57
 Other benign 9 7.83
 Papillary lesions (including benign intraductal papillomas and one papillary lesion with atypia that was not 

upgraded to malignancy with surgical  excisiona)
8 6.96

 Stromal fibrosis 7 6.09
 Fat necrosis 2 1.74
 Lymph node/lymphoid  tissuea 2 1.74
 Pseudoangiomatous stromal hyperplasia (PASH) 2 1.74
 Nipple adenoma 1 0.87
 Atypical ductal hyperplasia (ADH) with associated atypical papillary lesion (not upgraded to malignancy with 

surgical excision)a
1 0.87
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CEUS breast imaging) placed 2 square ROIs (size:  5mm2) 
on the CEUS image. The first ROI centered around the 
most enhancing portion of the breast mass, keeping away 
from the mass margins and the second one surrounding 
normal breast tissue at least 1 cm away from the breast 
mass on the cine clip of the CEUS examination (Fig. 1A). 
A second radiologist (5  years of experience in CEUS 
breast imaging) verified the placement of the ROIs. Addi-
tional examination was performed in the same quadrant of 
the breast outside the observed breast mass, to accommo-
date scenarios when the breast mass was large, and a sec-
ond ROI could not be placed in the same video loop. Based 
on a normalized map of the breast mass, obtained by divid-
ing the breast mass values by mean of the normal tissue 
data, a surrogate mean time-intensity curve was obtained 
for the CEUS cine upto 90 s. The normalization process 

was performed to remove any effects due to a difference in 
contrast agents and its administration volumes i.e., Luma-
son vs. Definity. Representative images obtained at four 
time points on the time-intensity curve that correspond to 
precontrast, early, peak, and delay enhancement, respec-
tively were extracted (Fig. 1B). The chosen images for 
radiomics analysis were further visually analyzed based 
on the vascular architecture (evaluated in the early wash-in 
phase) and the contrast enhancement of the lesion com-
pared to the adjacent tissue (time course of wash-in and 
wash-out) to ensure that they represented the 4 key time 
points of the time-intensity curve. If the images selected 
by the surrogate time-intensity curve analysis had issues 
due to motion or excessive noise, a different image within 
the same time window (5 s) was chosen.

Fig. 1  Top panel: CEUS scans showing 4 enhancement phases (pre-
contrast, early, peak and delay) of the Invasive Ductal Carcinoma 
(ER-/PR-/HER2-) in a 44  year-old woman presenting with a left 
breast large palpable lump measuring up to 4.4 cm. The CEUS scan 
shows avidly enhancing irregular mass with marked heterogeneous 
enhancement and small areas of clear defect, which is worrisome for 
a malignant mass. On the CEUS clip, the breast mass (blue contour) 
and adjacent normal tissue (red contour) are annotated by a fellow-
ship trained radiologist using ImageJ software. Middle panel: Seg-
mented regions of interest (here, the lesion) from the CEUS scans are 

shown to highlight the variation in enhancement across the different 
phases. Bottom panel: Based on a normalized map of the breast mass, 
obtained by dividing the breast mass (blue contour in top panel) val-
ues by mean of the normal tissue (red contour in top panel) data, a 
surrogate mean time-intensity curve was acquired for the whole cine 
clip. Subsequently, representative images corresponding to four time 
points on the surrogate mean time-intensity curve were extracted 
from cine clips: precontrast, early, peak, and delay enhancement, 
respectively. Here, the four shortlisted normalized images show nodu-
lar enhancement of the breast mass (blue contour in top panel)
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Radiomic analysis

Using custom developed radiomics software developed on 
 Matlab® (Mathworks), texture and intensity were extracted 
from the normalized masses of each of the four representa-
tive images per patient. Absolute values and temporal 
changes across each of the four phases of the CEUS were 
extracted. The radiomics panels spanned texture metrics 
extracted from four different groups: (1) intensity/histogram 
analysis metrics representing first-order statistical measures 
of texture, (2) Gray level co-occurrence matrix (GLCM) 
and (3) Gray level difference matrix (GLDM) metrics, both 
representing second order statistical measures of texture, 
and (4) Fast Fourier transform (FFT) metrics representing 
higher-order statistical measures of texture.

Feature extraction

The radiomics panel comprised of 112 absolute radiomic 
values extracted per phase and their differences between 
the phases (delta radiomic values) (Fig. 2). Delta radiomic 
metrics capture the changes of radiomic features over time 
here the cine of the CEUS exam. Here, only differences in 
sequential phases were considered. In our case this included 

differences between precontrast and early, early and peak, 
and delay and peak enhancement phases. Therefore, in total 
64 absolute radiomic metrics were extracted across the 4 
phases i.e., 16 metrics per phase and 48 additional delta radi-
omic metrics were extracted between precontrast and early 
phase (N = 16), early and peak phase (N = 16), and delay and 
peak enhancement phase (N = 16).

Radiomic signature model construction

All 112 metrics were input to four different ML classifier 
models: ElasticNet, Multivariate adaptive regression spline 
(MARS), REAL AdaBoost [18, 19] and Random Forest 
(RF).

Model validation

For all four classifiers tenfold stratified cross-validation 
was used to evaluate model performance. Consequently, the 
original cohort of 131 patients was randomly partitioned 
into 10 equal size sub-cohorts. Of the 10 sub-cohorts, a sin-
gle sub-cohort was separated out for testing the four ML 
models’ performance, and the remaining 9 sub-cohorts are 
used for training the four ML models. This cross-validation 

Fig. 2  Metrics of the radiomics panel. 112 metrics spanning first-order (intensity/histogram analysis), second-order (GLCM/GLDM) and higher-
order (FFT) statistical measures of texture were considered
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process is repeated 10 times, with each of the 10 sub-cohorts 
used exactly once for testing the ML models’ performance. 
Receiver Operating Characteristic (ROC) curve was con-
structed using the predicted probability from 10 testing data-
sets combined. The area under the curve (AUC) with 95% 
confidence interval was used to assess prediction accuracy. 
We applied a fivefold cross-validation process within each 
iteration to determine the final prediction model before scor-
ing through the 10% independent testing sample. The 10% 
of independent testing data was excluded from the learn-
ing phase to avoid information leaking. For Random Forest, 
800 trees with a maximal depth of 50, leaf size of 16 was 
used. For Real AdaBoost, since it is more efficient, only 25 
trees were considered with a depth of 3 as recommended 
by Hastie et al. [20]. For Random Forest and AdaBoost, 
the Gini impurity index was used as the loss function. Loh 
method [21] was used for variable selection. This method 
selects the variable that has the smallest p-value of a chi-
square test of association in a contingency table; interval 
variable was truncated by dynamically calculated proportion 
of standard deviation from mean. Predicted residual sum of 
squares (CVPRESS) was used for ElasticNet to select can-
didate predictors and the final model. Since our data cohort 
was limited in terms of class balance and sample size, to 
prevent potential bias, prior correction as described by King 
et al. [22]. for imbalanced outcome was used. To avoid over-
fitting of the model, a rigorous tenfold cross validation pro-
cedure was used. Delong’s test was used to compare AUC 
between machine learning models [23].

Statistical analysis

Following extraction, the 112 radiomic metrics they were 
statistically analyzed and used to create prediction models 
(radiomics signatures) of breast mass malignancy. Univari-
ate independent t-test or Wilcox on rank sum test depending 
on data normality, along with mean, standard division, and 
interquartile range displayed in box plot were used as the 
descriptive analyses. Benjamini–Hochberg (BH) Procedure 
was used to control multiple comparison error for univariate 
analyses. Percent features with unadjusted and BH procedure 
adjusted p < 0.05 by each radiomics family was calculated as 
the assessment of overall signal strength from each radiomic 
family, in comparing to variable of importance generated by 
machine learning. Descriptive analyses were conducted by 
using histogram and box-whisker plots.

Sample size calculation

The purpose of sample size calculation is to ensure the 
lower limit of 95% confidence interval of AUC to be above 
0.5 if there is a true predictive value, and to reject the null 
hypothesis of no predictive value. Since we used tenfold 

cross validation, each individual subject has been used as 
the testing sample. With 131 study samples (16 malignant 
cases), we can produce a 95% confidence interval for AUC 
with a lower limit above 0.55. Thus reject the null hypothesis 
of radiomics not being able to predict malignancy. PASS 
2021 was used for power calculation.

Model interpretation

Variable-of-importance (VOI) from Random Forest and 
AdaBoost was selected and ranked using Out-of-bag Gini 
index (OOBGini), while ElasticNet was the remaining vari-
able in the final model. For Random Forest and AdaBoost, 
the cut-off for “top” VOI was determined by the “cliff” of 
OOBGini, i.e., a sudden large change from the previous 
ranking position. The VOI selection procedure was repeated 
ten times, and the final ranking was based on the number 
of counts as top VOI during the tenfold cross-validation. 
SAS Enterprise Miner 15.1: High-Performance procedures 
were used for machine learning. SAS9.4 was used for all 
other statistical analysis. All statistical analyses and machine 
learning were conducted by the departmental biostatistician 
(SYC with > 20 years of experience).

Results

Across the four texture families analyzed (Fig. 3), univari-
ate analysis showed 33 out of 112 (29.46%) radiomic met-
rics with p < 0.05 in differentiated benign from malignant 
masses. Amongst these 33 metrics, Gray level Co-Occur-
rence matrix (GLCM) yielded the greatest percentage 
(50.07%) of signatures within a given family to reach signifi-
cance at the p ≤ 0.05 level. This was followed by histogram 
analysis (HA) at 26.47%, Fast Fourier Transform (FFT) at 
11.76% and Gray Level Difference Matrix (GLDM) at 8.82% 
(Fig. 3). Of the radiomics signatures to reach significance 
at the p ≤ 0.05 level 11.76% belonged to the delta radiomics 
category. Box-and-whisker plot of a GLCM metric: Entropy 
across the CEUS sequence is presented in Fig. 4. The overall 
mean intensity was lower in the benign masses (2.82 ± 1.53) 
compared to malignant masses (4.23 ± 1.12).

Of the four machine learning classifiers considered i.e., 
ElasticNet, Multivariate adaptive regression spline (MARS), 
REAL AdaBoost, and Random Forest (RF), RF and Ada-
Boost showed very similar performance, measured in terms 
of area under the receiver operating curve (AUC), in dif-
ferentiating between benign and malignant breast masses. 
The best performance is from AdaBoost with AUC = 0.72 
95% CI (0.564, 0.89), followed by RF AUC i.e., 0.71 95% CI 
(0.56, 0.87) (Fig. 5). Our study was not powered to detect the 
AUC difference between machine learning methods. There 
were no statistically significant differences detected in AUC 
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between machine learning methods. The confusion matrix 
is illustrated in Table3. Adaboost and RF have sensitivity/
specificity of 0.68 95% CI (0.6, 0.76)/0.69 95% CI (0.46, 
0.91) and 0.69 95% CI (0.61, 0.77)/0.69 95% CI (0.46, 0.91) 
respectively. Sensitivity is the correct diagnosis for malig-
nant cases, and specificity is the correct diagnosis for benign 
cases.

Of the radiomic metrics, the top 10 that met the criteria 
for variables of importance for the AdaBoost model were 
from the families of texture metrics from histogram analysis, 
followed by FFT and GLCM. This observation was consist-
ent within the Random Forest model as well with a 70% 
overlap in radiomic metrics between the two models. The 
distribution of these metrics for AdaBoost model is sum-
marized in Fig. 6. VOI analysis also revealed that 31 of the 
33 variables (93.9%) identified by the univariate analysis 
greatly contributed to model performance. The majority (8 

of the top 10) of the VOI were delta radiomics metrics com-
pared to absolute value radiomic metrics.

Discussion

Making an accurate qualitative cancer diagnosis using mam-
mography and conventional grayscale ultrasound is still a 
challenge for radiologists. Here we assess the feasibility and 
methodology of CEUS radiomics analysis using a "practical" 
approach using simple bounding boxes and four key frames 
representing the four phases of a CEUS cine and extracting 
both absolute values and temporal changes across each of 
the four phases. Our results indicate that the CEUS-based 
radiomics signature could preoperatively predict breast mass 
characteristics with acceptable performance (AUC = 0.72 
95% CI (0.564, 0.89)) to identify benign from malignant 

Fig. 3  Clustered Column 
chart showing the distribution 
of radiomic metrics showing 
significant (p < 0.05) differences 
between benign and malignant 
breast masses, sorted according 
to their texture families. GLCM 
metrics show the highest con-
tribution followed by HA, FFT 
and GLDM. Here, FFT Fast 
Fourier Transform, GLCM Gray 
level Co-Occurrence matrix, 
GLDM Gray level Difference 
matrix, HA Histogram Analysis

Fig. 4  Box-whisker plot of 
GLCM metric Entropy (meas-
ure of randomness of gray levels 
within an ROI) has been plotted 
across the four timepoints of 
the CEUS cine. Significant dif-
ferences were observed across 
different timepoints between 
the benign and malignant breast 
masses
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breast masses belonging to BI-RADS 4a, 4b and 4c assess-
ment categories with confirmed histopathology.

While the application of radiomics for the analysis of 
breast masses has been previously reported, the reports using 
ultrasound are scant. Results from our study showed that 
CEUS-based radiomics could be used as an adjunct or sup-
plement to the conventional clinical approach of identifying 
benign and malignant breast masses. This observation is in 
line with prior literature where, using a CEUS-based radi-
omics approach, Luo et al. showed that a nomogram incor-
porating the radiomics score and BI-RADS category showed 
better performance for discriminating (AUC = 0.928; 95% 
CI [0.88, 0.98]) malignant from benign masses than using 
either the radiomics score (p = 0.029) or BI-RADS category 
alone (p = 0.011).

Using ultrasound data from eight cancers, 22 cysts, 28 
fibroadenomata, and 22 fibrocystic nodules, Garra et al. 
reported a sensitivity of 100% and specificity of 80% in iden-
tifying malignant masses using texture analysis [24]. Using 
texture analysis of ultrasound images for 71 breast masses 

(24 cyst, 21 solid benign masses and 26 solid malignant 
masses), Sivaramakrishnan et al., identified GLCM-based 
texture metrics that provided the best discrimination between 
benign vs. malignant masses (C-statistic = 0.88) [25]. Using 
ultrasound images from 242 patients (161 benign masses and 
82 carcinomas) and texture analysis, Chen et al., reported an 
AUC of 0.9396 ± 0.0183, a sensitivity of 98.77%, a specific-
ity of 81.37%, a positive predictive value of 72.73% and a 
negative predictive value of 99.24% for breast mass diagno-
sis [26]. Chen et al., reported on an artificial neural network-
based prediction model that correctly identified 35 of 36 
malignancies and 211 of 219 benign tumors and showed bet-
ter diagnostic performance than radiologists' results [27]. In 
agreement with the literature, we found the relative improved 
performance of GLCM and histogram analysis metrics in 
discriminating benign from malignant breast masses. We 
also show that the metrics’ relative changes along four key 
points on the CEUS time-intensity curve have significant 
predictive power in identifying benign from malignant breast 
masses. Our comparatively lower performance may be due 
to the lack of extreme BI-RADS categories i.e., BI-RADS 3 
and below and BI-RADS 5 within our cohort. Also, in clini-
cal practice, histopathological confirmation is not performed 
for all benign masses.

Our study observes that texture metrics (particularly 
those from the histogram analysis and GCLM approach) 
demonstrate higher heterogeneity of gray level intensity in 
malignant masses compared to benign ones. We observed 

Fig. 5  Receiver operator curve showing the prediction accuracy 
of the four machine-learning models used to differentiate between 
benign and malignant breast masses. RF and Ada Boost show compa-
rable performance (AUC > 0.7)

Table 3  Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the four machine learning classifiers

Method Sensitivity Specificity PPV NPV

Random Forest 0.69 95% CI (0.61, 0.77) 0.69 95% CI (0.46, 0.91) 0.94 95% CI (0.89, 0.99) 0.23 95% CI (0.11, 0.35)
Ada Boost 0.68 95% CI (0.6, 0.76) 0.69 95% CI (0.46, 0.91) 0.94 95% CI (0.89, 0.99) 0.22 95% CI (0.11, 0.34)
MARS 0.42 95% CI (0.33, 0.51) 0.44 95% CI (0.19, 0.68) 0.85 95% CI (0.76, 0.94) 0.09 95% CI (0.03, 0.16)
ElasticNet 0.61 95% CI (0.53, 0.7) 0.63 95% CI (0.39, 0.86) 0.92 95% CI (0.87, 0.98) 0.18 95% CI (0.08, 0.28)

Fig. 6  A funnel chart showing the decreasing impact of the top 10 
radiomic metrics identified as VOI in the AdaBoost classifier
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an overall lower mean intensity in benign masses compared 
to malignant masses. This observation is in line with prior 
literature. For e.g. Lee et al., reported that CEUS analysis 
of breast masses using time-intensity curve analysis showed 
benign masses tend to have homogenous enhancement and 
lower peak intensity [7]. The key role of tumor vasculature 
in lesion classification, staging, prognosis and treatment 
response has been demonstrated in various studies [28–31]. 
Therefore, it may seem that differential patterns in spatial 
texture created by differential dynamics of the contrast 
within the vasculature of the masses may be significantly 
different between malignant and benign masses.

Some of the study’s limitations include the sampling bias 
in choosing a single image from a cine clip to represent a 
given timepoint on the CEUS time-intensity curve. The four 
representative images per patient may not be exact com-
parisons across different patients, but we believe, they were 
representative of the same phenomenon. For e.g., they all 
captured peak enhancement, but the exact time after injec-
tion for different patients may be different. Adding more than 
one image to represent each phase will only help in smooth-
ing the time-intensity curve and reinforce our results. In our 
study, since we used rectangular ROIs within each CEUS 
image per patient and the breast mass boundary was not 
traced, shape-based radiomic metrics were excluded from 
our analysis. While only a relatively low number of patients 
were included in our cohort, there was good confidence that 
CEUS data could be used to perform a radiomic analysis 
and perform breast mass stratification. For dealing with the 
imbalanced outcome, prior correction as described by King 
et.al. was implemented [22]. This method is a common prac-
tice in handling imbalance data. It adds prior probability to 
the loss function by assuming the distribution of the inputs 
for a target class is the same in the training data as in the 
population of interest. In our study, we perform a rigorous 
tenfold cross validation to evaluate model performance. The 
full dataset was equally divided into 10 folds. We re-iterated 
the learning process 10 times and applied the classifier to 
each of the testing sample. Thus, each study sample served 
as an independent testing case once. Within each iteration, 
we applied a fivefold cross validation in each learning pro-
cess to determine the final prediction model before scoring 
through the 10% independent testing sample. The 10% of 
independent testing data was excluded from learning phase 
to avoid information leaking. In the current study, we used 
the most reported loss functions and did not compare dif-
ferent loss functions. In our study, we choose to use two 
types of contrast agents i.e., Definity and Lumason. The 
application of the different ultrasound contrast agents and 
different dosage of Lumason may result in different enhance-
ment intensity and diagnostic thresholds, thus causing the 
failure of image standardization and unrepeatability of radi-
omics analysis. However, to alleviate this issue we perform 

normalization of the breast mass by dividing the breast mass 
values by mean of the normal tissue data, prior to radiomics 
analysis. Comparative intensity normalization techniques 
have been used in literature for harmonization purposes for 
data extracted from different scanner etc.

In conclusion, this study provides a preliminary demon-
stration of the use of CEUS based texture metrics to distin-
guish benign from malignant breast masses. Future research 
in CEUS based breast mass discrimination may potentially 
help in reducing unnecessary breast biopsies by using CEUS 
radiomics as an adjunct tool to CEUS and conventional 
imaging.
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