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A Neuroimaging Signature of Cognitive Aging from
Whole-Brain Functional Connectivity

Rongtao Jiang,* Dustin Scheinost, Nianming Zuo, Jing Wu, Shile Qi, Qinghao Liang,
Dongmei Zhi, Na Luo, Young-Chul Chung, Sha Liu, Yong Xu, Jing Sui,* and Vince Calhoun

Cognitive decline is amongst one of the most commonly reported complaints
during normal aging. Despite evidence that age and cognition are linked with
similar neural correlates, no previous studies have directly ascertained how
these two constructs overlap in the brain in terms of neuroimaging-based
prediction. Based on a long lifespan healthy cohort (CamCAN, aged 19–89
years, n = 567), it is shown that both cognitive function (domains spanning
executive function, emotion processing, motor function, and memory) and
human age can be reliably predicted from unique patterns of functional
connectivity, with models generalizable in two external datasets (n = 533 and
n = 453). Results show that cognitive decline and normal aging both manifest
decrease within-network connections (especially default mode and ventral
attention networks) and increase between-network connections
(somatomotor network). Whereas dorsal attention network is an exception,
which is highly predictive on cognitive ability but is weakly correlated with
aging. Further, the positively weighted connections in predicting fluid
intelligence significantly mediate its association with age. Together, these
findings offer insights into why normal aging is often associated with
cognitive decline in terms of brain network organization, indicating a process
of neural dedifferentiation and compensational theory.
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1. Introduction

Currently available evidence from cogni-
tive neuroscience has consistently found
that normal aging is accompanied by a
progressive decline in cognition, especially
in domains of processing speed, work-
ing memory, and executive function.[1–3]

Nonetheless, the rate of age-associated cog-
nitive changes is not inevitably uniform,
but instead, pronounced heterogeneity
exists.[4,5] Understanding the basis of cog-
nition decrement over the course of healthy
aging is of crucial relevance for delivering
effective interventions to combat and even
reverse age-accompanied cognitive decline.

Meanwhile, healthy aging is revealed to
be associated with extensive changes to
the structure and function of the human
brain even in the absence of overt disease,
which are characterized by an increase in
grey matter atrophy, cortical thinning, white
matter volume loss, and alterations in struc-
tural and functional connectivity.[6–8] There
is ample evidence that individual brain
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regions follow temporally distinct trajectories across the full
lifespan, with age associations appearing to be stronger for some
regions than others.[9–11] In this sense, the regional heterogeneity
in aging trajectories, when considered in isolation, poses im-
mense challenges in accurately characterizing patterns of brain
aging.[12,13] Machine learning is emerging as a promising tool to
distill a rich set of distributed imaging features into a single index
whereby accurate prediction of biological age can be achieved
from unseen individuals. Potentially most exciting is the demon-
stration that the brain-predicted age is linked with multiple phys-
ical and cognitive aspects, and sensitive to subtle brain changes
occurring before outward manifestations of neurodegenerative
diseases, providing an innovative biomarker of brain health.[14,15]

Despite the potential, some key issues remain unaddressed.
First, relative to the abundance of studies using structural MRI
features, attempts employing functional measurements to pre-
dict brain age have been few.[16,17] This knowledge gap is surpris-
ing given that 1) growing evidence implies that changes in the
brain’s functional organization precede changes in anatomy;[18]

2) functional measurements have higher relevance to cognition
and are more likely disrupted in developmental disorders.[19] Sec-
ond, most studies concern more on improving prediction accu-
racy or testing the feasibility of brain age model in a cascade of
psychiatric disorders than interpreting the predictive neuroimag-
ing signatures, which can hamper gaining clinically and bio-
logically meaningful insights into the underlying mechanisms
involved.[20] Third, the utility of brain-predicted age is generally
established by probing its relevance to cognitive variables and re-
vealing that having an older-appearing brain is associated with
poorer cognitive fitness.[21,22] It is underexplored regarding how
cognitive development and age overlap in the brain by assessing
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their common and distinct neural representations in the context
of predictive modeling. This knowledge gap hinders efforts to lo-
cate brain targets for early interventions that could aid in devel-
oping personalized neuroprotective treatments.

In the present study, we exploited a connectome-based ma-
chine learning approach within fully cross-validation (CV) anal-
yses to probe reliable and robust imaging signatures for eight
distinct cognitive functions that significantly decline over ag-
ing and brain age from whole-brain functional connectivity
(Figure 1). The validity of identified biomarkers was corroborated
by testing their generalizability in two other external, heteroge-
nous datasets. Crucially, extraction and comparison of the pre-
dictive brain signatures and their corresponding weight maps al-
low us to quantify the extent to which cognitive development and
normal aging overlap in the brain.

2. Results

2.1. Connectome-Based Prediction of Brain Age and Multiple
Cognitive Scores

Based on whole-brain connectivity features, we built a separate
predictive model for age and eight cognitive measures within a
repeated CV framework. Figure 2A shows the distribution of pre-
diction accuracies across 200 repetitions of CV for brain age and
each of the eight cognitive metrics (R2 distribution, Figure S1,
Supporting Information). A permutation test revealed that all cor-
relations were statistically significant at p< 2.0× 10–4 (Figure 2B).
Specifically, the strongest result was generated for age, with a
mean correlation between actual versus predicted values reach-
ing r = 0.885 ± 0.003 (R2 = 0.78 ± 0.005, root mean squared error
(RMSE) = 8.57 ± 0.10), averaging across all CV repetitions (Fig-
ure 2C). Among all cognitive metrics, fluid intelligence shows
the highest predictability (r = 0.634 ± 0.003, R2 = 0.40 ± 0.004,
RMSE= 5.17± 0.02), with performance of the other metrics vary-
ing from r(TOT) = 0.255 ± 0.012 to r(motor learning) = 0.441
± 0.013. Notably, prediction accuracies slightly decreased after
controlling for mean framewise displacement (FD) but remained
high enough to be significant (Table S1, Supporting Informa-
tion). When constructing predictive models in a subset of sub-
jects with low head motion (Figure S2, Supporting Information),
we observed nearly comparable accuracies, suggesting that the
predictive models are robust to head movements. Moreover, gen-
der has little impact on the predictions.

2.2. Predictive Network Anatomy

Since we leveraged the whole-brain connectome to make pre-
dictions, each feature obtained a predictive weight represent-
ing its contribution. When summarizing the weight maps from
low-level connections (Figure 3A) to high-level networks, sig-
nificant trends are revealed. Specifically, in the prediction of
brain age, connections within default mode (DMN), ventral atten-
tion (VAN), somatomotor (SMN), and subcortical (SUB) demon-
strated prominent negative weights; while connections within
limbic (LIM) showed prominent positive weights. Moreover, pos-
itive predictive weights were also prominent in SMN-connected
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Figure 1. Flowchart of the main analyses. To examine whether normal aging and cognitive function have common neural representations, we developed
separate predictive models for brain age and eight cognitive metrics based on whole-brain connectome features in a cross-sectional adult lifespan sample
(aged 19–89 years), and compared their weight maps at connection, node, and network level.

between-network connections with dorsal attention (DAN), VAN,
and frontoparietal (FPN). As expected, these networks were also
revealed to exhibit the greatest involvement in predicting cogni-
tive functions, but in a completely opposite direction, that is, con-
nections that grow in strength across aging would predict lower
cognitive abilities (Figure 3B,C).

2.3. Overlap of Predictive Models between Brain Age and
Cognitive Function during Normal Aging

At the connectivity level, models for age and cognitive function
were inversely correlated, with the strongest effect observed be-
tween age and fluid intelligence (r = −0.49, permutation test
p < 10–5, Figure 4A). The negative correlations of connectome
weights between age and cognitive measures aligned with their
behavioral relationship. Node-level analysis revealed virtually
similar patterns with connection-level results. Specifically, func-
tional nodes gaining the highest positive power in predicting age
and negative power in predicting fluid intelligence primarily in-
cluded the right hippocampus, right precuneus, right dorsolat-
eral prefrontal cortex, and right parahippocampus. Nodes mak-
ing the most negative contributions to age prediction and positive
contributions to intelligence prediction predominantly involved
the right cingulate gyrus, right thalamus, left lingual gyrus, and
the caudate (Figures 3B,4B; Table S2, Supporting Information).

When mapping whole-brain connections into network-level
representations, we observed a general elevated correlation be-

tween age- and cognition-predictive models, with the strongest
effect again observed between age and fluid intelligence (rage-gF =
−0.70, permutation test p <10–5, Figure 4C). Specially, the age-
and gF-predictive models demonstrated the highest similarity of
weight patterns in SUB, DMN, VAN, and SMN (Figure S3, Sup-
porting Information). A further examination of these predictive
networks revealed some intriguing trends. Since the cognition-
predictive models were highly similar, we provided a detailed
description only for fluid intelligence for simplicity. Specifically,
connections predicting higher fluid intelligence and younger age
almost all located within networks, especially in VAN, DMN, and
SMN. On the other hand, connections predicting older age and
lower intelligence predominantly occurred between networks.
This pattern was particularly evident between SMN and associa-
tive networks like VAN, FPN, and DAN, as well as between DMN
and VAN (Figures 3C,4C). The network-level representations of
weight maps derived from models were similar whether we in-
cluded all subjects, those with mean FD < 0.15, or those with FD
< 0.20, were highly similar to those based on all subjects (Fig-
ure S2, Supporting Information).

2.4. Stability of Predictive Models

As shown in Figure 3C and Table S3, Supporting Information,
the network weights had quite small standard deviations and
95% confidence interval. The inter-correlations of weight maps
across 2000 models ranged from r[ force matching] = 0.9112 ±
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Figure 2. Connectome-based prediction results for age and eight cognitive metrics spanning domains of executive function, emotional processing,
motor function, and memory. A) Distribution of prediction accuracies across 200 repetitions of cross-validation. B) Distribution of accuracies based on
permutation testing across 5000 iterations. C) Scatter plot shows prediction of age and five representative cognitive metrics. Although the prediction
framework was repeated 200 times, we just show results from one iteration for visualization. gF, fluid intelligence; TOT, tip-of-tongue; VSTM, visual
short-term memory.

0.0187 to r[gF] = 0.9760 ± 0.004 (Figure S4, Supporting Infor-
mation). Further, predictive connectivity patterns derived from
the bootstrap test and connectome-based predictive modeling
(CPM)[23–27] were highly similar to those shown in Figure 3 (Fig-
ures S5,S6, Supporting Information). Moreover, the network-
level analysis revealed that none of the 36 network pairs achieved
higher prediction accuracy than models based on the whole-brain
connections (Figure S7, Supporting Information). And the net-
work size influences the prediction accuracy more than the net-
work identity.

2.5. Association between Age, Cognition, and Functional
Connectivity

After controlling for the effect of age, predictions remained
significant for fluid intelligence, emotion expression recog-

nition, force matching, and the hotel task (p < 0.01), but
nonsignificant for the other measures. Moreover, when exclud-
ing age-associated functional connections in model building,
we observed comparable prediction accuracies and weight
map similarities as achieved based on whole-brain features
(Figure 5). Specifically, the strongest effect was observed between
age and fluid intelligence, and greater strength of all within-
network connections (except the LIM) predicted higher fluid
intelligence.

Among the top 100 connectivity edges having the highest pos-
itive predictive weights for fluid intelligence, 93 significantly me-
diated the relationship between age and fluid intelligence (FDR
corrected p < 0.05, Figure 6A). When expanding the mediation
analysis to the top 300 positively weighted FCs, 251 showed a sig-
nificant mediation effect (FDR corrected p < 0.05). The propor-
tion of mediated effect size ranged from 1.80% to 10.85% (Fig-
ure 6B). However, the indirect effect of age on fluid intelligence
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Figure 3. Distributions of weight maps in predicting age and fluid intelligence. A) Distributions of raw predictive weights averaged across 2000 cross-
validation rounds. The cell plots show the network-level representation of the predictive weights. For each pair of networks (between-network and
within-network), we averaged predictive weights of all connections belonging to that network pair. Positive weights and negative weights were separately
summarized for each network pair to demonstrate their relative contribution. B) Distributions of weight maps at the node level. The node-level represen-
tation was achieved by summarizing weight values of all connections incident to each of the 246 atlas-defined functional macroscale regions. C) Mean
weights distribution of within-network and between-network connections in age- and gF-predictive models. Error bars indicate standard deviation. DAN,
dorsal attention network; DMN, default mode network; FPN, frontoparietal network; gF, fluid intelligence; LIM, limbic network; SMN, somatomotor
network; SUB, subcortical network; VAN, ventral attention network; VIS, visual network; VSTM, visual short-term memory.

cannot be significantly mediated by gF-predictive edges with the
highest negative weights (p > 0.05).

2.6. External Validation in Two Independent Datasets

When applying the age-predictive model defined in the full
set of Cam-CAN data to 533 healthy subjects from the NKI,
we observe a significant correlation between actual and pre-
dicted age after covarying out the effect of mean FD (r = 0.70,
p < 10–16, Figure 7A). Meanwhile, when applying predictive

models for each of the eight cognitive metrics to NKI subjects,
the predicted cognitive scores are inversely correlated with
age.

In the Shanxi dataset, the age-predicted model trained in the
Cam-CAN data achieved a prediction accuracy of r = 0.567 (p <

10–16) between actual versus predicted age. Moreover, all mod-
els generalized to predict cognitive function for Shanxi data
(n = 533), with the highest predictive performance reaching r =
−0.354 (p < 10–10, Figure 7B) between predicted fluid intelligence
scores and actual age after controlling for mean FD. All correla-
tions survived the Bonferroni correction.
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Figure 4. Overlap of predictive models between brain age and cognitive function during normal aging. To evaluate the extent to which predictive models
were similar to or distinct from each other, we calculated the Pearson’s correlation between the averaged weight maps from the age-predictive model
and each of the eight cognition-predictive models at the A) connection (n = 30 135), B) node (n = 246), and C) network (n = 36) level. Scatter plots in
each row are representations of the correlation between age-predicted model and gF-predictive/VSTM-predictive model. Permutation test showed that
all correlations were significant at p < 0.0001 across 10 000 iterations. DAN, dorsal attention network; DMN, default mode network; FPN, frontoparietal
network; gF, fluid intelligence; LIM, limbic network; SMN, somatomotor network; SUB, subcortical network; VAN, ventral attention network; VIS, visual
network; VSTM, visual short-term memory.

3. Discussion

In this study, we sought to examine the extent to which cogni-
tion and brain age overlap in the brain by using techniques from
multivariate predictive modeling. Our first main finding is that
individual difference in both cognitive function and age can be
reliably predicted from an individual’s unique patterns of brain
connectivity and the models were generalizable across two exter-
nal, heterogeneous datasets and robust to potential confounds.
Our second main finding is that cognitive abilities shares com-
mon neural representations with brain age. Specifically, inter-
rogation of overlapping brain patterns suggests that age-related

cognitive differences are associated with decreasing connectivity
within networks (VAN, DMN, and SMN) and increasing connec-
tivity between brain systems (SMN-connected ones), reflecting
a breakdown of the fine balance of network segregation and in-
tegration during aging (neural dedifferentiation).[28,29] Taken to-
gether, our findings offered new insights into the complex rela-
tionships among brain organization, cognition, and age.

Our present study was built on a series of brain imaging stud-
ies that have documented the large inter-subject variability in
how aging process relates to cognition and extended them in sev-
eral ways. On one hand, we capitalized on advances in machine
learning to achieve individual-level estimation of cognitive scores
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Figure 7. Generalization of predictive models in two external validation datasets. Predictive models were trained based on the full set of Cam-CAN
subjects for age and each of the eight cognitive metrics separately, and then directly applied to connectome features from each of the two independent
datasets. Because the validation datasets did not include the corresponding cognitive measures as the Cam-CAN, we calculated the correlation between
model-predicted cognitive scores and actual age. Accuracy is shown as the correlation between model-predictive scores and actual age after controlling
for mean framewise displacement. A) External dataset 1 includes 533 healthy subjects aged 6–85 years from NKI database. B) External dataset 2 includes
453 healthy subjects aged 7–60 years from Shanxi, China.

and biological age in a purely data-driven manner.[12,26,30] The pre-
dictive modeling concerns more about aggregating the effects of
thousands of age- or cognition-associated variants into a single
measure that best characterizes the aging brain, in light of the
evidence that there may be unique aging trajectories with respect
to distinct brain regions. The application of predictive analysis to
whole-brain functional connectivity may extend our knowledge
about brain age prediction that is currently dominated by struc-
tural MRI studies.[14,17] On the other hand, the predictive sig-
natures showed good generalizability across three independent
datasets, indicating that our connectome-based model captured
the underlying brain-behavior relationships that are sensitive to
cognitive aging. These datasets were heterogeneous in several as-
pects in terms of sites, acquisition protocols, scanners, and sam-
ple characteristics. In this regard, the identified brain patterns
provide new insights into cognitive aging research.[31,32]

Evidence from existing studies has established that chrono-
logical age has a negative influence on individual’s cognitive per-
formance. Investigations aiming at revealing the neurobiological

substrates of specific cognitive functioning often treat age as a
covariate of no interest. A common practice is to regress it out in
an effort to control for its potential effects on cognition.[29,33,34] In-
stead of focusing on the independent influence of brain connec-
tivity on cognition, our current study treated age and cognition
as two separate biological processes, and pursued the approach
of predictive neuroimaging[23] to examine how they overlap in
brain. Although these two constructs are strongly correlated,
there are obvious differences in operationalization. The apparent
correlation between age and cognition is a basic motivation that
drives the current study to investigate the nature of their relation-
ship by mapping behavioral associations to brain connections. In
line with this, considering a high correlation between fluid intel-
ligence and creativity, a recent study built a separate connectome-
based model for fluid intelligence and creativity and quantify the
extent to which their predictive networks overlap in the brain.[35]

On the other hand, there is not a one-to-one mapping between
age and cognition, but great individual differences exist in their
association. Some older people can exhibit superior cognitive
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abilities than their age-matched counterparts, and studies indi-
cated that the brain network organization of those individuals
was more similar to young adults.[36] Further, growing evidence
suggests that having an older-appearing brain (with brain-
predicted age higher than the actual age) was associated with
advanced cognitive decline.[4,5,37] These findings indicate that
cognitive functions may not be totally determined by age but fol-
low the trajectory of brain changes. Moreover, independent lines
of aging research suggest that there are intertwined interactions
among age, cognition, and brain, and it is difficult to ascertain
the precise relationship between any two, independent of the in-
fluence of the third variable.[38–41] For example, although we can
factor out the influence of age in examining cognition-brain asso-
ciations, it will lead to limitations for subsequent interpretations.
Since age explains a large variance of cognition, demonstrating
significant variance explained by the brain beyond age can be
difficult.[38] Moreover, when predicting cognitive abilities with
the effect of age factored out, what the model characterizes is the
component of cognition that is independent of age, not allowing
the interrogation of age-accompanied neural substrates. Results
shown in Figures 5,6 suggest that our cognition-brain relation-
ships are age-invariant,[29] and the predictive models captured
neurobiological basis of cognition beyond what can be explained
by age. Nevertheless, our results remain speculative and pre-
liminary, and looking ahead, future study will be necessary to
determine the robustness and replication of the current findings.

A primary finding of the current study is that age and cognition
functions rely on overlapping functional systems in the brain.
Specifically, weight maps of connectivity patterns extracted from
the age-predictive model demonstrated a highly negative corre-
lation with those from the cognition-predictive model. These re-
sults suggest that brain connectivity patterns stronger in older in-
dividuals are associated with greater cognitive impairment, while
connections stronger in younger individuals are associated with
higher cognitive abilities.[24] Moreover, the validation analysis
confirmed that the predictive models captured the brain patterns
that were sensitive to the common components that are shared
between age and cognition.[35,42]

Regarding the above results, a natural hypothesis is that the
age-related decline in cognitive function may result from the ef-
fects of age on connectivity patterns.[43–45] Our additional anal-
ysis demonstrated that functional connections positively predic-
tive for fluid intelligence can significantly mediate the association
between age and fluid intelligence. This finding is supported by
previous studies showing that functional connectivity in specific
networks is a relevant mediator of age-related cognitive decline
during normal aging.[29,43,44] Our study adds to previous results
suggesting that age may influence cognitive abilities indirectly
through inducing changes in brain connectivity. However, this
finding is preliminary and should be interpreted with caution,
because a significant mediation effect is a measure of associa-
tion that does not imply causal relationships. Nevertheless, these
analyses represent a critical first step in characterizing associa-
tions between age, brain structure, and cognitive function that
can be further explored in longitudinal studies.

Examination of the predictive models of age and cognitive de-
cline revealed that within-network connections exhibited nega-
tively predictive power especially in VAN, DMN, and SMN; while
between-network connections, especially those connecting SMN

and high-order associative networks, played positive roles. This
finding lend support to the theory that healthy cognitive aging
is accompanied by decline in network segregation and enhance-
ment in network integration, manifesting as decreasing func-
tional connectivity within networks but increasing connectivity
between networks.[29,44] Convergent findings suggest that a fine
balance of segregated and integrated organization is a prerequi-
site for the brain systems to maintain functional specialization
and efficient information processing.[39]

In this context, we speculated that the age-associated loss of
network segregation may be related to reduced ability and ef-
ficiency for specialized processing in the brain, which is con-
sistent with the findings that reduced network segregation was
closely related to decline in a variety of cognitive abilities includ-
ing working memory, attention, and processing speed.[42] At the
same time, the effect of age-related loss of network segregation
also accords with the neural dedifferentiation hypothesis of ag-
ing, which is linked with impaired recruit of specialized brain re-
gions during task performance, and an age-related reduction in
suppressing irrelevant network communications.[46,47] Notably,
among all networks, the DMN and VAN demonstrated the great
reductions of network segregation than others, which was in line
with their established roles in cognitive aging. Specifically, weak-
ened connectivity in DMN may influence its ability to shift from
a task-negative to task-positive state, and further impair individ-
ual’s cognitive abilities,[18] supporting the hypothesis that DMN
is the major site of pathology accumulation in multiple psychi-
atric disorders.[48] Regarding VAN, considering its roles in detect-
ing behaviorally relevant stimulus, and switching and coordinat-
ing dynamic transitions between DMN and FPN,[25] decreases
in network segregation of VAN may compromise its ability in
allocating cognitive resources.[49,50] In contrast to a general de-
cline in network segregation in other networks, the LIM net-
work exhibited increasing within-network connectivity. At first
glance this might seem counterintuitive, however, growing ev-
idence suggests that this reflects preserved emotional function
and improved emotion regulation in older adults.[51,52] Moreover,
this finding aligns with studies linking increased activation in
hippocampal circuits to subsequent A𝛽 deposition and cognitive
impairment,[53–55] while targeting excess hippocampal activity
benefited patients with amnestic mild cognitive impairment.[56]

Furthermore, the increased system integration, especially be-
tween SMN and associative networks, may suggest a compensa-
tional or over-recruitment mechanism. This theory has gained
support from independent lines of research that interpreted the
age-related shift toward higher network integration as an attempt
to compensate for the decline of sensorimotor function in pri-
mary processing networks, to maintain cognitive performance
as stable as possible.[57,58] In this respect, the increased connec-
tivity between SMN and associative networks observed in the
present study may imply an insufficient neural system,[59] and
a reflection of the over-recruitment of high-order cognitive net-
works to counteract behavioral decline due to reducing within-
network connections.[60]

The present study should be considered in light of some
potential limitations. First, the current work was based on a
cross-sectional design, which may be influenced by cohort
and period effects and not allowing us to draw any longi-
tudinal inferences.[39,61] Investigations incorporating multiple
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time-points of cognition and neuroimaging data are warranted to
validate our results and make intra-subject predictions of future
cognitive developments.[62] Second, the cognition- and age-
predictive models were developed based on linear models, there-
fore, they may not be sensitive to connectivity patterns following
nonlinear trajectories along normal aging.[63,64] Third, despite a
reduced complexity, using predictive modeling to reduce a rich
set of connectivity features into a single estimate of brain age or
cognition risks oversimplification, and thus may miss crucial pat-
terns for understanding the underlying mechanisms.[9,24] Forth,
separately building models for eight distinct cognitive measures
using partial least square regression (PLSR) may be suboptimal,
given that a prominent strength of PLSR lies in its ability to
simultaneously predict multiple outcomes. It may therefore be
interest to use PLSR as a multi-output model to treat age and
all eight cognitive metrics as a simultaneous outcome. As such,
we would acquire a latent component representing functional
connections that are involved in the age-cognition interaction,
as well as some age- or cognition-specific components. Such a
multi-output model can be far more parsimonious and easier to
interpret than having eight different models. Specifically, a re-
cent fMRI study[65] indicated that PLSR can achieved comparable
accuracies in the setting of single- or multi-output predictions,
and more importantly, the most predictive features were highly
overlapped (>90%) between these two types of models. Fifth, in
model interpretation, we equated larger prediction weights with
greater importance, which may risk over-interpreting. On one
hand, the backward models (methods for the decoding of neural
information from data) may arbitrarily assign higher or lower
weights to collinear features,[66] because they may depend on
noise components in the data, thereby making inferences diffi-
cult. On the other hand, the stability of feature weights can be
low, and there exist asymmetric tendencies between seeking out-
of-sample predictions and in-sample inferences,[67] especially
when the sample size is small. Bzdok et al.[67] also suggested that
the identified important features were more likely to be consis-
tent with each other between using linear models for prediction
versus inferences when the sample size was >1000. Moreover,
evidence from recent studies indicated that reproducible brain-
wide association studies require samples with thousands of
individuals.[68] Future studies should include as more partici-
pants as possible to capture reliable behavior-associated brain
patterns with large effect sizes. In light of these considerations,
we show high stability of the feature weights and robust gen-
eralizability of predictive models across heterogenous datasets.
Nevertheless, the interpretation and replication of the predictive
models deserve further examination in future studies. Sixth,
although a total of eight distinct cognitive measures were inves-
tigated, we focused more on fluid intelligence. This is mainly
because fluid intelligence is a central cognitive measure, which
reflects the general ability to solve novel reasoning problems.[35]

Moreover, fluid intelligence has large variability and is more pre-
dictable from brain connectivity than other cognitive measures,
enabling the predictive modeling to adequately capture brain-
behavior associations.[61] Further, although the weight maps
showed high similarities across cognitive measures, it should
be noted that the specific brain signatures for distinct cognitive
metrics can differ significantly from each other. For example, in
the prediction of emotion expression recognition and face recog-

nition, connections within the LIM network showed the greatest
contribution among all networks, which were less significant
in the prediction of other cognitive measures. Specifically, in
predicting motor learning, connections within the LIM network
showed almost no predictive power. Within-network connec-
tions in the SMN contributed the least to the prediction of visual
short-term memory (VSTM), but not for the other cognitive
measures (Figure S5, Supporting Information). In this regard,
the characterization of domain-specific imaging biomarkers
for each cognitive task merits further inquiry. Finally, in light
of that fact the current analysis was performed on the basis of
functional connectivity, which reflects the temporal dependence
between neural activity across two distinct brain regions, we
discussed the results mainly at the network level by highlighting
which specific network pair has more predictive weight, rather
than at the node level. Although the structural information
may leak into functional data in the preprocessing, functional
connectivity can provide unique insights that cannot be obtained
from structural data, such as the inter-network communications
and brain dynamics.[18] Our additional analyses indicated that
grey matter volume achieved higher prediction accuracy than
functional connectivity and integrating these two modalities
further improved prediction (Table S4, Supporting Information).
This result suggests that unique and complementary informa-
tion encoded in distinct modalities can be used to better predict
individual differences in phenotypes.[69]

4. Conclusions

In sum, we developed a functional connectivity-based signature
for brain age and cognitive aging, and demonstrated its gener-
alizability across three independent datasets. Importantly, we re-
vealed overlapping functional brain patterns for cognitive func-
tions and brain age, which are characterized by decreased within-
network and increased between-network connections. Overall,
these findings provide direct evidence that cognitive aging is ac-
companied by disrupted network segregation and integration, re-
flecting a process of neural dedifferentiation and compensational
theory during normal aging.

5. Experimental Section
Discovery Dataset: Data used in the present study came from the Cam-

bridge Centre for Ageing and Neuroscience (Cam-CAN), which is a large-
scale, population-based adult lifespan dataset aiming at uncovering neural
underpinnings of cognitive aging.[70] Participants included in this project
were all cognitively healthy adults. Strict exclusion criteria were applied
to recruit participants.[71] Subjects with either missing age or unqualified
fMRI data including degraded images and excessive head motion (de-
scribed in MRI data acquisition section) were removed. Overall, 567 par-
ticipants aged 18.5–88.9 years were retained for the main analyses (288 fe-
males, mean age 53.68 ± 18.37). Ethical approval for the Cam-CAN study
was obtained from the Cambridgeshire 2 (now East of England-Cambridge
Central) Research Ethics Committee, and written informed consent was
obtained from each participant.

Participants completed a battery of behavioral tasks to assess their cog-
nitive functions spanning domains of executive function, emotional pro-
cessing, motor function, and memory. Specifically, the current study fo-
cused on eight cognitive tasks involving fluid intelligence task (Cattell Cul-
ture Fair), force matching, Hotel task, motor learning, tip-of-the-tongue
task (TOT), VSTM, face recognition (Benton test), and emotion expression
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recognition. A brief description for these behavioral tests can be found in
Figure S8, Supporting Information. All test scores were standardized to
z-values. Cognitive metrics that were assessed using response times in
seconds were reversed by multiplying by −1, so that a higher value always
corresponds to better performance. In this study, fluid intelligence was
adopted as the primary cognitive measure being investigated, for which
complete data were available for 552 participants (277 females, mean age
53.81 ± 18.09). Included subjects for the other cognitive metrics varied
from n = 263 (motor learning) to n = 556 (emotion expression recogni-
tion). As expected, all cognitive domain scores were negatively correlated
with individual’s age, reflecting a pattern of aging-related cognitive decline
(Bonferroni corrected p < 0.001, Figure S9, Supporting Information).

External Dataset 1: FMRI scans from the enhanced Nathan Kline
Institute (NKI)/Rockland Sample database, which is publicly available
at the International Neuroimaging Data-sharing Initiative (INDI) online
were used as the independent validation dataset. This is a large-scale,
community-ascertained lifespan sample with advanced neuroimaging and
genetics.[72] The study was approved by the NKI institutional review board
and all subjects provided informed consent. In contrast to Cam-CAN, NKI
dataset had a wider age range spanning human development from child-
hood to late adulthood. In the current study, a total of 533 NKI subjects
with complete fMRI scans aged 6–85 years were adopted as the validation
data (338 females, mean age 42.35 ± 21.18).

External Dataset 2: This independent dataset was locally collected
through advertisements from the Department of Psychiatry at the First
Hospital of Medical University, Shanxi, China. Similar inclusion and exclu-
sion criteria were applied to include healthy subjects spanning human de-
velopment from childhood to middle adulthood (age range 7–60 years).[73]

The study was approved by the Ethics Committee of the First Hospital of
Shanxi Medical University and all participants provided written informed
consent. Overall, a total of 453 subjects with complete resting-state fMRI
data aged of 26.86 ± 12.13 were included in the study (166 males, 287
females).

MRI Data Acquisition: Details regarding MRI data acquisition and pre-
processing can be found in Supporting Information. The data preprocess-
ing strategy was the same as the previous publications,[36,74] and complied
with the general framework in aging studies.[75,76]

Functional Parcellation and Connectome Construction: The Brain-
netome atlas was utilized to delineate the brain into 246 macroscale re-
gions of interest,[77] serving as functional nodes. For each individual, the
regional time series were generated by averaging voxel-wise fMRI time se-
ries per node. Then, the pairwise Pearson correlations between all nodes’
time series were calculated and then Fisher z-transformation was applied,
yielding a 246× 246 connectome matrix for each individual. Extracting the
upper triangle elements of the matrix resulted in 30 135 unique edges for
analyses.

Development of Connectome-Based Predictive Models: PLSR was em-
ployed to separately build predictive models for individual age and each of
the eight cognitive metrics scores. Specifically, PLSR was capable of estab-
lishing reliable brain-behavior relationships and was widely used in pre-
dictive neuroimaging.[78,79] Moreover, PLSR required no prior feature se-
lection to achieve dimension reduction, as it worked by projecting high-
dimensional features into a small set of latent components,[12] which
could facilitate the comparison of predictive models across conditions.

The prediction analysis was placed in a tenfold CV framework to avoid
circularity bias. Specifically, 90% of the data were designated as the train-
ing set, and the remaining 10% data were used as the testing set. Mode
building was performed on training data, and the test data were kept in-
dependent of the training process to prevent any leakage between them.
The predictive model learned from the training data was directly applied
to testing set without any modification. Because the division of data folds
was conducted randomly, shuffle-split techniques were further employed
by repeating the prediction procedure 200 times to control this influence.
Model performance was quantified as the correlation r between actual and
predicted scores, the CV R2, as well RMSE, averaged across 200 repeti-
tions.

Predictive Network Anatomy and Overlap between Models: The relative
contribution of each individual feature to prediction could be quantified

by extracting the regression coefficients from the predictive model (the
returned BETA in plsregress).[80,81] Averaging 2000 weight maps (200 rep-
etitions × 10 folds), the connectivity-level representation of the predictive
model was generated. The node-level interpretation was achieved by sum-
marizing weight values of all connections incident to each of the 246 atlas-
defined functional macroscale regions.

To unveil networks playing a disproportionate role in explaining the suc-
cess of predictive model, the whole-brain nodes were first grouped into
eight canonical networks defined by Brainnetome atlas including seven
networks mapped from the Yeo’s parcellation (visual, SMN, DAN, VAN,
LIM, FPN, DMN), and the SUB.[78,82] Detailed information about the atlas
and network definition can be found in Table S5, Supporting Information.
Next, for each pair of networks, weights of all connections were added up,
and then normalized them by the total number of connections belonging
to that network pair to control for the influence of network size.[27]

The extent to which predictive models were similar to or distinct from
each other was further evaluated. Specifically, the Pearson’s correlation be-
tween averaged weight maps from the age-predictive model and each of
the eight cognition-predictive models at the connection, node, and net-
work level was calculated.[82]

Examining the Stability of Predictive Models: A set of sensitivity analy-
ses were performed to demonstrate the reliability of the predictive mod-
els. 1) The mean and standard deviation as well as 95% confidence in-
terval of the network weights across 200 CV iterations are shown in all fig-
ures. 2) The stability of predictive weights was evaluated by calculating the
inter-correlations of weight maps across 2000 models. 3) A bootstrap test
was performed to examine the stability of predictive weights. Specifically,
bootstrap samples from the full data (random sampling of participants
with replacement 5000 times) were iteratively generated, and a predictive
model was built using each bootstrap sample. Then these weight maps
were averaged to obtain a network-level representation. 4) To confirm the
predictive brain patterns were not influenced by multicollinearity, another
widely-used approach (CPM) was employed,[23–27] to make predictions
and identify predictive features. Detailed implementation can be found
in the Supporting Information. 5) To further interrogate network contri-
butions, the prediction framework was rerun using only within-network or
between-network connections to predict age. A total of 36 distinct network
pairs were tested.

Evaluating Association between Age, Cognition, and Functional Connectiv-
ity: Following common practices conducted in aging research,[38–41] the
following analyses were performed to show the cognition-predictive mod-
els were not merely driven by age, instead, the cognition-predictive FCs sig-
nificantly mediated the association between age and fluid intelligence. 1)
The prediction accuracies were calculated for all eight cognitive measures
while controlling for the effect of age. 2) The effect of age on model build-
ing was controlled by excluding all age-associated functional connections.
Specifically, in the training dataset, the partial correlation between each FC
and cognitive scores with age as a covariate was calculated, and only sig-
nificantly correlated connections that were independent of the age effect
were retained, which were further leveraged to make predictions. 3) The
authors examined whether the cognition-predictive connectivity patterns
were able to mediate the association between age and fluid intelligence. In
this case, age was used as an independent variable, fluid intelligence as the
dependent variable, and each connectivity feature constituted a mediator.
Gender and mean head motion were used as covariates.

External Validation in Independent Datasets: The generalizability of the
predictive models were further tested by examining whether model built in
one dataset could be directly used to predict age or cognitive scores from
connectivity data obtained from completely independent sites. Specifically,
based on the full set of Cam-CAN subjects, PLSR was first utilized to de-
fine an age-predictive model using whole-brain connectivity features. Next,
the weight map from the constructed model was obtained by extracting
the regression coefficient for each connectivity. Then, the dot product of
vectorized whole-brain connectivity patterns from each of these two valida-
tion datasets was calculated with the obtained weight map,[82–84] yielding
a model-predicted age for each subject. A separate cognition-predictive
model for each of the eight cognitive metrics was also defined and it was
applied to the validation cohorts. Because the validation datasets did not
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include the corresponding cognitive measures as the Cam-CAN, the cor-
relation between model-predicted cognitive scores and actual age was cal-
culated.

Statistical Analysis: All data were expressed as the mean ± standard
deviation. SIMPLS algorithm was used to solve PLSR as implemented in
MATLAB R2016a (plsregress function). Significance of prediction accuracy
was determined by permutation test (5000 iterations). Significance of sim-
ilarity between weight maps was assessed using permutation test by per-
muting the weight maps 10 000 times. The significance of the indirect
effects was assessed based on 10 000 bootstrap iterations, which were
implemented in R (version 4.1.3) using the “mediation” package (version
4.5.0).
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