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A novel hybrid model for six 
main pollutant concentrations 
forecasting based on improved 
LSTM neural networks
Shenyi Xu1, Wei Li1, Yuhan Zhu1,2 & Aiting Xu1,2*

In recent years, air pollution has become a factor that cannot be ignored, affecting human lives and 
health. The distribution of high-density populations and high-intensity development and construction 
have accentuated the problem of air pollution in China. To accelerate air pollution control and 
effectively improve environmental air quality, the target of our research was cities with serious air 
pollution problems to establish a model for air pollution prediction. We used the daily monitoring 
data of air pollution from January 2016 to December 2020 for the respective cities. We used the long 
short term memory networks (LSTM) algorithm model to solve the problem of gradient explosion 
in recurrent neural networks, then used the particle swarm optimization algorithm to determine 
the parameters of the CNN-LSTM model, and finally introduced the complete ensemble empirical 
mode decomposition of adaptive noise (CEEMDAN) decomposition to decompose air pollution and 
improve the accuracy of model prediction. The experimental results show that compared with a single 
LSTM model, the CEEMDAN-CNN-LSTM model has higher accuracy and lower prediction errors. The 
CEEMDAN-CNN-LSTM model enables a more precise prediction of air pollution, and may thus be 
useful for sustainable management and the control of air pollution.

Air pollution can significantly affect air quality1, More than 90% of the world’s population resides in places 
where air pollution levels surpass the limits specified by the World Health Organization (WHO)2. As the larg-
est developing country, China has been suffering from serious air pollution for years in response to the rapid 
industrialization and urbanization3, which has led to a dramatic increase in the emissions of both ambient air 
pollutants and greenhouse gases4. The major air pollutants in China are PM2.5 (particles ≤ 2.5 μm in aerodynamic 
diameter), PM10 (particles ≤ 10 μm in aerodynamic diameter), sulfur dioxide (SO2), nitrogen oxide (NO2), 
carbon monoxide (CO), and ozone (O3)5.Almost every major Chinese city exceeds the limits for air pollutants 
recommended by the WHO, leading to approximately 1.1–1.6 million premature deaths annually6. Air pollution 
can also lead to huge direct and indirect losses to the social economy. In severe haze pollution events, public and 
private transportation can be severely affected by a reduction in visibility. Therefore, measuring, monitoring, and 
predicting air quality are vital for achieving the eventual reduction of haze risks in practical life7.

Many cities in China have experienced serious local pollution events owing to coal mining, urbanization, 
excessive coal consumption, and the development of heavy industries (such as iron, steel, and cement)8. In par-
ticular, according to statistics, the bottom 20 cities of the 168 key cities in China, ranked in terms of air quality 
in 2020, are facing serious air pollution problems9. To facilitate the management and research of China’s regional 
compound air pollution, we targeted these cities for the accurate and real-time prediction of air pollutants.

With the maturity of various machine learning methods, deep learning models based on neural networks 
have been used in air pollution research. Deep learning methods based on long short-term memory (LSTM) 
artificial neural networks, radial basis functions (RBFs), back propagation (BP) neural networks, and support 
vector machines (SVMs) have been used by many scholars to study the non-linear relationship between air 
quality and meteorological data10–12. These methods are divided into two main types: single machine learning 
and hybrid machine learning models. Table 1 summarizes studies of air pollutants and air pollution forecasting 
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models published in the past three years. Hybrid machine learning models have received considerable attention, 
as presented in Table 1.

Therefore, the principal objective of this study was to develop a new and highly accurate air pollution fore-
casting method. In this study, we developed a new hybrid model based on complete ensemble empirical mode 
decomposition of adaptive noise (CEEMDAN), convolutional neural network (CNN), and LSTM neural networks 
for air pollution forecasting.

First, we found that the LSTM model has shown potential in adapting to different types and representations 
of data, recognizing sequential patterns over a long time span, and capturing complex nonlinear relationships21. 
Thus, it has been applied to various time-series prediction fields, including stock price movement22, ocean wave 
height series23, and air pollutant prediction24–26. However, the commonly used forecasting methods at present 
often use a single forecasting model to model the time-series; as such, they cannot intuitively reflect the non-
linearity of the corresponding series. Therefore, the accuracy of the corresponding prediction results is lacking. 
The combined forecasting model effectively solves the above problems, and the accuracy of the overall forecast-
ing results can be achieved be completely considering to the advantages of each forecasting model27. Therefore, 
when the time-series data have the characteristics of significant randomness and rich characteristic information, 
the concept of individual response should be adopted to explore the prediction method based on the adaptive 
noise-added ensemble empirical mode decomposition (CEEMDAN). The air pollution time series problem is 
transformed into a number of component prediction problems with significant regularity, and the component 
prediction results are then merged and analyzed to obtain a higher-precision prediction value, thereby making 
the modeling easier and more accurate28.

In accordance with the above ideas, this study proposes a deep learning model based on LSTM of CEEM-
DAN and CNN for evaluating the meteorological and air pollution data of major cities with serious air pollution 
problems in China. Moreover, the particle swarm optimization (PSO) algorithm is used to determine the param-
eters of the CNN-LSTM model. To study and predict the air pollution value, we aimed to find the optimal deep 
learning model suitable for this type of data. Simultaneously, we concentrate on estimating the health burden 
associated with air pollution. We comprehensively investigated the health burden attributable to the long-term 
exposure to PM2.5, PM10, SO2, NO2, CO, and O3 in China by 2021. We also aimed to estimate the premature 
deaths attributable to the long-term exposure to the above ambient air pollutants in Chinese cities. The results 
will therefore provide a scientific basis to formulate relevant policies for air pollution control projects. It also 
provides a reference for areas around the world with increasingly prominent air pollution problems in basins 
owing to the high-density population layout and high-intensity development and construction.

Materials and methods
The main methodology of this study involved deep learning and frequency decomposition algorithms. Moreover, 
to understand the proposed method, first, it is crucial to understand the constituting models, as well as how they 
learn or perform. The air pollution forecasting models in this study include CEEMDAN, CNN, LSTM, and PSO. 
A brief description of these methods is given below.

Complete ensemble empirical mode decomposition with adaptive noise.  The empirical mode 
decomposition (EMD) algorithm is a signal analysis method originally proposed by Huang et al.29. It is an adap-
tive data processing or mining method that is suitable for the processing of nonlinear and non-stationary time 
series. It is also essentially a smoothing process of data series or signals30. In EMD, any given complex signal can 
be empirically decomposed into a collection of basic oscillatory components, called intrinsic mode functions 
(IMFs). The IMF represents the oscillation mode of the original signal31. The original signal x(t) can be recon-
structed by the following formula:

where ci(t) is the i th IMF (i.e. local oscillation) and rn(t) is the i th residue (i.e. local trend).

(1)x(t) =

n∑

i=1

ci(t)+ rn(t)

Table 1.   Studies on forecasting air pollutants using different models. S: Single machine learning method, H: 
Hybrid machine learning model.

Study Research subject Type Method

Feng13 SO2, NO2, CO, PM2.5, PM10 and O3 S RNN;RF

Li et al.14 PM2.5 and NOx S RF; BRT; SVM; XGBoost; GAM

Yan et al.15 PM2.5 S CNN;LSTM

Awan et al.16 CO, NO, NO2, NOx, and O3 S LSTM

Dairi et al.17 NO2, O3, SO2, and CO H IMDA-VAE

Lu et al.18 PM2.5 H OR-ELM-AR

Du et al.19 PM2.5 H 1D-CNNs; Bi-LSTM

Yafouz et al.20 PM2.5, O3, SO2, NO2, CO, AQI H SVR-LSTM
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The EMD method can ideally be applied to the decomposition of any type of time series (signal) because 
of its obvious advantages over previous smoothing methods in dealing with non-stationary and non-linear 
data32,33. To overcome the problem of mode mixing in EMD and solve the problem of IMF component align-
ment during ensemble averaging, Torres improved CEEMD from the decomposition process and added white 
noise, and then proposed a complete ensemble empirical mode decomposition of adaptive noise34. In the new 
CEEMD, white noise is added in pairs to the original data (i.e. one positive and one negative) to generate two 
sets of ensemble IMFs.

where S is the original data data; N  is the added white noise; M1 is the sum of the original data with positive 
noise, and M2 is the sum of the original data with the negative noise. There is less residual noise in the inherent 
modal components, which effectively reduces the reconstruction error, and a global stopping standard exists at 
each stage of the decomposition. The decomposition efficiency in this method was the highest35.

This study uses the CEEMDAN algorithm to decompose non-stationary air pollution series data to form a 
series of IMF subsequences and residual terms (RES) with different frequency characteristics.

Convolutional neural network.  A CNN is a neural network used to process data with a known grid-like 
topology36. A CNN is a feed-forward neural network whose basic structure is determined by the input, convo-
lutional, pooling, fully connected, and output layers37. The convolutional layer is the core of the CNN, where the 
convolutional kernel Cj is used to extract the internal features.

where Ai represents the input, ⊗ represents a convolution operator, σ represents the activation function (where 
ReLU is selected), ωi is the weight of the kernel linked to the i th feature map, and bi represents the bias matrix.

The pooling layer is mainly used to pool the data after the sniper operation. Its main function is to compress 
the data, remove unnecessary information, effectively improve the generalization ability of the network, and 
increase the calculation speed38,39. Each node of the fully connected layer is connected to all nodes of the upper 
layer, which is used to integrate the comprehensive features extracted from the front and aid in the prediction of 
the subsequent LSTM layer40. The structure of a one-dimensional convolutional neural network is shown in Fig. 1.

Long short‑term memory model.  Long and short-term memory (LSTM)41 neural networks are special 
recurrent neural networks that can learn dependent information for a long time and effectively avoid the phe-
nomenon of a disappearing gradient42. It is a machine-learning architecture that allows the model to “learn” over 
many time steps. Additionally, it can root the memory cell in the neural nodes of the hidden layer of the cyclic 
neural network to record historical information; by adding three gate structures (input, forget, and output), the 
historical information can be realized43.

As shown in Fig. 2, when setting the input sequence to x(x1, x2, . . . , xt) , the state of the hidden layer is 
(h1, h2, . . . , ht) , and the state update and output of the memory unit can be summarized as

(2)
(
M1

M2

)
=

[
1

1

1

−1

][
S
N

]

(3)Cj = σ

(∑
Ai ⊗ ωi + bi

)

(4)it = sigmoid(Whiht−1 +Wxixt)

(5)ft = sigmoid
(
Whf ht−1 +Wxf xt

)

(6)ct = ft ⊙ ct−1 + ic ⊙ tanh (Wxcxt +Whcht−1)

Figure 1.   Structure of the one dimensional convolutional neural network.
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where “ ⊙ ” denotes the Hadamard product; it , ft , and ot are the output of different gates; ct is the vector for the 
cell state; ht−1 is the output information of the hidden layer unit at the previous moment; ht is the new state 
of memory cell; Wh , Wx , and Wc are the weights of the corresponding gate; and sigmoid and tanh are the two 
different activation functions, respectively.

As air pollution data from ground monitoring sites are usually in a time series format, air pollution can 
be modeled by considering the time-dependent patterns 44. Feed-forward neural networks (FNNs) have been 
commonly used in previous studies to predict air pollution. However, these models cannot consider the time 
dependency of the parameters. Sequence modeling facilitates the excavation of temporal dynamic features in 
historical data and enusres better predictions45. Compared with the FNN, recurrent neural networks (RNN) 
are designed to deal with time-series data; however, this technique experiences vanishing or exploding 
gradient problems46, and LSTM can be used to overcome this problem. In this study, we chose LSTM for air 
pollution prediction as it extracts representative features from historical air pollution data and obtains further 
representations of the merged features to generate predictions.

Particle swarm optimization.  Particle swarm optimization (PSO) is an evolutionary computation tech-
nique developed by Kennedy and Eberhart in 199547. This algorithm is a swarm intelligence optimization algo-
rithm that simulates the foraging behavior of bird swarms and adjusts its own speed and position to optimize it 
until it meets the convergence termination condition48,49. All particles in the swarm stay in the set search space, 
as shown in Eqs. (6) and (7):

where Vt
i,j is the velocity of particle i at generation t  , and j is the dimension; xti,j is the position of particle i ; c1 

and c2 are cognitive and social coefficients; yti,j is the best value in the group at generation t  ; ŷt is the best value 
of all of the best values from different groups; and rt1,i,j and rt2,i,j are uniformly distributed random numbers in 
the interval [0,1]. Furthermore, the concept of inertia weight ω is developed to obtain better control exploration 
and exploitation of the searched particles.

PSO has several advantages over other metaheuristic techniques in terms of its simplicity, convergence speed, 
and robustness. It converges to global or near-global optima, irrespective of the shape or discontinuities of the 
cost function. As PSO can prevent the network convergence from falling into the local best solution, it can be 
selected to optimize the LSTM input layer weights50. Most previous studies on PSO systems have provided 
empirical results and conducted informal analyses47,51,52. Many studies have shown that the PSO algorithm 
can improve the prediction accuracy by optimizing the LSTM model53–55. Thus, this study initially proposes an 
enhanced PSO-based LSTM model, which is used to forecast air pollution.

Proposed air pollution forecasting model
The CEEMDAN‑CNN‑LSTM model.  Air pollution data are a time series characterized by complex insta-
bility, nonlinearity, and periodic uncertainty, which are affected by many factors. As mentioned above, LSTM 
has a strong modeling and analysis ability for processing time-series data. The performance of the LSTM model 
in time-series analysis is extraordinary47. However, the LSTM model only extracts the temporal features of the 
flames, whereas turbulent flames characterize both the temporal and spatial evolution. A CNN is a deep learn-
ing network wherein the local and overall features of the input data can be constantly extracted using nonlinear 

(7)ot = sigmoid(Wxoxt +Whoxt−1 +Wcoct)

(8)ht = ot ⊙ tanh(ct)

(9)Vt+1
i,j = ωVt

i,j − c1r
t
1,i,j

(
ŷt − xti,j

)
+ c2r

t
2,i,j

(
yti,j − xti,j

)

(10)xt+1
i,j = xti,j + Vt+1

i,j

Figure 2.   Structure of the long- and short-term memory neural network cell.
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mapping56,57. It can extract the spatial features of the flames. Therefore, we proposed a combination of CNN and 
LSTM models. CNN-LSTM has been extensively employed for time-series forecasting. However, determining 
the structure is difficult, and often falls into a local minimum58. The CEEMDAN method can divide the singular 
values into separated IMFs and determine the general trend of the real time series; thus, it can help determine 
the characteristics of the complex non-linear or non-stationary time-series data59. This can effectively reduce 
unnecessary interactions among singular values and improve the performance when a single kernel function is 
used in forecasting60. This section proposes a model that combines the CEEMDAN and CNN-LSTM models for 
air pollution prediction.

As shown in Fig. 3, in this study, the CEEMDAN algorithm was used to decompose the data of air pollution 
change, measured by the air quality monitoring station, to obtain a limited number of IMFs. Subsequently, we 
used the CNN-LSTM model to learn and predict the short-term time series of each IMF component, and added 
the predicted values of each IMF component to obtain the final prediction result.

Finally, PSO is used to optimize the hyperparameters of LSTM because of its simplicity and ease of 
implementation61. The core idea of the PSO algorithm is to first initialize a set of random solutions and then 
iteratively find the optimal solution62. The PSO algorithm can enable the LSTM model to accurately and quickly 
determine the optimal parameters according to the characteristics of the air pollution data, and realize an effective 
combination of the network structure of the LSTM model and the features of the air pollution data63.

Model fitting and validation.  To evaluate the predictive ability of the models, two indices, namely, the 
root mean square error (RMSE) and mean absolute error (MAE) were calculated in this study. In general, the 
smaller the RMSE, MAE, and R2 , the more accurate the model. RMSE, MAE, and R2 are defined in Eqs. (11)–
(13), respectively.

where n is the number of data points, yi is the measured aqueous air pollution, y is the average of the real values, 
and fi is the air pollution simulated by the model.

Case study
Study area and data set.  According to historical research, air pollution is highly correlated with six air 
pollutants (PM2.5, PM10, NO2, CO, O3, and SO2)15,64–66. Therefore, this study investigated 20 cities with the 
worst air quality in China and selected the most representative 6 cities according to their primary pollutants, 
economic conditions, and geographical factors to prove the validity and robustness of the hybrid model. The 
final choices were Xinxiang (main air pollutant: PM2.5), Taiyuan (PM10), Zibo (SO2), Handan (NO2), Binzhou 
(O3), and Jinan (CO). In this study, data were obtained from the national urban air quality real-time release 
platform of the China Environmental Monitoring Station. Daily data were obtained for the period from January 
1, 2016, to December 31, 2021, with a total of 2192 observations. For each city, data from 2016 to 2020 were used 

(11)RMSE =

√∑n
i=1(yi − fi)2

n

(12)MAE =

∑n
i=1

∣∣(fi − yi)
∣∣

n

(13)R2 =

∑n
i=1

(
fi − y

)2
∑n

i=1

(
yi − y

)2

Figure 3.   Flow chart of air pollution prediction based on the integrated CEEMDAN-CNN-LSTM model.
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as the training sample; 80 and 20% of the samples were used as the training and the validation sets, respectively. 
The data from 2021 were used as separate test sets.

Descriptive statistics.  To better illustrate the situation of the used data, the pollutant concentrations of the 
six cities were plotted as a line graph, and the results are shown in Fig. 4. Overall, the six major air pollutants 
showed obvious periodicity; PM2.5, SO2, CO, and PM10 showed a yearly decreasing trend. Among them, the 
concentrations of PM2.5, SO2, NO2, CO, and PM10 reached their highest values in January and the lowest in 
September each year, showing a “U” shape; the change trend of O3 is the opposite. The highest and lowest con-
centrations of O3 occur in September and January every year, respectively, and the distribution is in the shape of 
“Λ”. This research suggests that this anomaly is not a coincidence, and a deeper connection exists between the six 
pollutants. In summer, strong solar radiation causes the surface temperature to rise sharply and heats the air near 
the surface. This leads to increased convection and precipitation, which accelerate the diffusion and deposition 
of atmospheric pollutants67. Frequent sandstorms cause air pollution68. Stable weather and biomass combustion 
are common69. In winter, the low surface temperature causes surface inversion, and the meteorological condi-
tions are not conducive to vertical convection70; therefore, the near-surface air pollution is high. As these six pol-
lutants have similar influencing factors and trends, the remaining five pollutants need to be combined to predict 
the concentration of a single pollutant.

Figure 4.   The pollutant concentrations of the six cities.
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Results and discussion
Through knowledge of past forecasting studies71–75, we know that the prediction work based on LSTM obeys a 
particular framework: PM2.5 (or other time series) is decomposed into several IMFs and a residual by EMD; 
subsequently, the LSTM model is applied to each IMF and residual; and finally, the training results are simply 
added to obtain the predicted value. However, this framework has some limitations:

1.	 The inability to prevent the transfer of white noise from high frequency to low frequency during EMD 
decomposition.

2.	 Choosing the high-frequency IMF.
3.	 Unable to choose the optimal parameter combination in the LSTM model.
4.	 Decomposition predictions only for a single sequence without considering whether other factors will 

influence the prediction results.

To address these problems, we combine the model in this section to provide the results and discussion.

CEEMDAN decomposition results of PM2.5.  The CEEMDAN algorithm was selected to solve the 
problem occurring when the white noise of the EMD algorithm transfers from high frequency to low frequency. 
Figure 5 shows the CEEMDAN decomposition results of PM2.5 of Binzhou from January 1, 2016, to Decem-
ber 31, 2021 (see appendix for the results of the remaining five cities). The IMF decomposed by CEEMDAN 
shows a certain change law and cycle and subsequently reflects the information on different time scales in the 
original time series. In the figure, the abscissa represents the time sequence number and the ordinate represents 
the frequency of each IMF and RES. The results show that in the high-frequency space (IMF0-IMF3), the IMF 
component fluctuates significantly and the fluctuation rate is slow, indicating that the short-term PM2.5 concen-
tration is extremely unstable. In the intermediate frequency space (IMF4, IMF5), the IMF component exhibits 
a certain periodicity, and the component fluctuation frequency gradually decreases. In the low-frequency space 
(IMF6, IMF7, RES), the fluctuation of the IMF component becomes gentler, indicating that since 2016, PM2.5 
in Binzhou has continued to decline, and the air quality has significantly improved. However, with the passage 
of time, the PM2.5 has decreased. The rate slowed and the concentration data smoothed out. Finally, the predic-
tion results of the model under CEEMDAN, EEMD, VMD and EMD decompositions are presented in Table 2. 
Among them, the RMSE and MAE under CEEMDAN decomposition are 55.20 and 44.54% lower than EMD, 

Figure 5.   Binzhou’s PM2.5 decomposition results.

Table 2.   Comparison of prediction accuracy between different decompositions.

Model RMSE MAE R2

CEEMDAN-PSO-CNNLSTM 12.67541 9.60255 0.87771

EMD-PSO-CNNLSTM 19.67235 13.87995 0.70546

EEMD-PSO-CNNLSTM 19.76978 14.28564 0.70695

VMD-PSO-CNNLSTM 16.26797 10.88799 0.78680
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respectively, and the R2 increased by 19.62%. In general, compared with the EMD, EEMD and VMD, CEEM-
DAN has a more obvious effect on improving the model prediction accuracy.

PSO parameter optimization results.  In this study, the parameter space was chosen as the time step 
(n) of the time series and the number of neurons (cells) in the LSTM neural network model. The range of n 
was 1–20, and the range of cells was 1–100. We considered the daily data of 2016–2020 and 2021 as the training 
and test sets, respectively, and the parameter results of the PM2.5 prediction model training for the six cities 
are presented in Table 3. As presented in Table 3, among the six cities, the optimal time step for the six cities 
is only two and four, which shows that the CEEMDAN-PSO-CNNLSTM model constructed in this study is 
only dependent on data from the past few days. Additionally, the minimum and maximum numbers of LSTM 
neurons were 42 and 92, respectively, indicating that the model was more sensitive to changes in the number of 
parameter neurons.

Final model predictions.  After CEEMDAN decomposition and PSO algorithm optimization, the variables 
and parameters were input into the CNN-LSTM model to predict the final air pollutant value. In other studies, 
prediction methods combined with EMD treated the first high-frequency IMF sequence as a noise term and 
discarded it, which did not contribute to the prediction result76,77. This method is simple and crude and may 
lose some useful information and retain some noise signals. Therefore, a CNN was selected to screen the IMFs. 
Simultaneously, to illustrate the robustness and superiority of the proposed model, the air pollution results of six 
types of cities affected by different air pollutants were predicted, respectively, and those of SVM, CEEMDAN-
SVM, PSO-LSTM, PSO-CNN-LSTM, CEEMDAN- PSO-LSTM, CEEMDAN-PSO-CNNLSTM models were 
compared with each other. For conciseness, the following subsections only provide the prediction and compari-
son results of PM2.5, and appendix presents the prediction results of the other five pollutants.

The MSE, MAE, and R2 values obtained using the six prediction models are listed in Table 4. Overall, the 
proposed CEEMDAN-PSO-CNNLSTM model has the best prediction accuracy; it has the smallest MSE and 
MAE and the highest R2 among the predictions for the six cities. Simultaneously, Fig. 6 also shows that the 
PM2.5 prediction curve of the proposed model has a high degree of fit with the actual curve, and the prediction 
accuracy is high. Therefore, the proposed model is considered to be effective and robust in predicting results 
under different polluted environments and outperforms the other models.

Specifically, the prediction accuracy of the model after CEEMDAN decomposition was significantly 
higher than those of the models without decomposition (CEEMDAN-PSO-CNNLSTM vs. PSO-CNN-
LSTM, CEEMDAN-PSO-LSTM vs. PSO-LSTM, and CEEMDAN-SVM vs. SVM). Considering Binzhou as 
an example, the prediction accuracies of the SVM, PSO-LSTM, and PSO-CNNLSTM models decomposed 
by CEEMDAN improved by 0.08, 0.31, and 0.39 (R2), respectively, while the prediction errors were reduced 
by 12.24, 34.34, and 51.82%, (RMSE) and 13.85, 32.05, and 48.61% (MAE), respectively. This shows that the 
signal decomposition technique can effectively reduce the non-stationarity of the PM2.5, thereby improving the 
performance. Additionally, according to the results listed in Table 2, the necessity of CEEMDAN decomposition 
is also confirmed. Finally, in response to the second question raised at the beginning of this section, the model 
prediction results are compared and analyzed. We found that when CEEMDAN is not decomposed or the model 
has few input variables (only five variables are input in the PSO-LSTM and PSO-CNN-LSTM models), the 
improvement in prediction accuracy by using CNN for feature screening is not obvious. In the six selected cities, 
the R2 values increased by approximately 0.01–0.08, and the RMSE and MAE decreased by approximately 1–8% 
and 1–9%, respectively. For the model after CEEMDAN decomposition (there are more than 10 variables in the 
CEEMDAN-PSO-LSTM and CEEMDAN-PSO-CNNLSTM models), the use of CNN for feature screening greatly 
improved the model prediction accuracy; in the six selected cities, the R2 increased by 0.10–0.18, and the RMSE 
and MAE decreased by approximately 27–46% and 22–42%, respectively. We concluded that when there are more 
variable inputs, using a CNN for feature screening can increase the accuracy and error of the model. Therefore, 
it is feasible and effective to use a CNN to screen each IMF component after CEEMDAN decomposition.

The PM2.5 prediction scatter plot for each model is shown in Fig. 7. The proposed model had the highest 
R-value (0.94). The graph shows that CEEMDAN-PSO-CNNLSTM also shows a fitting advantage over the other 
models. The scattered points are evenly distributed on both sides of the diagonal, and the fitted straight line is 
the closest to the diagonal. Additionally, although the R-value of the SVM model was high, based on the results 
of the model prediction, the predicted value of the SVM was usually high, and it was not sensitive to changes in 

Table 3.   Parameter training results.

City Cells n

Binzhou 92 2

Jinan 51 4

Handan 42 2

Taiyuan 93 4

Xinxiang 66 2

Zibo 90 4
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extreme values. Overall, the proposed model showed better PM2.5 predictions and achieved better prediction 
performance.

Comparison of prediction results without introducing air pollutants.  The prediction results for 
PM2.5 prediction results of the six cities are shown in Fig. 8. From the graph, the curve of the joint prediction 
of the five pollutants has a high degree of fit with the actual curve, which can better reflect the change trend 

Table 4.   The statistical evaluation of different model performances (PM2.5).

City Model RMSE MAE R2

Binzhou

SVM 21.25 19.86 0.66

CEEMDAN-SVM 18.65 17.11 0.73

BP 19.36 12.65 0.61

MLP 22.95 15.56 0.58

PSO-LSTM 26.94 18.97 0.45

PSO-CNN-LSTM 26.32 18.68 0.47

CEEMDAN-PSO-LSTM 17.69 12.89 0.76

CEEMDAN-PSO-CNNLSTM 12.68 9.60 0.86

Jinan

SVM 23.13 21.34 0.52

CEEMDAN-SVM 21.52 19.90 0.59

BP 19.90 13.03 0.58

MLP 30.00 20.84 0.46

PSO-LSTM 24.28 16.48 0.47

PSO-CNN-LSTM 23.94 16.47 0.49

CEEMDAN-PSO-LSTM 16.04 11.21 0.77

CEEMDAN-PSO-CNNLSTM 11.01 8.41 0.87

Handan

SVM 23.52 21.17 0.67

CEEMDAN-SVM 16.14 13.20 0.86

BP 26.57 17.69 0.39

MLP 27.14 18.93 0.38

PSO-LSTM 31.48 21.49 0.46

PSO-CNN-LSTM 31.16 21.72 0.47

CEEMDAN-PSO-LSTM 22.31 15.10 0.72

CEEMDAN-PSO-CNNLSTM 12.94 9.99 0.88

Taiyuan

SVM 23.55 21.91 0.62

CEEMDAN-SVM 19.86 17.92 0.73

BP 30.55 16.26 0.25

MLP 27.47 19.24 0.37

PSO-LSTM 30.79 20.63 0.44

PSO-CNN-LSTM 27.31 18.81 0.48

CEEMDAN-PSO-LSTM 20.79 15.16 0.70

CEEMDAN-PSO-CNNLSTM 12.38 9.33 0.88

Xinxiang

SVM 23.68 21.43 0.53

CEEMDAN-SVM 18.53 14.85 0.71

BP 725.29 19.29 0.34

MLP 28.44 20.65 0.36

PSO-LSTM 23.91 17.52 0.52

PSO-CNN-LSTM 23.29 18.09 0.55

CEEMDAN-PSO-LSTM 16.00 11.53 0.79

CEEMDAN-PSO-CNNLSTM 11.63 8.98 0.88

Zibo

SVM 19.95 18.36 0.70

CEEMDAN-SVM 19.70 17.84 0.71

BP 23.49 16.96 0.48

MLP 24.57 18.16 0.43

PSO-LSTM 26.89 18.26 0.46

PSO-CNN-LSTM 24.61 17.00 0.55

CEEMDAN-PSO-LSTM 19.77 14.29 0.71

CEEMDAN-PSO-CNNLSTM 10.66 8.34 0.89
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of PM2.5 and changes in extreme values. The RMSE, MAE, and R2 values obtained from the two predictions 
are listed in Table  5. Considering the prediction of PM2.5, RMSE and MAE of Binzhou decreased by 10.70 
and 7.69%, respectively, and R2 increased by 0.07; the RMSE and MAE of Jinan decreased by 9.98 and 11.19%, 
respectively, and R2 increased by 0.03; the RMSE and MAE of Handan decreased by 15.92 and 11.04%, respec-
tively, and R2 increased by 0.09; the RMSE and MAE of Taiyuan decreased by 14.27 and 16.09%, respectively, 
and R2 increased by 0.05; the RMSE and MAE of Xinxiang decreased by 16.81 and 15.20%, respectively, and R2 
increased by 0.07; the RMSE and MAE of Zibo decreased by 27.78 and 24.80%, respectively, and R2 increased 
by 0.1. Notably, compared with those of the single PM2.5 time-series prediction, the RMSE and MAE obtained 
by the combination of the other five pollutants were smaller, and the R2 was larger. This indicated that the input 
of the five pollutant data improved the prediction accuracy of the model. The positive effect, especially for the 
cities not polluted by PM2.5, by combining the five air pollutants to predict the model performance was more 
significant; however, for the cities mainly polluted by PM2.5, introducing the remaining five air pollutants into 

Figure 6.   PM2.5 forecast curve for the six cities. (μg/m3). (a) Binzhou, (b) Jinan, (c) Handan, (d) Taiyuan, (e) 
Xinxiang and (f) Zibo. 
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the model had a more significant impact. Various pollutants also have a certain effect on improving the predic-
tion accuracy. Therefore, it is necessary to combine the predictions of the remaining five pollutants with that of 
the sixth air pollutants.

Figure 7.   Scatterplots of the actual and forecast PM2.5 values achieved using various models (Binzhou 
data). Model 1: CEEMDAN-PSO-CNNLSTM. Model 2: PSO-LSTM. Model 3: PSO-CNN-LSTM. Model 4: 
CEEMAND-PSO-LSTM. Model 5: CEEMDAN-SVM. Model 6: SVM. Model 7: BP. Model 8: MLP.
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Figure 8.   PM2.5 prediction result curves (with air pollutants vs. without air pollutants). (a) Binzhou, (b) Jinan, 
(c) Handan, (d) Taiyuan, (e) Xinxiang and (f) Zibo.

Table 5.   Comparison of the accuracy of prediction results before and after the introduction of air pollutants.

City

Joint forecast(with air 
pollutants)

Single sequence 
prediction(without air 
pollutants)

RMSE MAE R2 RMSE MAE R2

Binzhou 12.68 9.60 0.86 14.20 10.40 0.79

Jinan 11.01 8.41 0.87 12.23 9.47 0.84

Handan 12.94 9.99 0.88 15.39 11.23 0.79

Taiyuan 12.38 9.33 0.88 14.44 11.12 0.83

Xinxiang 11.63 8.98 0.88 13.98 10.59 0.81

Zibo 10.66 8.34 0.89 14.76 11.09 0.79
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Health effect assessment.  Air pollution affects the economy and causes serious damage to human health. 
The number of deaths due to excessive pollutant concentrations is presented in Table 8. This section is based on 
the predicted concentrations in 2021, combined with historical research, and uses the WHO revised guidance 
value in 2021, the first-level limit, and the second-level limit of China’s “Environmental Quality Standard” as the 
reference concentrations to evaluate the health impact of the population. Tables 6 and 7 the aggregated air pol-
lutant concentration reference values and percentage increases in the population mortality, respectively. Notably, 
the air pollutants that significantly increase the mortality rate of the population are NO2, which increases the 
mortality rate by 1.4% per 10 μg·m−3, followed by SO2, which increases the mortality rate by 0.9% per 10 μg·m−3. 
As presented in Table 8, under the latest WHO standard, the number of deaths due to excessive NO2 concentra-
tion is the largest among the six cities, followed by those due to PM10 and PM2.5, respectively. According to 

Table 6.   Reference levels of various air pollutants.

PM2.5 (μg·m−3) PM10 (μg·m−3) O3 (μg·m−3) NO2 (μg·m−3) SO2 (μg·m−3) CO (mg·m−3)

WHO guideline value 5 15 100 10 40 4

National first-class standard 15 40 100 40 20 4

National second-class standard 35 70 160 40 60 4

Table 7.   Percentage increase in the population mortality due to excessive pollutant concentrations.

Air pollutants ER (%) 95%CI (%) Source

PM2.5 (10 μg·m−3) 0.38 0.31 ~ 0.45 78

PM10 (10 μg·m−3) 0.31 0.22 ~ 0.41 79

O3 (10 μg·m−3) 0.40 0.30 ~ 0.50 80

NO2 (10 μg·m−3) 1.40 1.10 ~ 1.60 81

SO2 (10 μg·m−3) 0.90 0.60 ~ 1.10 81

CO (1 mg·m−3) 3.70 2.88 ~ 4.51 78

Table 8.   Number of deaths that could be avoided by meeting air pollution standards in 2021 (10,000 people).

Air pollutants Binzhou Jinan Handan Taiyuan Xinxiang Zibo

WHO guideline value

PM2.5 4.81 (95% CI: 3.93 ~ 5.70) 16.47 (95% CI: 
13.44 ~ 19.51)

15.59 (95% CI: 
12.72 ~ 18.46) 7.48 (95% CI: 6.10 ~ 8.85) 9.57 (95% CI: 

7.81 ~ 11.33) 7.81 (95% CI: 6.37 ~ 9.25)

PM10 6.85 (95% CI: 4.86 ~ 9.07) 22.13 (95% CI: 
15.70 ~ 27.26)

23.49 (95% CI: 
16.67 ~ 31.07)

12.75 (95% 
CI:9.05 ~ 16.86)

16.64 (95% CI: 
11.81 ~ 22.00)

10.80 (95% CI: 
7.67 ~ 14.29)

O3 0.00 0.00 0.00 0.00 0.00 0.00

NO2 9.18 (95% CI: 
3.93 ~ 10.49)

28.44 (95% CI: 
12.19 ~ 32.50)

24.09 (95% CI: 
10.32 ~ 27.53)

18.20 (95% CI: 
7.80 ~ 20.80)

17.41 (95% CI: 
7.46 ~ 19.90)

16.09 (95% CI: 
6.90 ~ 18.39)

SO2 0.00 0.00 0.00 0.00 0.00 0.00

CO 0.00 0.00 0.00 0.00 0.00 0.00

National first-class standard

PM2.5 3.53 (95% CI: 2.88 ~ 4.18) 13.09 (95% CI: 
10.68 ~ 15.50)

11.97 (95% CI: 
9.77 ~ 14.18) 5.75 (95% CI: 4.69 ~ 6.81) 7.36 (95% CI: 6.00 ~ 8.72) 6.03 (95% CI: 4.92 ~ 7.14)

PM10 4.23 (95% CI: 3.00 ~ 5.89) 15.22 (95% CI: 
10.80 ~ 20.13)

16.11 (95% CI: 
11.43 ~ 21.31)

9.23 (95% CI: 
6.55 ~ 12.21)

12.13 (95% CI: 
8.61 ~ 16.05) 7.16 (95% CI: 5.08 ~ 9.47)

O3 0.00 0.00 0.00 0.00 0.00 0.00

NO2 0.00 0.00 0.00 0.00 0.00 0.00

SO2 0.00 0.00 0.00 0.00 0.00 0.00

CO 0.00 0.00 0.00 0.00 0.00 0.00

National secondary standard

PM2.5 0.95 (95% CI: 0.77 ~ 1.12) 6.32 (95% CI: 5.15 ~ 7.49) 4.73 (95% CI: 3.86 ~ 5.6) 2.30 (95% CI: 1.87 ~ 2.72) 2.95 (95% CI: 2.40 ~ 3.49) 2.46 (95% CI: 2.00 ~ 2.91)

PM10 1.07 (95% CI: 0.76 ~ 1.42) 6.94 (95% CI: 4.92 ~ 9.18) 7.25 (95% CI: 5.15 ~ 9.59) 5.00 (95% CI: 3.55 ~ 6.62) 6.73 (95% CI: 4.78 ~ 8.90) 2.80 (95% CI: 1.98 ~ 3.70)

O3 0.00 0.00 0.00 0.00 0.00 0.00

NO2 0.00 0.00 0.00 0.00 0.00 0.00

SO2 0.00 0.00 0.00 0.00 0.00 0.00

CO 0.00 0.00 0.00 0.00 0.00 0.00
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the national standard, the number of deaths due to excessive PM10 is the largest, followed by PM2.5. In general, 
although the concentrations of SO2, CO, and O3 in some cities are significantly higher than those in others, 
PM2.5, PM10 are the main air pollutants affecting human health. PM2.5, PM10, and NO2 should be considered 
as the focus of air pollution prevention and control, and must be simultaneously combined with the city’s own 
SO2, CO, and O3 concentration characteristics to gradually tighten the standard limit.

Conclusions
Cities are usually affected by air pollution in several ways. To promote the sustainable development of urban 
public health and the sustainable development of society, a stable and high-precision air pollutant prediction 
model is required. This paper studied a series of existing LSTM prediction frameworks and found that some 
problems still exist in the existing prediction frameworks, including the selection of high-frequency feature 
signals, the selection of LSTM model parameters, and predictions without considering other closely related 
drivers of air pollution. Therefore, this study develops a hybrid model named CEEMDAN-PSO-CNNLSTM to 
solve these problems. First, CEEMDAN is used to decompose the air pollutant signal, and the decomposed data 
are then sent to the CNN-LSTM neural network for PSO optimization. Finally, the optimized parameter input 
model was trained using the original data to obtain the final prediction result. Combined with the evaluation 
criteria, the proposed model had the highest accuracy among the six compared models. Additionally, predictions 
were made for six cities affected by different pollutants, and we found that the prediction accuracy of the 
proposed model was the highest in each comparison, indicating the robustness of the model. The advantages 
of the proposed hybrid model are as follows: 1. considering the influence of other air pollutants, the prediction 
accuracy for a single air pollutant was improved. 2. Combining the CEEMDAN decomposition with the PSO 
algorithm and using CNN to screen the IMF not only solves the problem of parameter selection in the LSTM 
model, but also solves that of white noise and high-frequency signals interfering with the prediction results; thus, 
it realized the improvement of the traditional prediction framework. At the end of the article, we predict the 
degree of harm that air pollutants may bring to the health of the population, and offer some suggestions. However, 
the model proposed in this study still has room for optimization. For example, we consider the spatial location 
information of each forecast station and improve the prediction accuracy through the joint prediction of different 
sites. Additionally, referring to forecasting work in other areas, there are still many variables that have not been 
added to the process of predicting pollutants, such as the wind speed, air pressure, humidity, and temperature, 
are also important factors affecting the air quality82,83. In future studies, the prediction of air pollution will be 
further refined, and other variables that may affect air pollution will be added to further optimize the hybrid 
model and improve its effectiveness.

Data availability
All data generated or analyzed during this study are included in this its supplementary information files.
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