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Abstract
Introduction: Despite radical intent therapy for patients with stage III non-small-cell lung 
cancer (NSCLC), cumulative incidence of brain metastases (BM) reaches 30%. Current risk 
stratification methods fail to accurately identify these patients. As radiomics features have 
been shown to have predictive value, this study aims to develop a model combining clinical 
risk factors with radiomics features for BM development in patients with radically treated 
stage III NSCLC.
Methods: Retrospective analysis of two prospective multicentre studies. Inclusion criteria: 
adequately staged [18F-fluorodeoxyglucose positron emission tomography-computed 
tomography (18-FDG-PET-CT), contrast-enhanced chest CT, contrast-enhanced brain 
magnetic resonance imaging/CT] and radically treated stage III NSCLC, exclusion criteria: 
second primary within 2 years of NSCLC diagnosis and prior prophylactic cranial irradiation. 
Primary endpoint was BM development any time during follow-up (FU). CT-based radiomics 
features (N = 530) were extracted from the primary lung tumour on 18-FDG-PET-CT images, 
and a list of clinical features (N = 8) was collected. Univariate feature selection based on the 
area under the curve (AUC) of the receiver operating characteristic was performed to identify 
relevant features. Generalized linear models were trained using the selected features, and 
multivariate predictive performance was assessed through the AUC.
Results: In total, 219 patients were eligible for analysis. Median FU was 59.4 months for the 
training cohort and 67.3 months for the validation cohort; 21 (15%) and 17 (22%) patients 
developed BM in the training and validation cohort, respectively. Two relevant clinical features 
(age and adenocarcinoma histology) and four relevant radiomics features were identified as 
predictive. The clinical model yielded the highest AUC value of 0.71 (95% CI: 0.58–0.84), better 
than radiomics or a combination of clinical parameters and radiomics (both an AUC of 0.62, 
95% CIs of 0.47–076 and 0.48–0.76, respectively).
Conclusion: CT-based radiomics features of primary NSCLC in the current setup could not 
improve on a model based on clinical predictors (age and adenocarcinoma histology) of BM 
development in radically treated stage III NSCLC patients.
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Introduction
The brain is a frequent site of disease relapse in 
patients with non-small-cell lung cancer 
(NSCLC). Risk factors for brain metastases (BM) 
are advanced stage, adenocarcinoma histology, 
and younger age.1–3 For radically treated patients, 
locally advanced (stage III) NSCLC has the high-
est risk for BM, with a cumulative incidence of 
BM of approximately 30%.4 The majority of BM 
present within 2 years of diagnosis, despite brain 
imaging without BM during initial staging for 
NSCLC.4 Brain magnetic resonance imaging 
(MRI) is recommended in clinical guidelines 
[and if not possible, contrast-enhanced computed 
tomography (CECT)].5–8 The type of chemother-
apy administered during chemoradiation therapy 
does not influence the incidence of BM.2 Curative 
treatment of (symptomatic) BM is seldom possi-
ble and for the overwhelming majority of patients 
overall survival (OS) is limited.9 Moreover, BM 
are associated with a devastating impact on 
Quality of Life (QoL).10,11 Therefore, strategies 
to prevent BM and to predict who is at risk for 
their development are necessary, especially taking 
into consideration that treatments that reduce the 
incidence of BM are possible.

Prophylactic cranial irradiation (PCI) has been 
shown to reduce the incidence of BM in patients 
with NSCLC with a relative risk of 0.33.4 PCI 
prolongs progression-free survival in stage III 
NSCLC, but not OS.4 Furthermore, PCI leads to 
neurocognitive impairment (mostly grade 1–2) in 
about 25–27% of patients.12,13 Ideally, only those 
patients with an a priori high risk of BM should 
undergo PCI and those with a low risk could 
avoid the risk of neurocognitive decline. An alter-
native approach to preventive treatment would be 
to closely monitor patients at high risk for BM 
through MRI surveillance, although there is no 
evidence that this improves outcome.14 Hence, 
identifying predictive biomarkers, and thereby 
stratifying patients at high versus low risk for BM 
development, is key to personalize follow-up 
(FU) and treatment.

Although clinical risk factors are identified as 
described above, it remains challenging to dis-
criminate between patients at high and low risk of 
BM.15,16 Won et al.17 developed a prediction 
model using clinical and pathological risk factors, 
such as histology, pathological T- and N-stages, 
and smoking status to predict the probability of 
BM development after curative surgery in a large 

group of patients with NSCLC.17 This study used 
dedicated brain imaging (majority brain MRI, 
subset brain CECT) at baseline to verify that no 
BM were present. However, the model only had a 
moderate discriminative power in predicting BM 
development at 2 and 5 years [Harrell’s C-index 
(CI) of 0.670 and 0.674, respectively], and was 
verified only through internal validation, showing 
a clear need for more studies investigating BM 
prediction models.

Metastases develop through a ‘wiring’ of the pri-
mary tumour to spread to certain organs (‘seed 
and soil’ hypothesis).18–20 Therefore, analysis of 
the primary tumour could provide valuable feed-
back in identifying those patients at risk of devel-
oping BM. Indeed, molecular biomarkers, such 
as microRNAs expression patterns, were previ-
ously associated with BM development in patients 
with NSCLC.21,22 However, these markers were 
not investigated in a prospective predictive study. 
Furthermore, they require invasive biopsies, and 
small tumour biopsies disregard the heterogene-
ous nature of tumours.23 Therefore, an approach 
that takes the entirety of the tumour into account 
(i.e. the whole primary tumour and not only a 
small biopsy) is preferred.

Radiomics refers to the extraction of quantitative 
data from medical images using mathematical 
algorithms and finding correlations with biologi-
cal or clinical outcomes via machine learning 
techniques.24–26 When radiomics is applied to 
oncology, radiological images [e.g. CT, MRI, or 
positron emission tomography (PET)] performed 
during routine clinical workflow can be used to 
non-invasively extract imaging features describ-
ing the tumour and patient phenotypes.27 These 
features can have significant diagnostic, prognos-
tic, and predictive values, and hold the potential 
to assist clinical decision-making.28

Coroller et al.29 found that a model based on the 
primary tumour in locally advanced adenocarci-
nomas of the lung was predictive of distant metas-
tases. However, this study tried to predict distant 
metastases in general, not BM specifically. Three 
other studies showed that CT-based radiomics 
models on primary lung tumours might have pos-
itive value to predict BM in patients with 
NSCLC.30–32 Models of clinical features and radi-
omics features were compared and combined, 
and in all three studies complementary value for 
the radiomics models were found. However, 
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sample sizes were small (N = 85–124), no external 
validation was performed, not all patients were 
adequately staged according to guidelines,5–8 and 
patient groups included were heterogeneous (e.g. 
different disease stages), which may affect the 
reliability of the created models.

Therefore, the aim of the current study is to 
develop a prediction model for BM development 
(low versus high risk) in patients with adequately 
staged, radically treated stage III NSCLC, based 
on clinical patient characteristics only, and com-
bined with CT-based radiomics analysis of the 
primary lung tumour. We hypothesize that a 
model based on CT-radiomics and clinical varia-
bles can assist medical professionals in the deci-
sion-making process, and facilitate precision 
medicine for the treatment of NSCLC.

Materials and methods

Study population
This was a post hoc analysis of two prospective, 
multicentre studies [NVALT-11, NCT01282437 
(inclusion 2009–2015) and NL3335 (inclusion 
2012–2017)] enrolling patients with stage III 
NSCLC (IASLC 7th edition). NCT01282437 
(N = 175) was a multicentre randomized phase III 
study evaluating PCI versus no PCI in patients 
with radically treated stage III NSCLC. Primary 
endpoint was the development of symptomatic 
BM 24 months after randomization. Approximately 
half of these patients had baseline brain CECT, 
the remaining brain MRI. Only patients without 
baseline BM were eligible.33 NL3335 was a pro-
spective multicentre observational study, evaluat-
ing whether performing a brain MRI after a 
negative dedicated CECT had additive value in 
the diagnosis of asymptomatic BM.34 One of the 
secondary endpoints was the development of BM 
after radical treatment for stage III NSCLC. For 
NL3335, patients with stage III NSCLC and an 
available 18F-fluorodeoxyglucose (18F-FDG)-
PET-CT were screened, and only those with a 
dedicated brain CT (with contrast, arms at thorax 
level, correct field of view, and delayed imaging35) 
performed before or together with the 18F-FDG-
PET-CT available, and followed by a brain MRI, 
were deemed eligible. For the current study, all 
patients who were staged with 18F-FDG-PET-CT 
and dedicated brain imaging (MRI and/or CECT), 
and treated with radical intent therapy (i.e. 

sequential or concurrent chemoradiation with/
without surgery, or radical radiotherapy), were eli-
gible. For both studies, additional eligibility crite-
ria consisted of availability of baseline chest CECT 
(i.e. at diagnosis of stage III NSCLC), and a dis-
tinct primary tumour [primary tumour not detect-
able (Tx) or primary tumour not definable due to 
surrounding atelectasis were excluded]. 
Furthermore, all patients that received PCI or had 
a second primary within 2 years of NSCLC diag-
nosis were excluded.

The dataset was split into a training and a valida-
tion dataset. The patient data obtained from the 
NL3335 study from the hospitals in Heerlen 
(Zuyderland MC) and Maastricht (Maastricht 
UMC+) were assigned to the training dataset. 
This dataset was used to select relevant features 
and to train the model. To test the performance 
on data not yet seen by the model, a validation 
dataset was also defined comprising data from 
one of the centres participating in the NL3335 
study (VieCuri Medisch Centrum) and from the 
NVALT-11 study.

Patient characteristics
Baseline characteristics recorded in the two pro-
spective studies and extracted for this analysis 
included age, gender, World Health Organization 
Performance Status (WHO PS), smoking status, 
pack years, tumour, node, metastasis stage 
(IASLC 7th edition, IIIA versus IIIB), histology, 
and FU data regarding BM development. The 
primary endpoint of this study was the develop-
ment of BM (binary: yes/no), which was defined 
as disease progression to the brain assessed by 
MRI or CECT anytime during FU.

Image acquisition
Pre-treatment diagnostic chest CT images were 
acquired with a Philips Gemini TF64 (Philips 
Medical Systems, Best, Netherlands), Siemens 
Somatom Force scanner (Siemens Healthineers, 
Erlangen, Germany), GE Discovery STE (GE 
Medical systems, Chicago, IL, USA), and 
Toshiba Aquilion (Toshiba, Tokyo, Japan). The 
scanning parameters were 80–140 kVp tube volt-
age, 37–462 mAs tube current, and 512 × 512 
matrix. An overview of the imaging characteris-
tics can be found in Supplemental Figure S1. CT 
images were obtained through the picture 
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archiving and communication system in the 
Digital Imaging and Communications in 
Medicine format. For each patient, an 18F-FDG-
PET-CT with a non-diagnostic low-dose CT for 
attenuation correction and diagnostic CECT 
were available. Generally, the injection of con-
trast induces noise in the images and hence in 
some radiomics features due to differences 
between patients in diffusion of the contrast 
agent. However, the CECT scan was finally cho-
sen for the analysis, as several tumours were dif-
ficult to contour on the low-dose CT due to 
mediastinal invasion and undefined tumour bor-
ders. Furthermore, the lower spatial resolution of 
low-dose CT could lead to the loss of important 
radiomics information. The CECT scans were 
obtained with different imaging parameters (e.g. 
spatial resolution, slice thickness, reconstruction 
kernel) due to variation in acquisition protocols of 
hospitals and different scanners available. 
Therefore, imaging parameters that were the 
most common throughout all images were set as 
the standard imaging parameters, for example, 
3 mm slice thickness, soft reconstruction kernel, 
which were used to select the appropriate CECT 
scan for each patient accordingly.

Tumour segmentation
The region of interest (ROI), that is, the primary 
lung tumour, was manually delineated on the CT 
images using MIM Software Inc. (Version 6.9.4, 
Cleveland, OH, USA). 18F-FDG-PET-CT imag-
ing was used alongside the CT image to locate the 
tumour, and to identify tumour borders adjacent 
to atelectasis or tumours invading extrapulmo-
nary structures. The lung window was used to 
identify tumour-lung borders, while tumour 
regions adjacent to extrapulmonary tissues were 
contoured in the mediastinal window. In cases of 
tumours completely (or for a greater part) sur-
rounded by atelectasis (i.e. reliable contouring 
not possible), the CT scan was excluded from 
radiomics analysis. All tumour segmentations 
were performed and checked for accurate deline-
ation by an experienced pulmonary oncologist or 
thoracic radiologist.

Pre-processing and feature extraction
To homogenize the datasets prior to feature 
extraction, all images were resampled to the mode 
of the unprocessed scans (1 × 1 mm2 pixel size 
and 3 mm slice thickness). Furthermore, to 
reduce noise and computational burden, the 

intensity values inside the ROI were discretized 
with a fixed bin width of 25 Hounsfield units 
which has been reported to yield the most repro-
ducible radiomics features for CT images.36

Feature extraction for every 3D ROI on each 
baseline CECT was performed using PyRadiomics 
version 2.2.0 on both the original images and fil-
tered images. Laplacian of Gaussian (LoG) con-
volution filtering was applied to the original image 
to highlight the regions of intensity change within 
an image. The LoG was applied with five differ-
ent Gaussian standard deviation (SD) values 
ranging from 1 to 5 mm resulting in five different 
LoG images. The radiomics features extracted 
from the images can be divided into three main 
groups: first-order intensity and histogram statis-
tics features, shape and size features, and texture 
features. First-order intensity and histogram sta-
tistics features describe the voxel intensity distri-
bution within the ROI. Shape and size features 
describe the spatial characteristics of the ROI 
itself, such as volume and sphericity, and are thus 
independent of the image contents. Texture fea-
tures describe the spatial relationships of voxel 
intensities and are derived from six different 
matrices that are defined over the ROIs: grey-
level co-occurrence (GLCM), grey-level run 
length, grey-level size zone (GLSZM), grey-level 
distance zone, neighbourhood grey-level depend-
ence, and neighbourhood grey-tone difference 
matrix.

The total number of features that can be extracted 
with the PyRadiomics package, without using 
highly correlating/depreciated features and with-
out any further manipulation of the image is 107. 
However, the application of image filters, either 
Wavelet based or Log based with different kernel 
sizes can multiply this number to thousands of 
features. The wavelet-based features were omit-
ted from this analysis, as with a relatively low 
number of patients adding more features would 
increase the risk of overfitting and finding spuri-
ous correlations, and because wavelet-based fea-
tures have shown to have low reproducibility 
compared to Log-filtered images.37

Feature selection and predictive modelling
The radiomics features were first normalized on 
the training dataset through z-score normaliza-
tion: the mean and SD of each feature were deter-
mined over the entire training population and 
used to perform normalization on the training 
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dataset, as well as on the validation dataset. For 
the clinical features, a list of known clinical pre-
dictors for BM defined by Won et al. were used.17 
These included histology (adenocarcinoma versus 
others), age, stage (IIIA versus IIIB), WHO PS (0 
versus 1 or higher, 0–1 versus 2 or higher, and 0–2 
versus 3), smoking status (ever versus never, and 
current versus former or ever), packyears, and 
treatment received (concurrent chemoradiation 
versus other). As the volume of the tumour is also 
a radiomics feature, it was not included as a clini-
cal variable. Dimensionality reduction through 
feature selection was performed on both the radi-
omics and clinical variables.

Feature selection and modelling were performed 
using R software (Version 3.3.2, R Core Team, 
Vienna, Austria) on the training dataset.38 
Supervised univariate feature selection was per-
formed on all clinical and radiomics features, 
using the occurrence of BM as the binary out-
come. For each feature, the area under the curve 
(AUC) of the receiving operating characteristic 
(ROC) was calculated. The ROC curve shows 
the sensitivity and specificity of the model at dif-
ferent classification thresholds on the feature 
score. The AUC of this curve was a metric of 
the predictive performance of the feature, rang-
ing from 0.5 to 1, where 1 indicates a perfect 
prediction and 0.5 a prediction equal to chance. 
As an AUC > 0.6 indicates a feature has some 
predictive power, this cut-off was chosen to 
select features. Features that are highly corre-
lated (Spearman’s correlation > 0.8) were deter-
mined, and the feature with the highest average 
correlation with all other features remaining in 
the set was excluded. To verify that radiomics 
features are not simply surrogates for tumour 
volume, the correlation with volume was also 
determined. Three separate models were cre-
ated: using the selected radiomics features, 
using the selected clinical features, and using a 
combination of selected radiomics and clinical 
features.

Using the selected features, a generalized linear 
model was trained on the training dataset using 
BM status as outcome calculated. Without chang-
ing its parameters, the model was then validated 
on the validation dataset, and the prediction score 
created as output. This prediction score is the 
probability a patient will develop a BM, and 
ranges from 0 to 1. By selecting a threshold on 
this prediction score, the binary classification of 
the validation patients was performed.

Statistical analysis
Baseline patient characteristics were analysed 
using standard descriptive statistics. Statistical 
analysis of continuous variables was performed 
with the independent two-sample t-test, whereas 
differences in categorical variables were analysed 
using a χ2-test. The reported statistical signifi-
cance levels were all two-sided set at α < 0.05.

The predictive performance of the model was 
quantified through the AUC of the ROC. 
Calibration of the model on the external dataset 
was tested using the calibration curve, and a χ2-
test to see whether the slope and intercept are sig-
nificantly different from 0 and 1, respectively. If 
this test is significant, it indicates the model does 
not fit on the external dataset. The ROC curve 
was plotted, and its confidence interval of 95% 
was calculated on 2000 stratified bootstrap repli-
cates. In addition, the binary classification was 
used to create a confusion matrix, which visual-
izes the performance of the model by comparing 
the predicted BM status to the true BM status. 
The binary classification was performed by deter-
mining an optimal threshold on the prediction 
score, calculated on 2000 stratified bootstrap rep-
licates. The metric calculated to determine the 
optimal cut-off was the F1-score, which takes 
both precision and recall into account. From this 
binary prediction, the sensitivity, specificity, pre-
cision, negative predictive value, accuracy, bal-
anced accuracy, and F1-score were determined. 
Lastly, a two-proportion z-test was performed to 
determine whether there was a significant differ-
ence between the true proportions of cases in the 
two predicted risk groups.

The Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or 
Diagnosis (TRIPOD) guidelines were adhered 
to.39 To test this adherence, the adherence form 
was filled in, and the TRIPOD score is reported 
(Supplemental Table S1). This score is a grade 
from 0% to 100% that gives an indication of the 
compliance to the TRIPOD guidelines.

Results

Patient inclusion
A total of 467 patients with stage III NSCLC 
were reviewed for selection, and 248 patients 
were excluded for several reasons: not fully staged 
(N = 15, no adequate brain imaging, i.e. no brain 
MRI or dedicated brain CT as defined in the 

https://journals.sagepub.com/home/tam


Therapeutic Advances in 
Medical Oncology Volume 14

6	 journals.sagepub.com/home/tam

methods section); no radical therapy performed 
(N = 69); history of previous cancer (N = 10); no 
CECT of the chest available (N = 90); atelectasis 
surrounding primary tumour (N = 17); and no 
detectable primary tumour (N = 8). Lastly, from 
the NVALT-11 study, all patients with available 
imaging who underwent PCI were excluded 
(N = 39). As a result, 219 patients with stage III 
NSCLC with segmented CECT images were 
included for radiomics analysis. The CONSORT 

diagram depicting the selection process is depicted 
in Figure 1.

Patient characteristics
Of the resulting 219 patients, 142 were assigned 
as the training dataset and 77 as the validation 
set. These datasets are completely independent. 
An overview of baseline patient characteristics is 
listed in Table 1. In the training set, 21 patients 

Figure 1.  CONSORT diagram for patient selection.
CE, contrast-enhanced; CT, computed tomography; MRI, magnetic resonance imaging; NSCLC, non-small-cell lung cancer; 
PCI, prophylactic cranial irradiation; ROI, region of interest.
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Table 1.  Baseline characteristics of patients assigned to training and validation sets.

Characteristic Training set Validation set Total p

N = 142(%) N = 77(%) N = 219(%)

Gender 0.939

  Male 87 (61.3) 46 (59.7) 133 (60.7)  

  Female 55 (38.7) 31 (40.3) 86 (39.3)  

Age (years)

  Mean ± SD 68.6 ± 8.3 63.6 ± 8.2 66.8 ± 8.6 < 0.001

  Range 47.5–88.6 47.2–85.0 47.2–88.6  

  <60 years 26 (18.3) 28 (36.4) 54 (24.7) 0.005

  >60 years 116 (81.7) 49 (63.6) 165 (75.3)  

WHO PS 0.293

  0 53 (37.3) 26 (33.8) 79 (36.1)  

  1 68 (47.9) 45 (58.4) 113 (51.6)  

  2 16 (11.3) 3 (3.9) 19 (8.7)  

  3 2 (1.4) 2 (2.6) 4 (1.8)  

  Unknown 3 (2.1) 1 (1.3) 4 (1.8)  

Smoking status 0.163

  Never 5 (3.5) 2 (2.6) 7 (3.2)  

  Former 64 (45.1) 45 (58.4) 109 (49.8)  

  Current 69 (48.6) 30 (39.0) 99 (45.2)  

  Unknown 4 (2.8) 0 (0) 4 (1.8)  

TNM stage 0.415

  IIIA 76 (53.5) 36 (46.8) 112 (51.1)  

  IIIB 66 (46.5) 41 (53.2) 107 (48.9)  

Histology 0.382

  Adenocarcinoma 55 (38.7) 28 (36.4) 83 (37.9)  

  Squamous cell carcinoma 62 (43.7) 30 (39.0) 92 (42.0)  

  Large-cell carcinoma 5 (3.5) 7 (9.1) 12 (5.5)  

  Sarcomatoid 1 (0.7) 0 (0) 1 (0.5)  

  LCNEC 2 (1.4) 0 (0) 2 (0.9)  

  NOS 17 (12.0) 12 (15.6) 29 (13.2)  

BM diagnosed 0.241

  Yes 21 (14.8) 17 (22.1) 38 (17.4)  

  No 121 (85.2) 60 (77.9) 181 (82.6)  

(Continued)
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developed BM (incidence of 15%); in the valida-
tion dataset, 17 patients had BM development 
(22%). In the training dataset, 100% of the 
patients received a brain MRI at staging. For the 
validation dataset, 85.7% of the patients received 
an MRI, while the remaining 14.3% (11 patients) 
only received a CECT scan of the brain. In addi-
tion, the median FU time in the training dataset 
was 59.4 months [interquartile range (IQR): 
40.4–71.2], and in the validation dataset 
67.3 months (IQR: 42.0–83.3) (p = 0.05). In the 
entire population, patients were mostly male 
(61%) and mean age was 67 years at the time of 
NSCLC diagnosis, with 75% of patients 
>60 years. The majority of patients (~88%) had a 
WHO performance score of 0 or 1. Most patients 
were either current (45%) or former smokers 
(50%), while 3% had never smoked (2% unknown 
smoking status). Patients were evenly distributed 
in the stages IIIA and IIIB (51% and 49%, respec-
tively), and 38% had adenocarcinoma histology. 
No significant differences were found in patient 
characteristics between the training and valida-
tion sets, except for age, where the mean age was 
significantly higher (p < 0.001) and the propor-
tion of patients over 60 years old was significantly 
larger (p of 0.005) in the training dataset. In addi-
tion, the validation dataset received a significantly 
lower proportion of brain MRI (p < 0.001).

Feature selection
In total, 530 radiomics features were extracted 
from each CT image, and 8 clinical features were 

collected for each patient. After testing for uni-
variate predictive performance and selecting fea-
tures with AUC > 0.6, and excluding features 
with high correlation (Spearman correla-
tion > 0.8), four relevant radiomics features (see 
Supplemental Section 1) and two relevant clinical 
features (adenocarcinoma versus other tumour 
types, and age as a continuous variable) were 
identified. None of the radiomics features showed 
high correlation (Spearman’s correlation > 0.8) 
with tumour volume. Table 2 shows an overview 
of the selected features with their respective uni-
variate AUC, and Spearman’s correlation values 
with the volume.

Clinical model
The performance of the predictive model built on 
the clinical features was evaluated in the valida-
tion set with an ROC curve, yielding an AUC of 
0.71 (95% CI: 0.58–0.84), as presented in Figure 
2(a). The calibration test yielded a p of 0.76, indi-
cating the model fits on the external validation 
data. The calibration slope is found in 
Supplemental Figure S3. The binary prediction 
determined through bootstrapping gave a sensi-
tivity and specificity of 0.82 and 0.57, respec-
tively, which are shown in the figure represented 
by the dashed lines. The F1-score, the metric 
used to determine this cut-off, was 0.49.

The confusion matrix, shown in Figure 2(b), 
shows the number of correct and incorrect pre-
dictions. Of the control cases, 34 were predicted 

Characteristic Training set Validation set Total p

N = 142(%) N = 77(%) N = 219(%)

Baseline brain MRI or brain CECT <0.001

  MRI 142 (100) 66 (85.7) 208 (95)  

  Only CECT 0 (0) 11 (14.3) 11 (5)  

Treatment received 0.233

  CCRT ± surgery 100 (70.4) 61 (79.2) 161 (73.5)  

  SCRT ± surgery 35 (24.6) 15 (19.5) 50 (22.8)  

  Radical RT 7 (4.9) 1 (1.3) 8 (3.7)  

BM, brain metastases; CCRT, concurrent chemo radiotherapy; CECT, contrast-enhanced computed tomography; LCNEC, 
large-cell neuroendocrine carcinoma; MRI, magnetic resonance imaging; NOS, not otherwise specified; RT, radiotherapy; 
SCRT, sequential chemo radiotherapy; SD, standard deviation; TNM, tumour, node, metastasis; WHO PS, World Health 
Organization Performance Status: 0–1: good, 2–3: poor.

Table 1.  (Continued)
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Table 2.  Selected clinical and radiomics features with corresponding univariate AUC, and Spearman’s 
correlation with volume.

Feature names AUC Correlation 
with volume

Clinical features Adenocarcinoma versus other tumour type 0.66 –

Age (continuous) 0.73 –

Radiomics features 1 mm LoG GLSZM normalized size-zone non-uniformity 0.60 −0.24

2 mm LoG GLCM correlation 0.62 0.52

2 mm LoG GLCM informational measure of correlation 1 0.61 −0.55

2 mm LoG GLCM informational measure of correlation 2 0.62 0.30

AUC, area under the curve; GLCM, grey-level correlation matrix; GLSZM, grey-level size-zone matrix; LoG, Laplacian of 
Gaussian.

correctly; of the event cases, 14 were predicted 
correctly. The precision was 0.35, and the nega-
tive predictive value was 0.92. The accuracy and 
balanced accuracy were 0.62 and 0.70, respec-
tively. Finally, the proportion of cases between 
predicted risk groups were significantly different 
(p = 0.01).

Radiomics model
The performance of the predictive model was eval-
uated in the validation set with an ROC curve, 
yielding an AUC of 0.62 (95% CI: 0.47–0.76), as 
presented in Figure 3(a). The calibration test 
yielded a p < 0.001, indicating the model does not 
fit on the external validation data. The calibration 

Figure 2.  (a) ROC curve and the corresponding confidence interval of 95% in blue of the clinical model, with 
AUC and 95% confidence interval shown. On the y-axis is the sensitivity and on the x-axis the specificity of 
the model at different classification thresholds. The dashed lines show the sensitivity and specificity for the 
threshold that was used to make the binary prediction. (b) Confusion matrix with proportions of correct and 
wrong predictions made by the clinical model (y-axis) relative to the true labels (x-axis).
AUC, area under the curve; ROC, receiver operating characteristic.
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slope is found in Supplemental Figure S4. The 
binary prediction determined through bootstrap-
ping gives a sensitivity and specificity of 0.65 and 
0.6, respectively, which are shown in the figure 
represented by the dashed lines. The F1-score, the 
metric used to determine this cut-off, was 0.42.

The confusion matrix, shown in Figure 3(b), 
shows the number of correct and incorrect pre-
dictions. Of the control cases, 36 were predicted 
correctly; of the event cases, 11 were predicted 
correctly. The precision was 0.31, and the nega-
tive predictive value was 0.86. The accuracy and 
balanced accuracy were 0.61 and 0.62, respec-
tively. Finally, the proportion of cases between 
predicted risk groups were not significantly differ-
ent (p = 0.13).

Radiomics and clinical model
The performance of the predictive model was evalu-
ated in the validation set with an ROC curve, yield-
ing an AUC of 0.62 (95% CI 0.48–0.76), as 
presented in Figure 4(a). The calibration test yielded 
a p of 0.03, indicating the model does not fit on the 
external validation data. The calibration slope is 
found in Supplemental Figure S5. The binary pre-
diction determined through bootstrapping gives a 

sensitivity and specificity of 0.82 and 0.52, respec-
tively, which are shown in the figure represented by 
the dashed lines. The F1-score, the metric used to 
determine this cut-off, was 0.47.

The confusion matrix, shown in Figure 4(b), 
shows the number of correct and incorrect pre-
dictions. Of the control cases, 31 were predicted 
correctly; of the event cases, 14 were predicted 
correctly. The precision was 0.33, and the nega-
tive predictive value was 0.91. The accuracy and 
balanced accuracy were 0.58 and 0.67, respec-
tively. Finally, the proportion of cases between 
predicted risk groups were significantly different 
(p = 0.03).

TRIPOD statement
The TRIPOD adherence for 22 guidelines was 
determined, and the adherence score was calcu-
lated to be 93%. The adherence form for this 
study is found in Supplemental Table S1.

Discussion
The prediction and prevention of BM develop-
ment in patients with radically treated stage III 
NSCLC is a major issue, as BM has a detrimental 

Figure 3.  (a) ROC curve and the corresponding confidence interval of 95% in blue of the radiomics model, 
with AUC and 95% confidence interval shown. On the y-axis is the sensitivity and on the x-axis the specificity 
of the model at different classification thresholds. The dashed lines show the sensitivity and specificity for the 
threshold that was used to make the binary prediction. (b) Confusion matrix with proportions of correct and 
wrong predictions made by the radiomics model (y-axis) relative to the true labels (x-axis).
AUC, area under the curve; ROC, receiver operating characteristic.
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effect on survival and QoL.10,11 Preventive strate-
gies such as PCI exist, but come at a cost of neu-
rocognitive decline, and PCI has been shown to 
not be associated with an OS benefit in patients 
with stage III NSCLC not selected for BM risk.4 
Therefore, future studies evaluating new preven-
tive treatments or the effects of regular screening 
should focus on those at high risk of BM. Patients 
with a low risk of BM could be spared PCI or 
intense imaging FU. This strategy requires a 
model that accurately separates high-risk from 
low-risk stage III NSCLC patients.

In this multicentre study, we developed a radiom-
ics model based on four radiomics features 
extracted from the primary lung tumour on 
CECT imaging and combined this with existing 
clinical predictors of BM. The first feature is 
based on a GLSZM matrix, which quantifies the 
number and size of homogeneous intensity 
patches found within the ROI. The normalized 
size-zone non-uniformity feature based on this 
matrix measures variability of these size zones, 
with a higher score meaning less homogeneous 
areas with the same intensity present in the ROI, 
that is, more heterogeneity. The remaining three 
features are based on a GLCM matrix, which 

measures the frequency in which certain combi-
nations of pixel intensity values are found. The 
features correlation, Informational Measure of 
Correlation 1 (IMC1), and IMC2 based on this 
matrix all measure whether correlations between 
certain intensity values can be found within the 
ROI. A higher value would mean that more 
homogeneous areas exist within the ROI, while a 
lower value means the intensity values are more 
randomly spread throughout the ROI, which is 
again a measure of heterogeneity.

We found that in a patient population of 219 
(training N = 142 and validation N = 77), the 
addition of radiomics was not able to improve the 
predictive performance of a model based solely 
on clinical factors. This result may indicate that, 
for the aforementioned population size, factors 
other than phenotypical characteristics of the 
tumour are more important in the incidence of 
BM, such as histology and age, as shown in the 
features selected for the clinical model.

To our knowledge, few studies have been under-
taken on the topic of BM prediction using a com-
bination of clinical and radiomics features. We 
found three radiomics studies with a comparable 

Figure 4.  (a) ROC curve and the corresponding confidence interval of 95% in blue of the clinical and radiomics 
model, with AUC and 95% confidence interval shown. On the y-axis is the sensitivity and on the x-axis the 
specificity of the model at different classification thresholds. The dashed lines show the sensitivity and 
specificity for the threshold that was used to make the binary prediction. (b) Confusion matrix with proportions 
of correct and wrong predictions made by the clinical and radiomics model (y-axis) relative to the true labels 
(x-axis).
AUC, area under the curve; ROC, receiver operating characteristic.
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study design, shown contrasted to our study in 
Table 3.29–31 While one of the radiomics models 
has significantly higher performance (AUC of 
0.85 versus 0.62), these studies shared a low num-
ber of patients as well as BM events, a lack of 
external validation, and a lack of full staging com-
pared to the current study, resulting in low relia-
bility of the results.

Data quality should be a priority when selecting 
the study population.40 Especially, the large dis-
ease heterogeneity in stage III NSCLC empha-
sizes the importance of correct staging with the 
appropriate imaging modalities, as disease stage 
directly influences treatment options and progno-
sis.5 For the previously reported studies, either 
18F-FDG-PET-CT or dedicated brain imaging 
(brain MRI or dedicated brain CT) was not man-
datory, while in the present study only adequately 
staged patients were included for analysis. 
Therefore, in the previously reported studies, 
patients with occult BM could have been enrolled. 
For example, 15–21% of patients with stage III 
NSCLC have asymptomatic BM and without 
dedicated imaging, these will be missed.41,42 
Asymptomatic BM are diagnosed on MRI in 
approximately 5% of patients that underwent a 
dedicated brain CT (with contrast and the correct 
field of view), and in 16% of patients that under-
went an 18F-FDG-PET-CT with a low-dose CT 
of the brain.34,42 All patients in our study received 
dedicated brain imaging, with 95% MRI and 5% 
CECT. Therefore, risk of bias due to undetected 
baseline BM is low in our study.

A further point of strength of this study is the use 
of 18F-FDG-PET-CT alongside CECT images 
during contouring. In the field of radiation ther-
apy, the differentiation of lung tumour from post-
obstructive atelectasis is a well-recognized 
problem, which even contrast enhancement can-
not always resolve. As 18F-FDG-PET-CT has 
proven utility during tumour delineation for radi-
ation planning purposes, this may have signifi-
cantly increased the delineation accuracy of the 
CECT images in our study.43

There may be a number of different reasons why 
the radiomics model failed to accurately predict 
patients at risk for BM. This study primarily 
focused on the selection of CECT images in con-
sideration of delineation accuracy, as CECT is 
more specific in differentiating different tissue 
types, especially in case of mediastinal invasion, 
which often occurs in stage III NSCLC.44 

However, this may have diminished the discrimi-
natory performance of the model, since recent 
studies have found differences between CECT 
and non-CECT radiomics features.45,46 In addi-
tion, CECT was associated with variability of radi-
omics features due to differences in contrast 
uptake; a concept which is strongly influenced by 
patient variables which impact contrast distribu-
tion, for example, age and weight.47 Given that 
patient-related factors are a permanent source of 
variability (with any imaging modality), efforts 
should be directed at homogenizing datasets in 
terms of contrast enhancement and investigating 
CECT robust features. Furthermore, despite the 
strict selection of CECT with the same reconstruc-
tion protocol and slice spacing, there were still dif-
ferences in imaging parameters and the images 
were not fully standardized. The collected images 
were not standardized to one acquisition and 
reconstruction protocol before or during the stud-
ies. Furthermore, due to the retrospective nature 
of the study, we were not able to perform phantom 
scans on the different scanners. Performing phan-
tom studies or applying a different harmonization 
method is likely needed to harmonize images and 
make reproducible models. This should be stand-
ard practice in a radiomics protocol.48–50

This study was performed on a homogeneous 
patient group regarding stage, only including 
stage IIIA and IIIB tumours. However, stage III 
NSCLC is known for its heterogeneity regarding 
varying tumour sizes and the pattern of lymph 
node metastasis (e.g. a T1N3 versus a T4N0 
tumour).51 This could further explain the inabil-
ity of the model to predict BM, and while it was 
not in the scope of the current study due to a lack 
of data in the NCT01282437 study, investigating 
further clinical features that describe the risk of 
high T-status versus high N-status, or total tumour 
volume could be investigated, as Won et al.17 have 
shown these features have predictive power. The 
clinical features selected, age and histology, are 
not directly affected by this shortcoming. 
Although selection based on stage may increase 
homogeneity, it could also overlook the complex-
ity of BM risk. For instance, primary tumour size 
alone is inadequate in predicting disseminating 
tumour behaviour, that is, small tumours with 
extensive N-status have previously been described 
to metastasize early, whereas large tumours with 
limited N-stage may not at all.52 Therefore, a crit-
ical evaluation of the target population and the 
associated clinical implications is necessary in 
conducting relevant research.
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Compared to previous studies that report a BM 
incidence of approximately 30%, the incidences 
of BM in the training and validation set were sig-
nificantly lower at 15% and 22%, respectively.4 
Both NVALT11 and NL3335 had a median FU 
time largely exceeding 2 years, while most BM 
occur within 2 years of the initial staging of 
NSCLC.33 Therefore, inadequate FU time is not 

an explanation. For NVALT11 (control arm 
28% BM in FU), not all scans could be retrieved, 
and indeed more scans were retrieved from 
patients without BM. In addition, almost all 
patients included had a baseline brain MRI and 
not only a CECT. It is known that MRI is slightly 
superior (in 5% of patients additional BM 
detected after negative CECT) in detecting 

Table 3.  Study parameters of radiomics studies on BM or DM prediction in NSCLC.

Study name Coroller et al.29 Chen et al.30 Xu et al.31 Present study (2021)

Study population Stage II–III/adenocarcinoma T1-stage/adenocarcinoma Stage III–IV/ALK positive Stage IIIA/B

Sample size N = 182 N = 89 N = 105 N = 219

Primary outcome DM BM BM BM

Number of events 
in FU

69 (37.9%) 35 (39.3%) 27 (25.7%) 38 (17.4%)

Staging ? T1/N-stage based on non-
CECT

‘By medical images’ Full imaging

18F-FDG-PET-CT − − ? +

Brain MRI/CECT (% 
MRI received)

(N/A) + (Not reported) + (Not reported) + (95)

Chest CECT − − + +

Pathological 
analysis

Pathologically confirmed 
lung adenocarcinoma

‘Pathologically confirmed 
disease’

Pathologically confirmed 
ALK

–

Imaging modality Planning CT + GTV (patients 
excluded if CTx/surgery was 
before RTx scheduled date)

Pre-treatment non-CECT Pre-treatment 
CECT + RTstruct

Pre-treatment 
CECT + RTstruct

Predictive 
performance (95% 
CI)

CI > 0.6 (−) AUC 0.85 (0.767–0.933) AUC 0.64 (0.501–0.783) AUC 0.62 (0.47–0.76)

Strengths (+) Pathologically 
confirmed
(+) Pre-treatment CT

(+) Pathologically 
confirmed
(+) BM exclusion at 
baseline
(+) Pre-treatment CT

(+) Pathologically 
confirmed
(+) BM exclusion at 
baseline
(+) Diagnostic chest 
CECT/pre-treatment

(+) Pathologically 
confirmed
(+) BM exclusion at 
baseline
(+) Diagnostic chest 
CECT/pre-treatment
(+) External validation

Limitations (−) Unclear staging
(−) Small sample size
(−) GTV not specified (LN 
included?)
(−) DM locations not 
specified
(−) Planning CT

(−) Unclear staging; T1/N-
stage determined with 
non-CECT
(−) Small sample size

(−) Unclear staging; 
PET-CT not reported
(−) Small sample size
(−) GTV not specified (LN 
included?)
(−) Relatively low 
number of BM

(−) Relatively low 
number of BM

ALK, anaplastic lymphoma kinase; BM, brain metastasis; (CE-)CT, contrast-enhanced computed tomography; CTx, chemotherapy; DM, distant metastasis; 
18F-FDG-PET-CT, 18F-fluorodeoxyglucose positron emission tomography-computed tomography; FU, follow-up; GTV: gross tumor volume LN, lymph node; 
MRI, magnetic resonance imaging; N, lymph node stage; NSCLC, non-small-cell lung cancer; RTx, radiotherapy; T1, tumour stage 1.
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asymptomatic BM in stage III NSCLC and this 
also could have resulted in a lower BM incidence 
in the FU.34

The small sample size, even though larger data-
sets were used compared to previous studies, and 
different imaging parameters are both well-known 
sources of variability in radiomics that limit repro-
ducibility.53 Furthermore, manual tumour deline-
ations are prone to inter-observer variability, 
which affect the stability of radiomics features.54 
Taken together, these aspects may explain the 
limited performance of the radiomics model and 
require further attention. Therefore, our future 
work will address these limitations by optimizing 
the radiomics model through expanding the sam-
ple size and reducing data heterogeneity, using 
imaging phantoms and standardization methods 
in the radiomics pipeline, and through image and 
feature harmonization. While clinical factors 
seem to outperform radiomics features, with the 
current sample size the results are inconclusive 
with regard to the complementary predictive role 
of CT-based radiomics.

Future radiomics studies could also focus on uti-
lizing the additional imaging performed during 
the standard diagnostic workup of patients with 
stage III NSCLC. These imaging modalities, for 
example, dedicated brain MRI or CECT together 
with 18F-FDG-PET-CT, may have additional 
value in BM prediction. For instance, brain MRI 
features might reveal micro metastases indiscern-
ible to the human eye, and may aid in the early 
detection, whereas tumour heterogeneity cap-
tured by 18F-FDG-PET-CT uptake pattern may 
further characterize tumour aggressiveness.55 
Accordingly, imaging modality-specific features 
could be integrated to form a robust radiomics 
signature.

Finally, other artificial intelligence approaches, 
such as deep learning models, have shown to be 
able to perform risk prediction on clinical 
images.56 While these methods usually require 
larger datasets to achieve significant results, they 
should be investigated in future studies for their 
complementary value in predicting the risk of 
BM. Other machine learning methods such as 
recursive feature elimination or least absolute 
shrinkage and selection operator to select features 
exist, which have shown to be able to improve 
performance of predictive models. However, with 
the current study setup and study population size, 
the feature selection through univariate predictive 

performance was found to achieve the highest 
performance.

Conclusion
A model based on known clinical predictors of 
BM development (age and tumour histology) is 
able to predict BM development in patients with 
radically treated stage III NSCLC with moderate 
precision, with an AUC of 0.71 (model available 
on www.ai4cancer.ai). This model did not 
improve with the addition of CT-based radiomics 
features. Future work will focus on optimizing the 
radiomics model by expanding the dataset, inves-
tigating more clinical features, other imaging 
modalities, data harmonization, and reducing 
data heterogeneity.
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