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A B S T R A C T

Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-
2) and has infected millions worldwide. SARS-CoV-2 spike protein uses Angiotensin-converting enzyme 2
(ACE2) and Transmembrane serine protease 2 (TMPRSS2) for entering and fusing the host cell membrane.
However, interaction with spike protein receptors and protease processing are not the only factors determining
coronaviruses’ entry. Several proteases mediate the entry of SARS-CoV-2 virus into the host cell. Identifying
receptor factors helps understand tropism, transmission, and pathogenesis of COVID-19 infection in humans.
The paper aims to identify novel viral receptor or membrane proteins that are transcriptionally and biologically
similar to ACE2 and TMPRSS2 through a fuzzy clustering technique that employs the Grey wolf optimizer
(GWO) algorithm for finding the optimal cluster center. The exploratory and exploitation capability of GWO
algorithm is improved by hybridizing mutation and crossover operators of the evolutionary algorithm. Also, the
genetic diversity of the grey wolf population is enhanced by eliminating weak individuals from the population.
The proposed clustering algorithm’s effectiveness is shown by detecting novel viral receptors and membrane
proteins associated with the pathogenesis of SARS-CoV-2 infection. The expression profiles of ACE2 protein
and its co-receptor factor are analyzed and compared with single-cell transcriptomics profiling using the Seurat
R toolkit, mass spectrometry (MS), and immunohistochemistry (IHC). Our advanced clustering method infers
that cell that expresses high ACE2 level are more affected by SARS-CoV-infection. So, SARS-CoV-2 virus affects
lung, intestine, testis, heart, kidney, and liver more severely than brain, bone marrow, skin, spleen, etc.

We have identified 58 novel viral receptors and 816 membrane proteins, and their role in the pathogenicity
mechanism of SARS-CoV-2 infection has been studied. Besides, our study confirmed that Neuropilins (NRP1),
G protein-coupled receptor 78 (GPR78), C-type lectin domain family 4 member M (CLEC4M), Kringle
containing transmembrane protein 1 (KREMEN1), Asialoglycoprotein receptor 1 (ASGR1), A Disintegrin
and metalloprotease 17 (ADAM17), Furin, Neuregulin-1,(NRG1), Basigin or CD147 and Poliovirus receptor
(PVR) are the potential co-receptors of SARS-CoV-2 virus. A significant finding is that heparin derivative
glycosaminoglycans could block the replication of SARS-CoV-2 virus inside the host cytoplasm. The membrane
protein N-Deacetylase/N-Sulfotransferase-2 (NDST2), Extostosin protein (EXT1, EXT2, and EXT3), Glucuronic
acid epimerase (GLCE), and Xylosyltransferase I, II (XYLT1, XYLT2) could act as the therapeutic target for
inhibiting the spread of SARS-CoV-2 infection. Drugs such as carboplatin and gemcitabine are effective in
such situations.
1. Introduction

Coronaviruses (CoVs) are highly diverse groups of single stranded
RNA (ssRNA) viruses. Seven variants of human coronaviruses have
been reported till now. They are human coronavirus variant such as
alpha coronavirus (229E), alpha coronavirus (NL63), beta coronavirus
(OC43) and beta coronavirus (HKU1). The other human coronaviruses
are Middle east respiratory syndrome (MERS), Severe acute respiratory
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syndrome (SARS), and the novel coronavirus or COVID-19 (SARS-
CoV-2). Human CoVs cause common cold and respiratory illnesses.
However, in early 2000, SARS and MERS CoVs were identified. SARS
coronavirus was first identified in 2003 and infected 8000 people with
a fatality case of 9.6%. More recently, in 2004, MERS CoVs had infected
2519 people, and the fatality rate was 34.3%. People infected with
SARS virus and MERS virus usually suffer from fever, chill, headache,
muscle ache, and diarrhea. More severe cases cause a severe respiratory
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syndrome that reduces lung functionality, increases the risk of atrial
fibrillation, and even death. A novel strain of coronavirus known as
SARS-CoV-2 was identified in Wuhan city, China, in December 2019.
SARS-CoV-2 has infected more than 280 million people and has a
fatality rate of 5.41%. Although the fatality rate of SARS-CoV-2 is far
less than that of MERS and SARS coronaviruses, its transmission and
severity are very high, making it difficult to curb the disease.

Structurally, SARS-CoV-2 is composed of spike (S) glycoprotein,
envelope (E) glycoprotein, membrane (M), and nucleocapsid (N). The
S glycoprotein is present on the outer surface of the viral particle
and is composed of an amino terminal S1 subunit and a carboxyl-
terminal S2 subunit. The S1 subunit binds the virus into a host cell,
and the S2 subunit attaches the virus to the cell membrane. The S1
subunit splits into a receptor-binding domain (RBD) and an N-terminal
domain (NTD). The RBD binds to the host receptor protein ACE2 [1]
and initiate infection in the host cell. Hoffmann et al. [2] show that
SARS-CoV-2 required ACE2 protein for binding to its spike protein,
and TMPRSS2 protease cleaves the S2 subunit of the spike protein.
Besides this receptor factor, SARS-CoV-2 also depends on some other
receptor factor or membrane protein to initiate an infection to the
host cell [2]. Therefore, it is necessary to identify the viral receptor
protein and membrane protein that allows the binding and entry of
SARS-CoV-2 and causes COVID-19 infection in the host cell. It will
help better understand COVID-19 disease and the development of novel
therapeutics and vaccines instead of experimental therapies and drug
repositories.

In early 2020, Gordon et al. identified the human protein interacting
with SARS-CoV-2 protein using affinity-purification mass spectrometry
(AP-MS) [3]. They study SARS-CoV-2 protein and human protein inter-
action in the infected human embryonic kidney (HEK) 293 cells. The
study identified 332 human proteins associated with protein traffick-
ing, transcription, translation, and ubiquitination. The work provides
insight into the pathway causing SARS-CoV-2 infection and predicts
the possible drug target. Refs. [4–6] also applied the MS proteomics
approach to study the interaction between SARS-CoV-2 protein and hu-
man protein. The virus protein-host protein interaction helps to reveal
the pathogenesis pathway of the SARS-CoV-2 viral protein and provides
a strategy to search for a novel antiviral treatment by targeting the host
protein [3–5]. However, it is observed that the experimental design for
the viral protein-host protein interaction network does not provide the
functioning and environment of protein processing, accessory protein,
etc. Therefore, enrichment pathway analysis, validation process, and bi-
ological functioning of the predicted SARS-CoV-2 viral protein and host
protein interaction are needed to confirm the pathogenesis pathway of
COVID-19 disease and explore the natural and functional significance
[4].

Numerous researchers have investigated the pathogenesis of COVID-
19 transmission by surveying the gene expression pattern of host
receptors associated with SARS-CoV-2 protein using transcriptomics
profiling of single-cell RNA sequencing (scRNA-Seq) technology [1,7–
11]. The scRNA-Seq technology provides the method to understand
the cellular, biological and molecular process of SARS-CoV-2 infection
from the expression pattern of genes on various human cells. Some
studies pointed out that SARS-CoV-2 requires other receptors to infect
specific types of human cells. Like other human coronavirus and SARS
coronavirus, SARS-CoV-2 utilize multiple viral receptor factor such as
CD209 [12], CLEC4G [13], CLEC4M [14], etc. to enter the host cell.
The protease cathepsins (CTSL/M) [15] and FURIN [16] cleave the
spike protein of SARS-CoV-2 virus [8]. To the best of our knowledge,
no previous study had identified the SARS-CoV-2 viral entry-associated
gene and examined the expression pattern of these viral receptor fac-
tors or membrane proteins using machine learning techniques. To be
noted, Furong et al. demonstrate that ANPEP, ENPEP, and DPP4 exhibit
imilar expression profiles with ACE2 using hierarchical clustering
nd correlation coefficient [7]. The research provides a foundation
2

or utilizing other unsupervised clustering approaches to identify the
potential co-receptor showing similar expression patterns with ACE2
and TMPRSS2.

The current paper attempts to organize a group of genes (i.e., mem-
brane protein or ssRNA viral protein) with a similar expression pattern
to ACE2 and TMPRSS2 protein utilizing the fuzzy clustering technique.
At the end of the fuzzy clustering technique, an improved metaheuristic
algorithm (GWO) is implemented to find the optimal cluster center
in the search space with less computational time [17,18]. Several
classical metaheuristic algorithms have been implemented to solve real-
life clustering. But the problem with the classical approaches is that
it gets trapped at local minima without giving the best solution. So
efforts should always lie in applying a modified version of the classical
metaheuristic algorithm when adapting to a real-life domain. This work
develops an improved GWO algorithm by hybridizing the mutation
and crossover operator of the Differential evolution (DE) algorithm
[19]. Later, the worst search agent from the population is removed,
and its position is reinitialized around the best search agent. It is
observed that the improved GWO algorithm balanced the exploratory
and exploitative stage of the classical GWO algorithm and performed a
local search around the best solution vector [20].

The advantage of the fuzzy clustering technique is its ability to
associate a gene showing more than one type of co-regulation into
multiple clusters. It helps monitor the expression level of thousands of
genes at a time [21]. In the fuzzy clustering technique, a gene point
is associated with every other cluster with a membership function. The
membership function measures the degree to which a gene point relates
to a cluster group. The higher the membership value, a gene point is
associated more strongly with a cluster. It gives the expressive level of
a gene point in a cluster [21,22]. For example, the expression pattern
vector of ACE2 in the upper respiratory tract is [0.3796, 0.067, 0.091,
0.489], ACE2 is expressed with 37.96% in the non-ciliated secretory
cell, 6.7% in the basal cell, 9.1% in the goblet cell, and 48.9% in the
ciliated cell. Thus, ACE2 is highly expressed in the ciliated cell and is
the primary site of SARS-CoV-2 infection.

We then identify a gene group that shares similar gene expression
patterns with ACE2 and TMPRSS2. The study successfully predicts 58
ssRNA viral and 816 membrane proteins (or genes) significantly co-
expressed with SARS-CoV-2 receptor protein (ACE2 and TMPRSS2).
Finally, the predicted viral and membrane protein are analyzed by
protein–protein interaction (PPI) network, Gene Ontology (GO) terms,
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The
analysis help understand the biological functioning of these predicted
proteins involved in the pathogenesis of SARS-CoV-2 infection.

1.1. Current existing work

In early 2020, many studies identified human proteins and SARS-
CoV-2 protein interaction using AP-MS, BioID, and MS approaches,
etc.[3–6]. Such studies have analyzed the interaction between SARS-
CoV-2 protein and human protein using PPIs network [1,3,23]. In Ref.
[23] authors computationally analyze the interaction of SARS-CoV-
2 viral protein and human protein in HEK 293 cells to identify the
processes affected by the SARS-CoV-2 infection. The authors implement
the GoNet algorithm to determine human proteins and SARS-CoV-
2 protein interaction. The GONet algorithm detects the GO term of
protein clustered in the STRING-extended PPI network. However, the
problem with this algorithm is that it can return a significantly large
amount of overlapping GO terms that might be difficult to interpret the
functionality of the protein sets.

Different machine learning algorithms have been investigated in
mid-2020 to study the pathogenesis of COVID-19 disease. Recently
there has been a surge in research to identify the viral co-receptors
and human protein interacting with SARS-CoV-2 protein using the
unsupervised clustering approach. In Ref. [7], Furong et al. analyzed
the co-expression pattern of 51 RNA viral receptors and 400 membrane

proteins. Through hierarchical clustering, the paper observed that the
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peptidases ANPEP, DPP4 and ENPEP show similar expression patterns
with ACE2 protein. To further analyze the co-expression relationship,
Pearson correlation coefficient (PCC) is calculated between ACE2 pro-
tein with all the viral receptors and membrane protein. Furong et al.
confirmed that ANPEP, DPP4 and ENPEP could act as candidate recep-
tors for causing COVID-19 infection. But apart from the peptidases,
glutamine, leucine, asparagine, amino acid, and phenylalanine also
facilitate the binding of SARS-CoV-2 spike protein to ACE2 protein
receptor and membrane protein mediates the entry of enveloped virus
on the host cell [1,7,24]. The above observation suggests that other
co-receptor factors might also mediate and restrict the entry of SARS-
CoV-2 host receptors and must be identified to develop an effective
combination of drugs.

Manvendra et al. [8] initially created a list of 28 host receptors as-
sociated with coronavirus infection from the scRNA-Seq data of various
human tissues. The authors then study the expression level of these host
receptors to predict the subset of cells or tissue vulnerable to SARS-
CoV-2 infection. The scRNA-Seq gene expression matrix analysis is
performed using an unsupervised clustering approach (Seurat package
implemented in R environment). Cell type identification is performed
using the default ‘‘Findclusters’’ function implemented in the Seurat
R package. The study concludes that SARS-CoV-2 infection affects
the heart, lung, kidney, central nervous system, liver, gastrointestinal
tract, etc. The paper does not clearly state the factors considering the
SARS-CoV-2 28 potential receptor factors.

Similarly, Zou et al. [11,25] used the default ‘‘Findclusters’’ function
implemented in the Seurat R package to identify different cell types.
The expression distribution of ACE2 across different cell types of human
organoids is evaluated, and the organs vulnerable to SARS-CoV-2 infec-
tion are placed according to ACE2 expression level. However, there is
still a discordant report on considering ACE2 expression range in some
tissue to determine the organ at high risk and low risk for SARS-CoV-
2 infection. Other studies determine ACE2 expression levels to find the
organs or cell types vulnerable to SARS-CoV-2 infection. The higher the
ACE2 expression level, the more vulnerable the organ to SARS-CoV-2
infection. However, severe COVID-19 illness in immunocompromised
patients might result from increased ACE2 expression levels or the
underlying health condition. This fact is still unclear now. Sungnak
et al. analyzed the expression level or patterns of ACE2, TMPRSS2, and
other associated viral receptor proteins used by coronaviruses and in-
fluenza viruses [9]. The standard clustering tool Scanpy (implemented
in Python) is used to identify cell types [26].

Current studies commonly use Seurat [27] and Scanpy [26] package
to identify cell type from the single-cell transcriptome data. Seurat and
Scanpy, by default, implement a graph-based clustering approach with
an optimization algorithm to organize transcriptionally similar cells.
Marker genes in each cell cluster are determined using logistic regres-
sion. The cell cluster is assigned manually based on the knowledge of
the previous cell type marker gene. However, the main drawback to this
approach is that the obtained cluster number depends on a resolution
parameter assigned by the user. A high-resolution value generates more
clusters, and a less resolution value produces fewer clusters. Thus, it
may not reflect the correct cell type.

1.2. Motivation

The main factors that inspired us to develop an unsupervised fuzzy
clustering approach utilizing the GWO algorithm are described as
follows:

• The hierarchical clustering algorithm tends to form crisp clusters
that are not appropriate for some scRNA-Seq datasets. Integration
of the ‘fuzziness’ concept in the clustering algorithm eliminates
the challenges often created by extensive dimensional scRNA-seq
data. It allows the cluster to grow in its natural structure and
form.
3

• Detection of correct cluster number from single-cell transcrip-
tome data remains challenging. It has motivated us to develop a
novel unsupervised fuzzy clustering technique utilizing the GWO
algorithm to find the optimal cluster number from scRNA-Seq
data.

• Some authors implement the GoNet algorithm to study SARS-CoV-
2 protein and human protein interaction. But GoNet algorithm
returns a large number of similar clustered GO terms. But in
addition to the clustering, we also need to learn the expression
level of a gene in each cluster group.

• All the previous methods do not explicitly justify how the ex-
pression level of ACE2 protein is determined or calculated. The
current work finds the expression level of each gene point using
the fuzzy clustering technique.

• Some previous work created an initial gene list of the host recep-
tors from the published articles and used it in their work. The
reason for considering the receptor factors in analyzing the co-
expression level with ACE2 protein is still unclear. The current
paper attempts to identify novel receptor factors required for
causing SARS-CoV-2 infection. This receptor factor might not
have been reported in the published articles.

1.3. Key contribution

The key contributions of the current paper are summarized as
follows:

• The paper proposes an unsupervised fuzzy clustering with an opti-
mization algorithm to analyze single-cell transcriptomes data. The
primary purpose of the fuzzy clustering technique is to associate
genes to multiple clusters to study the regulatory relationship
between the genes. Through this, genes that regulate various
signaling pathways in the pathogenicity of SARS-CoV-2 infection
can be identified.

• The fuzzy clustering technique determines the expression level
of a gene point associated with a multiple cluster group. In the
fuzzy clustering algorithm, each gene is related to every cluster
by a membership function. The membership function expresses
the strength a gene point is associated with a cluster group. This
help finds the expression level of ACE2 protein and its co-receptor
genes.

• A comparative analysis of ACE2 expression profiles is conducted
with the proposed clustering method and MS, single-cell tran-
scriptomics profiling, and Immunohistochemistry (IHC) experi-
ment. A similar kind of inference established by the previous
experiment is observed in this work. A cell or tissue with high
ACE2 expression is more affected by SARS-CoV-2 infection than
a cell with less ACE2 expression. It is observed that the lung,
kidney, testis, heart, upper respiratory tract, and gastrointestinal
tract are more affected than the brain, bone marrow, spleen, and
skin organoids.

• During India’s second wave of COVID-19 infection, children de-
veloped a better immune response against SARS-CoV-2 infection
than adults. So, children experience much mild symptoms and are
less affected by SARS-CoV-2 disease. In children’s nasopharyngeal
samples, expression of progenitor Fc Receptor-Like 6 (FCRL6)
is detected in the B cell. The B cell differentiates during early
fetal development and produces ‘‘natural’’ antibodies to neutralize
the invading pathogens in children. SLAMF1 positively regulate
the pathway of B-1 cell to make specific antigen against the
SARS-CoV-2 virus.

• The article establishes that SARS-CoV-2 virus requires a clathrin-
dependent endocytosis process to insert the viral particle into
the host cell membrane. SARS-CoV-2 virus penetrates through
the endocytic membrane of the host cell to establish an infec-

tion. It is observed that the membrane proteins AP2A2, APLP1,
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Table 1
Summary of single-cell RNA sequencing data used in this study.

Sl. No. Tissue GEO accession No. DOI

1 Adult and child nasopharynx GSE179277 http://dx.doi.org/10.1101/2021.07.15.21260285
2 Upper respiratory tract GSE154564 http://dx.doi.org/10.1016/S2213-2600(20)30193-4
3 Lung GSE130148 http://dx.doi.org/10.1038/s41591-019-0468-5
4 Liver GSE115469 http://dx.doi.org/10.1038/s41467-018-06318-7
5 Heart GSE106118 http://dx.doi.org/10.1038/s41556-019-0446-7
6 Pancreas GSE84133 http://dx.doi.org/10.1016/j.cels.2016.08.011
7 Testis GSE112013 http://dx.doi.org/10.1038/s41422-018-0099-2
8 Stomach GSE134520 http://dx.doi.org/10.1016/j.celrep.2020.03.020
9 Ileum GSE125970 http://dx.doi.org/10.1084/jem.20191130

10 Colon GSE116222 http://dx.doi.org/10.1038/s41586-019-0992-y
11 Rectum GSE125970 http://dx.doi.org/10.1084/jem.20191130
12 Kidney GSE131685 http://dx.doi.org/10.1038/s41597-019-0351-8
13 Skin GSE132802 http://dx.doi.org/10.1038/s41591-019-0733-7
14 Spleen GSE119562 http://dx.doi.org/10.1186/s13059-019-1906-x
15 Bone marrow GSE120221 http://dx.doi.org/10.1172/jci.insight.124928
16 Brain GSE67835 http://dx.doi.org/10.1073/pnas.1507125112
a
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e

a

DNM2, EPS15, EPN1, EPN2, LDLR, LY75, MRC2, SNX5 mediate
the clathrin-dependent endocytosis process in SARS-CoV-2 infec-
tion. These membrane proteins formed clathrin-coated pits in the
host cell’s cytoplasmic membrane. The roles of these membrane
proteins in SARS-CoV-2 pathogenesis can be investigated in the
future to find antiviral treatment.

. Dataset

.1. Data sources

The publicly available scRNA-Seq data of various human tissue
re downloaded from Gene expression omnibus (GEO) (https://www.
cbi.nlm.nih.gov/geo/). The gene expression matrices of human tissue
uch as brain, adult and child nasopharyngeal count matrices, lung,
pper respiratory tract, liver, heart, kidney, stomach, ileum, rectum,
olon, human pancreas, adult testis, skin, spleen, and bone marrow are
ollected. The GEO accession No. and source of each scRNA-Seq data
re provided in Table 1.

Adult and children’s upper airway transcriptional profiles are ac-
uired as GEO accession no. GSE179277 [28]. The children’s nasopha-
yngeal gene expression data contains 38 samples with SARS-CoV-2,
1 samples are from other respiratory viruses, and 34 have no virus.
he adult nasopharyngeal gene expression data contains 45 samples
ith SARS-CoV-2, 28 samples of other respiratory viruses, and 81

amples containing no virus. The upper respiratory tract is obtained as
EO accession no. GSE154564 [29]. The expression matrices of lung

GSE130148) tissue are obtained from four patients who died of lung
arenchymal tumor [30]. Five samples of hepatic (or liver) donors are
cquired under GSE115469 [31]. Healthy samples of the human heart
re obtained as GSE106118 [32]. Samples of human pancreatic islets
re collected from four human donors and acquired as GSE84133 [33].
he adult testicular samples are collected from three healthy men of
eproductive age and acquired under GSE112013 [34]. The gastritis
amples are collected from GSE134520 [35]. Epithelial cells of human
leum, colon and rectum are collected under GSE125970 [32]. Three
amples of kidneys are obtained from healthy donors under GSE131685
36]. Fresh skin samples are acquired from GSE119562 [37]. Six sam-
les of spleen cells are acquired under GSE119562 [38]. Samples of
uman bone marrow donor cells are acquired from GSE119562 [39].
he expression matrix of human brain are acquired under GSE67835
40].

.2. Dataset preprocessing and analysis

The gene expression matrices of various human tissue generated
4

rom scRNA-Seq technology are considered for the experiment. The
expression count matrix is of size, 𝐸 = 𝑛 × 𝑑, where 𝑖 = 1, 2, 3,… , 𝑛
nd 𝑗 = 1, 2, 3,… , 𝑑. Each row represents a gene point, and the column
orresponds to a cell or sample. The expression count matrix 𝐸(𝑖, 𝑗)
tores the number of RNA molecules detected within a sample in each
ene. It records the feature count of every gene in each sample of the
xpression count matrix.

The following steps are executed to process the scRNA-Seq data and
re summarized as follows:

• Cell filtering and quality control: Low-quality cells, doublets, or
multiple cells are filtered out. Firstly, all rows and columns with
zero feature count are removed. The cell with a unique feature
count of over 2500 or less than 200 is removed.

• Normalization: The normalization process normalizes the feature
expression count of each cell by the total expression count. It then
multiplies the normalized value by a scale factor (10,000 default),
and each feature count is transformed by applying log10.

• Feature selection: The following steps are executed to select vari-
ables subset of feature and summarized as follows:

– Initially, the mean and variance are calculated for each gene
from the normalized count matrix.

– A curve is then fitted to predict the variance of each gene
(i.e., independent variable) as a function of its mean (de-
pendent variable). The fit gives the regularized estimate of
variance given the mean of its feature.

– Given the expected variances, the following transformation
is applied to standardize each feature count. The transfor-
mation is described as:

𝑍𝑘𝑗 =
𝑥𝑘𝑗 − 𝑥𝑘

𝜎𝑘
(1)

Where 𝑍𝑘𝑗 is the standardized value of a feature k in a cell 𝑗,
𝑥𝑘𝑗 is the raw value of a feature 𝑘 in a cell j, 𝑥𝑘 is the mean
of feature 𝑘, and 𝜎𝑘 is the standard deviation (or variance)
of feature 𝑖 obtained from the mean–variance function.

– The standardized variance is computed for all genes
(i.e., row) across each cell (i.e., column). The feature is then
ranked according to standardized variance value. A high
standardized variance value shows that the feature is highly
variable, and the top features are selected.

• Scaling: Scaling is a linear transformation technique applied be-
fore reducing the data dimension. It shifts and scales the ex-
pression count of each gene such that the mean expression and
variance across each cell is 0 and 1, respectively.

• Dimension reduction: The principal component analysis (PCA)

algorithm is executed on the normalized expression count matrix

http://dx.doi.org/10.1101/2021.07.15.21260285
http://dx.doi.org/10.1016/S2213-2600(20)30193-4
http://dx.doi.org/10.1038/s41591-019-0468-5
http://dx.doi.org/10.1038/s41467-018-06318-7
http://dx.doi.org/10.1038/s41556-019-0446-7
http://dx.doi.org/10.1016/j.cels.2016.08.011
http://dx.doi.org/10.1038/s41422-018-0099-2
http://dx.doi.org/10.1016/j.celrep.2020.03.020
http://dx.doi.org/10.1084/jem.20191130
http://dx.doi.org/10.1038/s41586-019-0992-y
http://dx.doi.org/10.1084/jem.20191130
http://dx.doi.org/10.1038/s41597-019-0351-8
http://dx.doi.org/10.1038/s41591-019-0733-7
http://dx.doi.org/10.1186/s13059-019-1906-x
http://dx.doi.org/10.1172/jci.insight.124928
http://dx.doi.org/10.1073/pnas.1507125112
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Fig. 1. A data flow diagram of the proposed Fuzzy based improved GWO clustering algorithm for predicting the potential host receptor for causing SARS-CoV-2 infection in
human.
to reduce data dimension. The PCA algorithm transforms the large
set of variables into a small group of variables, preserving the
original information of the dataset.

Finally, the above preprocessing process transforms the high di-
mension scRNA-Seq data into a lower form suitable for applying the
proposed clustering algorithm, as explained in the following section.
5

3. Proposed methodology

In this work, a variable-length solution vector acting as a search
agent in a grey wolf population is implemented to detect the optimal
clustering solution automatically. The main objective of the proposed
clustering approach is: (1) To optimize multiple cluster validity indexes,
(2) to detect the optimal cluster number and cluster center (3) Study
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the expression distribution pattern of each gene point to every other
cluster at a time point.

In Fig. 1(A), the detailed step of preprocessing the expression count
matrix of scRNA-Seq data is outlined. Fig. 1(B) explains the stages of the
proposed fuzzy-based improved GWO clustering algorithm graphically.
The downstream cluster analysis process and prediction of host receptor
for causing SARS-CoV-2 infection are shown in Fig. 1(C).

3.1. About grey wolf optimizer algorithm

GWO is a population-based meta-heuristic optimization algorithm
that simulates the leadership and hunting mechanism of grey wolves.
The social hierarchy of the grey wolf population is classified into four
groups. The dominant wolf in the pack is the alpha (𝛼), followed by
eta (𝛽), delta (𝛿), and omega (𝜔) wolves. The main phase of the grey
olf hunting process is enumerated as follows:

• Encircling: During this process, the grey wolves surround the prey
once its location is determined. The encircling operation of grey
wolves is represented as:

𝐷𝑝 = |𝐶 ⋅ �⃗�𝑝(𝑡) − �⃗�(𝑡)| (2)

�⃗�(𝑡 + 1) = �⃗�𝑝(𝑡) − 𝐴 ⋅𝐷𝑝 (3)

Where �⃗�𝑝(𝑡) and �⃗�(𝑡) refer to the position of prey and the wolves
at current iteration 𝑡, 𝐷𝑝 gives the approximate distance between
the target prey and grey wolves. �⃗�(𝑡 + 1) refers to the probable
position of a grey wolf at the next iteration.
The coefficient vector 𝐴 and 𝐶 is defined as:

𝐴 = 2 ⋅ 𝑎 ⋅ 𝑟1 − 𝑎 𝑎𝑛𝑑 𝐶 = 2 ⋅ 𝑟2 (4)

The component vector 𝑎 decreases linearly from [2,0] and 𝑎 =
2−2×( 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
). The component vector 𝐶 contains a random

value from the range [0,2]. 𝑟1 and 𝑟1 are the vector generated
randomly from the range [0, 1].

• Hunting: In the hunting process of the GWO algorithm, it is
assumed that 𝛼 (best solution vector), 𝛽, and 𝛿 have better knowl-
edge of the location of the target prey. Therefore, the position of
the best three search agent is saved and oblige the other search
agents (including 𝜔) to update their position randomly around 𝛼,
𝛽, and 𝛿 in each iteration. Mathematically, the hunting operation
of grey wolves is achieved using the following Eqs. (5)–(10).

𝐷𝛼 = |𝐶1 ⋅ �⃗�𝛼(𝑡) − �⃗�(𝑡)| (5)

𝐷𝛽 = |𝐶2 ⋅ �⃗�𝛽 − �⃗�(𝑡)| (6)

𝐷𝛿 = |𝐶2 ⋅ �⃗�𝛽 − �⃗�(𝑡)| (7)

Eqs. (5)–(7) estimate the distance between the prey and 𝛼, 𝛽, 𝛿
search agent.

�⃗�1 = �⃗�𝛼(𝑡) − 𝐴1 ⋅ (𝐷𝛼) (8)

�⃗�2 = �⃗�𝛽 (𝑡) − 𝐴2 ⋅ (𝐷𝛽 ) (9)

�⃗�3 = �⃗�𝛿(𝑡) − 𝐴3 ⋅ (𝐷𝛿) (10)

Eqs. (8)–(10) find the new position of 𝛼, 𝛽 and 𝛿 search agent.

𝑋𝑢𝑝(𝑡 + 1) =
�⃗�1 + �⃗�2 + �⃗�3

3
(11)

Eq. (11) define the final updated position of rest search agent.
• Attacking:

The grey wolves finish the hunting process by attacking the prey.
To mathematically simulate the exploitation phase of the grey
wolf, the component vector 𝑎 is decreased from 2 to 0. When
|𝐴| < 1, grey wolves attack the prey (exploitation). But when,
|𝐴| > 1, grey wolves diverge from each other to find a better
target (exploration). The component 𝐶 also favors the exploration
process. When 𝐶 > 1, the grey wolf repeatedly attacks the prey,
6

and 𝐶 < 1 stops the attacking.
3.2. Proposed clustering algorithm

In the proposed clustering scheme, the GWO algorithm is assimi-
lated with the evolutionary operators to balance the exploratory and
exploitation phases of the classical GWO algorithm. The evolutionary
search pattern of mutation and crossover operators of the DE algorithm
is integrated into the classical GWO algorithm to avoid stagnation at
the local optima during the optimization process. The evolutionary
population dynamics (EPD) operation is executed on the grey wolf pop-
ulation to eliminate the worst search agent for the next generation. The
proposed clustering approach is referred to as fuzzy-based improved
GWO clustering algorithm in the paper.

The step adopted for fuzzy-based improved GWO clustering algo-
rithm is explained below.

3.2.1. Population initialization and solution vector representation
Initially, the grey wolves population is composed of 𝑃 search agent.

Each search agent represent a solution vector in the search space. Each
solution vector 𝑆𝑙 in initialized with a set of distinct real numbers
chosen randomly from the given dataset, where 𝑙 = 1, 2, 3,… , 𝑃 . The
olution vector 𝑆𝑙 encodes 𝐶𝑘 number of possible cluster center. The
inimum and maximum value of 𝐶𝑘 is 2 and 𝐶𝑚𝑎𝑥, where 𝐶𝑚𝑎𝑥 =

√

𝑛
and n is the total gene point in a given dataset. Now the possible
number of 𝐶𝑘 is obtained as: 𝐶𝑘 = (𝑟𝑎𝑛𝑑()𝑚𝑜𝑑(𝐶𝑚𝑎𝑥 − 1)) + 2 where the
𝑎𝑛𝑑() gives a random integer value. Therefore, the possible number of
luster center that can be encoded in a solution vector is between 2 to
𝑚𝑎𝑥.

Let a solution vector 𝑆𝑙 encodes 𝐶𝑘 cluster center in ‘𝑑’ dimensional
earch space, then the length of each solution vector is 𝐶𝑘 ×𝑑. The first
position represent the dimension of the first cluster center, the next
position represents the dimension of the second cluster center and so

n. For example, in 4-d, a solution vector ⟨0.9, 0.8, 0.2, 0.4, 0.7, 0.8, 0.7,
.1, 0.5, 0.7, 0.3, 0.6⟩ encodes the cluster center ⟨0.9, 0.8, 0.2, 0.4⟩,
0.7, 0.8, 0.7, 0.1⟩ and ⟨0.5, 0.7, 0.3, 0.6⟩ respectively.

After initializing each solution vector with a random cluster center,
teps of the Fuzzy c-means (FCM) clustering algorithm [22,21] are
xecuted so that the centers get separated at the initial stage.

.2.2. Performing steps of FCM algorithm
The FCM algorithm aims to partition the dataset into C fuzzy

lusters. The fuzzy clustering algorithm optimizes the objective criteria
nd simultaneously updates the membership value and cluster centers
f a gene point associated with a cluster [22,21].

Suppose there are n finite gene point in a dataset X, 𝑋 = {𝑥1, 𝑥2,
3,… , 𝑥𝑛} and 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑑} be the gene point in d-dimension,
here 𝑖 = 1, 2,… , 𝑛. 𝑥𝑖𝑗 represents the 𝑗th feature value of 𝑖th gene
oint, where 𝑗 = 1, 2,… , 𝑑. Let 𝐶 = {𝐶1, 𝐶2, 𝐶3,… , 𝐶𝐶} denotes the
et of C fuzzy clusters and 𝑉 = {𝑣1, 𝑣2, 𝑣3,… , 𝑣𝐶} gives the set of C
luster centers in d-dimension i.e, 𝑣𝑗 = {𝑣𝑗1, 𝑣𝑗2, 𝑣𝑗3,… , 𝑣𝑗𝑑}. Suppose
𝑖𝑗 gives the membership value of a gene point 𝑥𝑖 in cluster j and
(𝑥𝑖, 𝑣𝑗 ) gives the Euclidean distance between the 𝑖th gene point and
th cluster center.

The FCM algorithm is composed of the following steps and is
escribed as follows:

1. The initial fuzzy membership matrix, 𝑈 (0) = [𝑢𝑖𝑗 ] is initialized
according to the degree of membership constraint

2. At the current step 𝑡, cluster center is calculated, 𝑉 (𝑡) =
[𝑣1, 𝑣2,… , 𝑣𝑐 ] with the membership matrix 𝑈 (𝑡) according to the
Eq. (12):

𝑣𝑗 =

∑𝑛
𝑖=1 𝑢

𝑚
𝑖𝑗𝑥𝑖

∑𝑛 𝑚 (12)

𝑖=1 𝑢𝑖𝑗
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3. The fuzzy membership matrix 𝑈 (𝑡+1) is then updated using
Eq. (13):

𝑢𝑖𝑗 =
1

∑𝐶
𝑘=1(

𝑑(𝑥𝑖, 𝑣𝑗 )
𝑑(𝑥𝑖, 𝑣𝑘)

)
2

(𝑚−1)

, 1 ≤ 𝑘 ≤ 𝐶,𝑚 = 2
(13)

4. If ∣ 𝑈 𝑡+1
𝑚 − 𝑈 𝑡

𝑚 ∣< 𝜉 then FCM algorithm terminate successfully
otherwise it return from step (2). Here, the terminating criteria
𝜉 = 0.01.

3.2.3. Computation of objective function
The fuzzy-based improved GWO clustering algorithm simultane-

ously minimizes the cluster validity indexes, namely the J measure
(𝐽𝑚) and Xie-Beni (XB) index. The objective functions are described as
follows:

• J measure:
𝐽𝑚 measure [21] gives the variance within the cluster. It is defined
as:

𝐽𝑚 =
𝑛
∑

𝑖=1

𝐶
∑

𝑘=1
𝑢𝑚𝑘𝑖 × 𝑑2(𝑥𝑖, 𝑣𝑘), 𝑚 = 2 (14)

𝑑(𝑥𝑖, 𝑣𝑘) gives the Euclidean distance of 𝑖th data point from 𝑘th
cluster center. A low value of 𝐽𝑚 measure results in a compact
cluster. Thus fuzzy-based improved GWO clustering algorithm
aims to minimize the 𝐽𝑚 measure.

• XB index:
XB index [41] is the ratio of fuzzy compaction to its cluster
separation.

𝑋𝐵 𝑖𝑛𝑑𝑒𝑥 =
∑𝐶

𝑘=1
∑𝑛

𝑖=1(𝑢
𝑚
𝑘𝑖 × 𝑑2(𝑥𝑖, 𝑣𝑘))

𝑛 × min𝐶𝑖,𝑘=1(‖𝑣𝑖 − 𝑣𝑗‖
2)

(15)

The goal of the XB objective function is to minimize the nu-
merator (i.e., compactness of fuzzy partition) and maximize the
separation between the clusters. Thus, the fuzzy-based improved
GWO clustering algorithm tries to minimize the XB index.

3.2.4. GWO algorithm with evolutionary operators
This subsection discusses how the GWO algorithm is incorporated

with mutation and crossover operators of the DE algorithm. The main
reason for choosing the DE algorithm is because it is easy to transform
the continuous problem structure of the GWO algorithm into a com-
binatorial problem. Incorporating mutation and crossover operators in
the GWO algorithm balances the exploratory and exploitative search
mechanism. In turn, the hybridization process will produce a more
stable recombinant offspring between different hierarchies or levels of
the grey wolves. A detailed description of the process of hybridizing the
mutation and crossover operators of the DE algorithm with the GWO
algorithm is explained below:

• Mutation operation: In the DE process, a mutant vector 𝑀𝑙 is
created for every solution vector in the population. The mutant
vector is obtained by taking the difference between any two
parent or solution vectors and multiplying it with a scaling factor
F. The resulting term is then added to another third solution
vector. The mutant vector of DE is generated using the following
equation:

𝑀 𝑡+1
𝑙 = 𝑆𝑡

𝑟3 + 𝐹 ∗ (𝑆𝑡
𝑟1 − 𝑆𝑡

𝑟2) (16)

Where 𝑟1, 𝑟2, 𝑟3 express the index number in the scope [1, 2,
3,… , 𝑃 ] from the current solution vector index 𝑙 and 𝑙 ≠ 𝑟1 ≠ 𝑟2 ≠
𝑟3. F ∈ [0, 1] control the scaling of the two differential vector and
𝑀 𝑡+1

𝑙 is the mutant vector produced at next (𝑡 + 1) iteration.
In the mutation process of the fuzzy-based improved GWO algo-
rithm, 𝛽 and 𝛿 wolves are chosen as the two target parents and
combined with 𝛼 wolves to introduce variation in the population.
7

So the mutation process is achieved using the following equation:

𝑀 𝑡+1
𝑙 = 𝑆𝑡

𝛼 + 𝐹 ∗ (𝑆𝑡
𝛽 − 𝑆𝑡

𝛿) (17)

The variation factor F balances the exploration and exploitation
process of the improved GWO algorithm. The variation factor 𝐹
is defined as:

𝐹 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) ×
𝑇𝑚𝑎𝑥 − (𝑡 − 1)

𝑇𝑚𝑎𝑥
(18)

Where 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 represent the minimum and maximum value
of the scaling factor, 𝐹 . 𝑇𝑚𝑎𝑥 and 𝑡 denotes the maximum iter-
ation and current iteration of the fuzzy-based improved GWO
algorithm.
From Eq. (18), it is observed that 𝐹 is large in the beginning
stage of the improved GWO algorithm. It enhances the explo-
ration capability of the GWO algorithm, thereby preventing it
from falling into the local optima. As the improved algorithm
continues to iterate, the variation factor F decreases to improve
the exploitation ability and prevent premature convergence.

• Crossover operation: The crossover operation aims to introduce
diversity in the population. The crossover operation is performed
with the mutant offspring 𝑀 𝑡+1

𝑙 and current search agent to gener-
ate a recombinant search agent 𝑈 𝑡+1

𝑙 . For the crossover operation
to achieve, the crossover probability factor (CR) determines the
index whose value should be copied from the mutant offspring or
current search agent.
The crossover operation is achieved using the following equation:

𝑈 (𝑡+1)
𝑙𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝑓 𝑟𝑎𝑛𝑑(0, 1) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑟𝑎𝑛𝑑(𝑖)
𝑀 (𝑡+1)

𝑙𝑗

𝑖𝑓 𝑟𝑎𝑛𝑑(0, 1) > 𝐶𝑅 𝑎𝑛𝑑 𝑗 ≠ 𝑟𝑎𝑛𝑑(𝑖)
𝑆(𝑡)
𝑙𝑗

(19)

Where 𝑙 ∈ 1, 2, 3,… , 𝑃 and 𝑗 ∈ 1, 2, 3,… , 𝑑. The 𝑟𝑎𝑛𝑑(0, 1) function
generates a uniform random number from the range [0, 1], CR
gives the crossover or recombination probability from the range
of [0, 1] and 𝑟𝑎𝑛𝑑(𝑖) returns any index from the range [1, 2, 3,… , 𝑑].
𝑆(𝑡)
𝑙𝑗 gives the real value present at the 𝑗th index of ′𝑙′ current

search agent.
From Eq. (19), it is observed that if 𝐶𝑅 value is large, the mutant
offspring contribute more to the generation of recombinant search
agent. When 𝐶𝑅 = 1, 𝑈 (𝑡+1)

𝑙 = 𝑀 (𝑡+1)
𝑙 but if 𝐶𝑅 ≤ 1, current search

agent contribute more to the generation of recombinant search
agent.

• Selection operation: The mutation and crossover operations are
performed for all the search agent to generate a recombinant
search agent for the new population. The objective function value
(𝐽𝑚 measure and XB index) are calculated for all the recombinant
search agent in the new population. All the search agent in the
old and new populations are combined to perform the selection
operation. The best ∣ 𝑃 ∣ search agent are selected from the
combined population, while the rest search agent are discarded
in the next iteration. The selection operation is performed using
the non-dominated sorting and crowding distance operator of the
Non-dominated sorting genetic algorithm (NSGA-II) [42].
The non-dominated sorting approach [42] divides all the search
agents in the population into different non-domination levels. It
distributes the search agent into R-different Pareto front such that

𝐹 = {𝐹𝑟𝑜𝑛𝑡1, 𝐹 𝑟𝑜𝑛𝑡2, 𝐹 𝑟𝑜𝑛𝑡3,… , 𝐹 𝑟𝑜𝑛𝑡𝑅}

𝐹𝑟𝑜𝑛𝑡1 contains a higher-ranked search agent with assigned rank
1, and 𝐹𝑟𝑜𝑛𝑡𝑅 contains a lower-ranked search agent. The top-
ranked search agent is selected to fill the position of the new
population for the next iteration. This process is continued until
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search agents up to rank r are copied into the new population.
Then the remaining number of positions the search agent can fill
in the new population is determined as:

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = 𝑃 −
𝑟
∑

𝑝=0
‖𝑆𝑝‖ (20)

Where ‖𝑆𝑝‖ denotes the set of search agents at rank p, and P is
the total number of search agents in the population. If ‖𝑆𝑝+1‖ >
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔, it means that all the search agent at rank (𝑞+1) cannot
be added to the new population. Now to select only the exact
number of search agents from rank (𝑞+1) that can be filled up in
the remaining position, the crowding distance (CD) operator [42]
is executed on the set of search agents at rank (𝑞 + 1). The CD
operator first sorts the search agent of rank (𝑞 + 1) according to
each m objective value (m = 2). It then computes the crowding
distance value of each search agent. Thus the remaining search
agent is chosen based on lower rank and least CD value. In this
manner, P best search agents are selected for the next iteration.

3.2.5. Eliminating worst search agent from the population
The concept of EPD is to eliminate the weak search agent from the

population. EPD promotes exploration of the GWO algorithm in a good
search direction and resolves the problem of getting trapped at the local
optima. EPD eliminate half of the worst solution vector and repositions
them randomly around the best solution obtained so far [20].

To re-position the weak search agent around the location of 𝛼, the
following equation is used:

�⃗�(𝑡 + 1) = �⃗�𝛼(𝑡) ± (𝑢𝑏 − 𝑙𝑏.𝑟3 + 𝑙𝑏) (21)

To re-position the weak search agent around the location of 𝛽, the
ollowing equation is used:

⃗ (𝑡 + 1) = �⃗�𝛽 (𝑡) ± (𝑢𝑏 − 𝑙𝑏.𝑟3 + 𝑙𝑏) (22)

To re-position the weak solution vector around the location of 𝛿, the
ollowing equation is used:

⃗ (𝑡 + 1) = �⃗�𝛿(𝑡) ± (𝑢𝑏 − 𝑙𝑏.𝑟3 + 𝑙𝑏) (23)

To re-position the weak solution vector in a random position around
he search space, the following equation is used:

⃗ (𝑡 + 1) = (𝑢𝑏 − 𝑙𝑏.𝑟3 + 𝑙𝑏) (24)

Where ub and lb indicate the upper and lower bound of the search
pace, respectively, 𝑟3 is a random number generated from the range
f [0, 1].

The process of mutation, crossover, selection, and elimination of
eak individuals from the grey wolves population continues for many

teration. At the end of the iteration, a set of search agent are generated
n the final Pareto front. The final position of 𝛼 wolf give the optimal
luster number and cluster center for the clustering purpose.

.3. Cluster analysis process

The downstream clustering analysis process begins by finding a set
f differentially expressed genes (DEGs) for each scRNA-Seq dataset.
he DEGs help annotate each cluster to a cell type from the published
ork. Finally, the DEGs are utilized further to study the biological
rocess and their role in the pathogenesis of SARS-CoV-2 illness.

.3.1. Annotation of cell clusters
The developed clustering method can determine the correct class

abel of a gene point and assign it to a proper cluster group. The t-test
tatistic is used to compare the mean of a group (cluster) but at different
imes. The t-test statistic is calculated as:

− 𝑠𝑐𝑜𝑟𝑒 =
𝑥 − 𝜇

( 𝜎
√

) (25)
8

𝑛𝑖
here 𝑥 = 1
𝑛𝑠

∑𝑛𝑠
𝑖=1 𝑥𝑖 is the mean of a cluster group, 𝜇 give the mean

hypothesis, 𝜎 =
√

1
𝑛𝑠 − 1

∑𝑛𝑠
𝑖=1(𝑥𝑖 − 𝑥)2 gives the standard deviation and

𝑠 is the total gene point in a cluster,
A 𝑝-value gives the probability value to indicate that the result from

the experiment (or a sample group or cluster) occurred by chance. A
low 𝑝-value suggests that the data do not happen by chance and is valid
data. The function

𝑇 .𝐷𝐼𝑆𝑇 .𝑅𝑇 (𝑥, 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚)

is used to compute the 𝑝-value of each corresponding t-score for each
group of cluster. The function computes the right-tailed student’s t
distribution taking two arguments, i.e., t-score and degree of freedom
(𝑛𝑠 − 1). The 𝑝-value is then adjusted using the Benjamini Hochberg
method to decrease the false discovery rate (FDR) [43].

The DEGs or gene markers are identified for each group cluster. The
marker genes are determined using the criteria: A gene is said to be up-
regulated if its 𝑝-value is less than 0.05 and fold change greater than
2, whereas a gene is down-regulated if its 𝑝-value is less than 0.05 and
fold change greater than 0.5. Each cluster is then annotated to a known
cell type based on the identified marker genes or DEGS.

3.4. Entire process

The following steps are adopted to predict the potential co-receptors
of ACE2 protein that facilitate SARS-CoV-2 infection:

1. An initial population of P search agents is created and repre-
sented as the solution vector.

2. Step of FCM algorithm is executed on each solution vector to
partition the given data into ‘C’ fuzzy cluster centers [22].

3. For each solution vector in the population, the objective values
𝐽𝑚 [22] and XB [44] are determined.

4. The non-dominated sorting and crowding distance operators of
the NSGA-II algorithm [42] are executed to rank each solution
vector in different non-domination levels.

5. Save the best solution vector, second best solution vector and
third best solution vector as position of alpha, beta and delta
search agent. 𝑋𝛼 = position of 𝛼, 𝑋𝛽 = position of 𝛽, 𝑋𝛿 =
position of 𝛿

6. Initialize control parameters: 𝑎, 𝐴 and 𝐶. Current iteration𝑡 = 1
7. Update the position of the rest search agent according to Eqs.

(5)–(11).
8. Use 𝛼, 𝛽 and 𝛿 position vector to perform mutation and crossover

operation of DE algorithm according to Eqs. (16)–(19) [20].
9. Update the position of 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿 and rest search agent.

10. Eliminate half of the worst search agent and reposition them
randomly around the position of 𝛼, 𝛽 and 𝛿 [20].

11. Update the control parameters and current iteration
12. Repeat step (3–10) until the terminating criteria is satisfied.
13. A set of solution vectors representing the position of search

agents are generated in the final Pareto front.
14. Return the position of 𝛼 i.e, 𝑋𝛼 as the optimal cluster center for

clustering any scRNA-Seq data.
15. Identify the gene marker or DEGs in each cluster group and

annotate the cluster to cell types
16. The gene sets (membrane protein or ssRNA viral receptor) that

are transcriptionally similar to ACE2 protein are identified
17. The expression distribution pattern of ACE2 and its co-receptor

is studied.
18. The target proteins that plays a crucial role in the pathogenesis

mechanism of SARS-CoV-2 infection is reviewed through GO and
KEGG pathway enrichment analysis

19. The target protein is queried through the drug-gene interaction
database, and its drug combination is identified.
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Table 2
The setting of control parameters used in developing the clustering
approach.

Clustering method Control parameters

Fuzzy-based DE F = 0.8, CR = 0.5, 𝑇𝑚𝑎𝑥 = 100
Fuzzy-based GWO 𝑎 = [2, 0], 𝐶 = [0, 2], 𝐴 = [−2𝑎,+2𝑎]

𝑇𝑚𝑎𝑥 = 100
Fuzzy-based improved GWO CR = 0.5, 𝑓𝑚𝑖𝑛 = 0.25, 𝑓𝑚𝑎𝑥 = 1.5,

𝑎 = [2, 0], 𝐶 = [0, 2], 𝐴 = [−2𝑎,+2𝑎]
𝑇𝑚𝑎𝑥 = 100

4. Experiment

4.1. Experimental parameters

The proposed clustering algorithm (Fuzzy-based improved GWO)
is implemented using Python 3.3 and runs on Spyder integrated de-
velopment environment (IDE). All the experiments are conducted on
an Intel Core i7 processor operating at 2.90 GHz and having 8.00 GB
RAM under the Windows 10 platform. Other clustering techniques
utilizing different optimization methods are also developed and tested
on various scRNA-Seq data of human tissue.

The fuzzy-based DE clustering approach utilizes the DE optimization
algorithm [45] and the fuzzy-based GWO clustering approach uses
the classical GWO algorithm [18]. All the methods are based on the
fuzzy clustering technique and simultaneously optimize 𝐽𝑚 measure
and XB index. The required parameter values for executing fuzzy-based
DE, fuzzy-based GWO, and the proposed fuzzy-based improved GWO
clustering approaches are provided in Table 2.

The entire code of the fuzzy clustering approach utilizing the classi-
cal GWO algorithm and proposed fuzzy-based improved GWO cluster-
ing approaches are uploaded to the github url as given: https://github.
com/achomamika01/Metaheuristics_Fuzzy_based_Clustering-Algorithm

4.2. Performance metrics

The following cluster evaluation metrics are chosen to measure the
goodness of the obtained gene cluster. It is described as follows:

• Silhouette Coefficient (SC): The SC [45] measures the closeness
of each gene point in a cluster to the other gene point in the
neighboring clusters. SC measures the average distance between
each gene point within a cluster (a) and the average distance
between all clusters (b). The silhouette value is calculated based
on ‘a’ and ‘b’ parameters and is defined as:

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 =
(𝑏 − 𝑎)

max(𝑎, 𝑏)
(26)

Now, the SC is calculated as the average silhouette values over
all the gene points. The SC value varies from −1 to +1, and an SC
closer to +1 signifies a better clustering result.
The SC can describe the performance of an entire population with
a single value. So, we use the SC values to find the optimal cluster
number in scRNA-Seq data.

• Calinski–Harabasz Index (CHI): CHI [45] measures the within-
cluster dispersion (i.e., cohesion) and the dispersion between-
cluster (i.e., separation). The cohesion is calculated based on the
distances of the gene point in a cluster to its cluster center, and
separation is estimated based on the distance of the cluster center
from the global cluster center. Thus CHI is defined as:

𝐶𝐻𝐼 =
(
∑𝐶

𝑘=1 𝑛𝑘 × 𝑑2(𝑣𝑘 − 𝑣𝑔)
𝐶 − 1

)

(
∑𝐶

𝑘=1
∑𝑛𝑘

𝑖=1 𝑑
2(𝑥𝑖 − 𝑣𝑘)

𝑛 − 𝐶
)

(27)

Here, 𝑛𝑘 and 𝑣𝑘 are the number of gene point and cluster center
of 𝑘th cluster respectively. 𝑣 is the best or global cluster center,
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𝑔

n is the total gene point in a dataset, and C is the cluster number.
A higher value of CHI means the clusters are well separated and
dense.

• Davies–Bouldin Index (DBI): DBI [45] is defined as the ratio of
within-cluster distances to between-cluster distances. DBI maxi-
mizes the inter-cluster distance and minimizes the intra-cluster
distance. DBI is based on the calculation of cohesion and sepa-
ration values. Cohesion measures the closeness of a gene point
in a cluster to the cluster center, while separation measures the
distance between the cluster center (or centroid).
The cohesion value is calculated using the Sum of Square Within
Cluster (SSW) equation, and the separation value is calculated
using the Sum of Square Between Cluster (SSB) equation. SSW
is defined as:

𝑆𝑆𝑊 = 1
𝑛𝑗

𝑛𝑗
∑

𝑖=1
𝑑(𝑥𝑖, 𝑣𝑗 ) (28)

where 𝑛𝑗 = Number of gene point in cluster 𝑗 and 𝑑 = Distance
between a gene point 𝑋𝑖 and cluster center 𝑣𝑗 .
SSB is defined as:

𝑆𝑆𝐵 = 𝑑(𝑣𝑖, 𝑣𝑗 ) (29)

where 𝑑(𝑣𝑖, 𝑣𝑗 ) = Distance between the cluster center 𝑖 and 𝑗.
The ratio 𝑅𝑖𝑗 measures the similarity of cluster 𝑖 and cluster 𝑗 and
is defined as:

𝑅𝑖𝑗 =
𝑆𝑆𝑊𝑖 + 𝑆𝑆𝑊𝑗

𝑆𝑆𝐵𝑖,𝑗
(30)

Now, DBI is the average of the similarity measures of each cluster
with a cluster most similar to it:

𝐷𝐵𝐼 = 1
𝐶

𝐶
∑

𝑗=1
max(𝑅𝑖𝑗 ) (31)

It is observed from Eq. (31), lower the average similarity values,
the gene clusters are well separated. Thus, a minimum value of
DBI gives a good clustering solution.

4.3. Find ACE2 expression distribution pattern and identify its co-receptor

To identify the potential host receptor i.e, viral receptor/membrane
protein of ACE2 that facilitate SARS-CoV-2 infection into human cells,
membrane proteomes are extracted from the Membranome database
of single-helix transmembrane proteins.1 Also, the viral receptor genes
are downloaded from the Viral Receptor database.2 The viral receptor
database comprises 332 interactions of mammalian virus–host recep-
tors, including 142 unique viral species and 150 receptors. We only
extract ssRNA viral receptor genes because coronaviruses are highly
diverse positive sense ssRNA viruses.

The proposed fuzzy-based improved GWO clustering technique
identifies gene sets (membrane protein/ssRNA viral receptors) showing
similar expression patterns with ACE2 protein in all 16 human tissue.
We then analyzed the tissue-specific expression pattern of ACE2 in
16 different human tissues. In single-cell gene expression data, each
gene point is an element, and the vector of each gene corresponds to
its expression pattern. The FCM algorithm aims to organize a group
of genes having similar expression patterns in a cluster [21] . This
means that genes in the same cluster are co-regulated and involved in
the same biological function. The FCM algorithm can arrange genes
showing more than one type of co-regulation nature into multiple
clusters. So many authors have utilized the FCM algorithm to analyze
the expression levels of thousands of genes at a time [46,47]. In
the FCM algorithm, each gene is associated with every cluster by a

1 https://membranome.org/
2 http://www.computationalbiology.cn:5000/viralReceptor

https://github.com/achomamika01/Metaheuristics_Fuzzy_based_Clustering-Algorithm
https://github.com/achomamika01/Metaheuristics_Fuzzy_based_Clustering-Algorithm
https://github.com/achomamika01/Metaheuristics_Fuzzy_based_Clustering-Algorithm
https://membranome.org/
http://www.computationalbiology.cn:5000/viralReceptor
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membership function. The membership function expresses the gene’s
strength or degree of association with a particular cluster. Therefore,
we have computed the membership degree of each gene point in a
cluster using the above Eq. (13) of the FCM algorithm.

For example, ACE2 has a membership or expression value of 0.0136,
0.0010, 0.00028, 0.98209, 0.002927 when associated with the goblet,
basal/suprabasal cells, tuft cell, ciliated cell, and neuroendocrine cell
in the adult nasopharyngeal data. A particular gene is said to be poten-
tially associated with a biological process or a cluster if its membership
value, 𝑢(∗)𝑖𝑗 > 0.05 in Ref. [48] experiment. It can infer that ACE2
s associated more strongly with the adult nasopharynx’s ciliated cell
expression value ∼ 0.98).

Further to validate the result of obtained clustering results, PCC
s calculated between ACE2 protein and membrane protein or ssRNA
iral receptor. It is observed that ACE2 is strongly correlated with viral
eceptors such as CD209, GPR78, ADAM17, NRP1, ICAM1, AXL, LDLR,
GFR, CLEC4M, and FCGRT, etc. (𝑃𝐶𝐶 ≥ 0.5). While ADAM7, ADAM9,
RP1, NRG1, FCRL6, LRP1, FURIN, FGFR1, EFNB1, and CLDN1 are the

op membrane protein strongly correlated with ACE2 protein. These
ay act as the potential co-receptor of ACE2 that facilitates the entry

nd binding mechanism of SARS-CoV-2 infection.

. Result and discussion

.1. Cell type identification and analysis of ACE2 expression pattern and
ole of host receptor in various human tissue

• Adult nasopharyngeal dataset: Cells in the adult nasopharyngeal
gene expression dataset are organized into five major clusters.
Cluster 0 is annotated as goblet cell with the marker genes SYT8,
GP2 and ANPEP. Cluster 1 is annotated as the basal or supra-basal
cell with the marker genes NRP1, LDLR and ITGB1. Cluster 2 is
annotated as the tuft cell using the canonical marker genes PTPRC
and FXYD6. Cluster 3 is annotated as ciliated with the marker
genes CDHR3 and SYT5. Cluster 4 is annotated as neuroendocrine
cell with the marker genes SYT1 (as shown in Supplementary
(Suppl) Fig. 1(A)).
ACE2 has an expression value 0.0136, 0.0010, 0.00028, 0.98209,
0.002927 when associated with the goblet, basal or suprabasal
cells, tuft cell, ciliated cell, and neuroendocrine cell, respec-
tively. Thus, ACE2 is associated more strongly with the adult
nasopharynx’s ciliated cell (expression value ∼ 0.98).
SIGLEC1, CD209 and CLEC4M are the viral genes that are signif-
icantly correlated with ACE2 (PCC > 0.65) in adult nasopharynx.
SIGLEC1 plays an important role in the antiviral and antibac-
terial host response to SARS-CoV-2 infection and HIV infection.
Type I interferon is the key antiviral mediator of SARS-CoV-2
infection. Activation of type I interferon signaling increases the
expression of SIGLEC1 on the circulating cell of monocyte and
macrophages. CD209 and CLEC4M are also responsible for the
autoimmune response in SARS-CoV-2 infection. NRCAM, MLN-
4760, ADAM7, ASGR1 and TFR2 are the top membrane protein
that are significantly correlated with ACE2 protein (𝑃𝐶𝐶 > 0.8).
NRCAM protein is reported to induce an inflammatory response
to SARS-CoV-2 infection. MLN-4760 protein binds to the enzy-
matic active site of ACE2 protein with high affinity and can
alter the conformation of ACE2 protein. The increased activity
of ADAM7 cleaves ACE2 ectodomain and other pro-inflammatory
molecules, thereby reinforcing the inflammatory process during
SARS-CoV-2 infection. ASGR1 neutralizes the antibodies target-
ting the S protein of ACE2. TFR acts as another receptor for
SARS-CoV-2 infection entry and exerts significant antiviral effects.
The expression profile of ACE2 and its co-receptor is shown in
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Suppl Fig. 1(B).
• Child nasopharyngeal dataset: Cells are organized into five main
clusters in child nasopharyngeal gene expression data. Cluster 0
is annotated as the neuroendocrine cell using the marker gene
SYT1, and cluster 1 is annotated as the ciliated cell with the
marker gene FMO3, SYT5. Cluster 2 is annotated as a goblet cell
with the marker gene SYT8, GP2. Cluster 3 is annotated as a
basal/suprabasal cell with the canonical marker gene PLS3, MET,
OSMR, CLIC4. Cluster 4 is annotated as tuft cell with the marker
gene PTPRC, SDC4 (as shown in Suppl Fig. 1(C)).
ACE2 protein has an expression value of 0.056, 0.188, 0.6860,
0.0530, and 0.0162 when associated with the neuroendocrine, cil-
iated, goblet, basal/suprabasal, and tuft cells. ACE2 exhibits both
the nature of goblet and ciliated cells because the membership
values in both the cell type are 0.188 and 0.6860. The expression
profiles of ACE2 and its co-receptor are shown in Suppl Fig. 1(D).
CD209, DPP4 and GPR78 are the viral receptors strongly cor-
related with ACE2 protein. In Ref. [49], it is established that
CD209 mediates entry of the SARS-CoV-2 infection through the
heterodimerization process, and our work also confirms the same
observation. DPP4 interacts with the S1 domain of the viral spike
glycoprotein. DPP4 is suggested to be the alternate receptor of
SARS-CoV-2 infection [2,50]. GPR78 protein is mainly expressed
in the upper airway cell and overexpressed in SARS-CoV-2 in-
fection. During the infection, the SARS-CoV-2 virus migrates to
the GPR78 cell surface and promotes viral entry. The virus-
induced endoplasmic reticulum (ER) stress increased the surface
expression of GPR78 to enhance the viral entry. In turn, the
viral infection sets up a positive feedback cycle and hijacks the
chaperone molecule for signaling multiple molecules acting as the
co-receptor for viral entry.
GDF15, CD8B2, FCRL6 , CD244 and SLAMF1 are the membrane
protein strongly correlate with ACE2 protein (𝑃𝐶𝐶 > 0.8).
GDF15 modulates immunity in COVID-19 infection via its iron
metabolism [51]. Expression profiles of host receptor protein are
shown in (as shown in Suppl Fig. 1(D)). SLAMF1 and FCRL6
protein expression is detected in children’s nasopharyngeal swab
samples. It is observed that children experience a milder clinical
symptoms of COVID-19 disease than adults. This is because
children can neutralize the antibody after the onset of infection
[52]. CD244 and SLAMF1 are present in activated B and 𝑇 cell
and responsible for signal transduction and viral entry. FCRL6
acts as the major histocompatibility complex II receptor (MHC
II) for mediating viral entry. SLAMF1 positively regulates the
production antigen (Ag) specific immune response in the B cell
of children. The above observance proves that children with
neutralizing antibodies have a lower viral load count and faster
virus clearance.

• Upper respiratory tract: Four major cell types are detected in
the upper respiratory tract (nose and oropharynx): ciliated cells,
non-ciliated secretory cells, basal or suprabasal cells, and goblet
cells. Cluster 0 is annotated as non-ciliated secretory cell with
the marker genes SRPRB and CNMD. Cluster 1 is annotated as
basal cell with the marker genes MEGF9, APMAP, KRT5 and
PCDH7. Cluster 2 is annotated as goblet cell using the marker
genes CXCL10, IDO1, SLC26A4 and ANPEP. Cluster 3 is annotated
as multi-ciliated cell with the marker genes CXCL13, CCDC78,
SCGB3A1. The cell cluster are shown in Suppl Fig. 1(E).
From the result, it is observed that ACE2 has expressive values
0.3796, 0.067, 0.091, 0.489 associated with non-ciliated cell
secretory, basal cell, goblet, and ciliated cell. This means that
ACE2 protein is found to express in all the cell types in some
extent because 𝑢(∗)𝑖𝑗 > 0.05. But it is observed that ACE2 is highly
expressed in the ciliated cell compared to secretory and goblet
cells. AXL, EGFR, FCGRT, LDLR, KREMEN1 and ASGR1 are the
viral receptors coexpressed with ACE2 protein in the ciliated

cell of upper airway. The protein receptor ASGR1 and KREMEN1
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are found to co-expressed with ACE2 protein in the non-ciliated
cell (secretory cell). This means the relative expression of ACE2,
ASGR1 and KREMEN1 is much higher in SARS-CoV-2 infected cell
than the uninfected cell. ASGR1 and KREMEN1 specific antibodies
can block the binding and entry mechanism of SARS-CoV-2 S
protein into the cell and reduce the spread of infection in lung
organoids [53]. From our result, the AXL protein significantly
correlates with ACE2 protein (𝑃𝐶𝐶 > 0.8) and promotes viral
infection and reproduction in the upper respiratory system [54].
Through experiment model and cell culture, it is observed that
SARS-CoV-2 infection-induced pulmonary infection in older pa-
tients due to hyperactive response to lung injury mediated by
epidermal growth factor receptor (EGFR) signaling. The reason
for the activation of EGFR signaling is the release of ligands
such as epigen (EGN), heparin-binding EGF-like growth factor
(HB-EGF), amphi-regulin (AREG), epiregulin (EREG), etc from
the damaged cell to bind EGFR and activate the would healing
response in COVID-19 patients [55].

• Lung dataset: A total of 13 primary cluster cells are detected
in human lungs. The cell clusters are annotated as: Cluster 0
is annotated as basal cell using the marker genes ISLR, SNCA
and PCDH7. Cluster 1 is annotated as endothelial cell using the
marker genes ANXA3, CALCRL and FOXF1. Cluster 2 is annotated
as alveolar type 1 (AT1) cell using the canonical marker genes
AGER, MYRF, PDPN. Cluster 3 is annotated as B cell using the
marker genes CD14 and CD4. Cluster 4 is annotated as alveolar
type 2 (AT2) cell using the marker genes TCF7L2, CYP4B1, LRP5.
Cluster 5 is annotated as the smooth muscle cell using the marker
genes ACTA2. Cluster 6 is annotated as ciliated cell using the
canonical marker genes SERPINB4, PDZK1IP1 and KRT4. Cluster 7
is annotated as mesothelial cell using the marker genes PLXNA1
and PLXNA2. Cluster 8 is annotated as dendritic cell using the
canonical marker genes VEGFA, EREG, IGSF21 and APOE. Cluster
9 is annotated as NK and 𝑇 cell using the marker genes CD11B,
CD56 and CD45RO. Cluster 10 is annotated as pericytes using
the marker genes ACTA2, TAGLN and COL1A2. Cluster 11 is
annotated as macrophages from the marker genes FABP4 and
MCEMP1. Cluster 12 is annotated as fibroblast or stromal cell
using the marker genes PGS5, TAGLN and MYH11.
ACE2 protein has an expressive value of 0.0203, 0.0387, 0.2171,
0.0947, 0.1906, 0.0053, 0.1065, 0.0377, 0.1767, 0.0717, 0.0120,
0.0077, 0.0203 associated to basal cell, endothelial cell, AT1
cell, B cell, AT2, smooth muscle cell, ciliated cell, mesothelial
cell, myeloid and dendritic cell, NK and 𝑇 cell, pericytes, macro-
phages, and fibroblast cell respectively. ANPEP, DPP4, CD209,
EGFR, MMP14 are the viral receptors co-expressed with ACE2
protein in AT2 cell of human lung. The expression profile of ACE2
and its co-receptor protein is shown in Suppl Fig. 1(F).
The coronaviruses use peptidases such as ANPEP and DPP4 to
enter host cells [2,56]. ACE2 interacts with DPP4 and ANPEP pep-
tidases in AT2 cell (𝑃𝐶𝐶 > 0.8). CD209L is seen to co-expressed
with ACE2 protein in AT2 cells. CD209L and CD209 interact
with the receptor-binding domain (RBD) of ACE2 protein and
mediates viral entry into human cells. EGFR receptor enhances
the spread of the SARS-CoV-2 infection by stimulating cell motil-
ity. SARS-CoV-2 activates the epidermal growth factor receptor
(EGFR), leading to the suppression of interferon regulating factor
1 (IFR1) dependent interferon (𝛬) and decreased antiviral defense
in the upper airway epithelial cell. Matrix metalloproteinases
(MMPs) play a key role in lung immunity against SARS-CoV-2
infection by facilitating inflammatory cell influx and modulating
the chemokines and cytokines signaling pathway.

• Heart dataset: A total of 10 cell clusters are obtained in the
human heart. The cell clusters are annotated as follows: cluster
0 is annotated as endothelial cell using the marker genes PDPN,
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cluster 1 is annotated as atrial cardiomyocytes using the marker
gene ALDH1A2, cluster 2 is annotated as ventricular cardiomy-
ocytes using the marker gene MYH2 and MYH7, cluster 3 is
annotated as macrophages using the marker genes MRC1, cluster
4 is annotated as the pericytes using the marker genes ABCC9,
cluster 5 is annotated as the adipocytes using the marker genes
LAMA2, cluster 6 is annotated as fibroblast following the marker
gene CD63, cluster 7 is annotated as mesothelial cell using the
marker gene VT1, cluster 8 is annotated as immune cell using
the prominent marker genes ICAM1, cluster 9 is annotated as
neuronal cell using the marker genes NRXN1 and PLP1 (as shown
in Suppl Fig. 2(A)).
ACE2 has an expression value 0.0014, 0.0228, 0.8634, 0.0154,
0.02162, 0.0138, 0.0039, 0.0079, 0.0069, 0.0423 when associ-
ated to endothelial cell, atrial cardiomyocytes, ventricular car-
diomyocytes, macrophages, pericytes, adipocytes, fibroblast,
mesothelial cell, immune cell and neuronal cell (shown in Suppl
Fig. 1(B)).
The membrane protein ADAM9, VCAM1, ICAM1, ERBB2, NRG1
and ERAP1 coexpressed with ACE2 protein in cardiomyocytes
cell. ADAM9 mediates the entry of the encephalomyocarditis
(EMCV) virus. EMCV virus is associated with myocarditis and
encephalitis. EMCV infection causes acute myocarditis due to a
direct infection in cardiomyocytes cell by the SARS-CoV-2 virus.
The comorbidities caused an imbalance in the renin-angiotensin
system (RAS) mediated by the interaction between ACE2 protein
and ADAM, along with some factors associated with TMPRSS2
expression. ERAP1 and ERAP2 are the key regulator of RAS and
a key component of the MHC class I antigen processing system.
Because of their involvement in RAS, the dysfunction of the
ERAP1 enzyme exacerbate the effect of SARS-CoV-2 infection.

• Testis dataset: A total of seven cell clusters are detected in adult
male testis. Cluster 0 is annotated as a myoid cell using the marker
gene ACTA2, VIM. Cluster 1 is annotated as Sertoli cell using the
marker gene RHOX8, APOA1. Cluster 2 is annotated as spermatid
cell using the marker gene SPAG6, ZPBP. Cluster 3 is annotated
as germ cell using the marker genes ID4. Cluster 4 is annotated
as Leydig cell using the marker genes CYP11A1, VIM. Cluster 5
is annotated as spermatogonial stem cell (SSC) using the marker
gene NEUROG3, ID4. Cluster 6 is annotated as spermatogonia
(SPG) cell cluster using the marker genes MAGEA4, KIT. The cell
clusters are shown in Suppl Fig. 2(C).
ACE2 is associated with the myoid cell, Sertoli cell, spermatids,
germ cell, Leydig cell, SSC, and SPG cell with an expression
value of 0.0556, 0.2940, 0.0341, 0.1653, 0.0351, 0.2858, 0.1297
respectively. ACE2 is highly expressed in spermatid, Leydig cells,
SPG, and SSC. GGT5, GT7, JAG2, JAM2, PLD6, SPAG4, SPEM1,
SGPL1, AXL, BAX, KIT, MERTK, ROS1, SUN5, TYRO3, CADM1,
GGT1 are the potential co-receptor of ACE2 in testis. The ex-
pression profiles of ACE2 and its co-receptor are shown in Suppl
Fig. 2(D).
Testicular damage is one of the clinical damage caused by SARS-
CoV-2 infection. The main reason for the testicular damage is
the direct invasion of ACE2 receptors into the testicular tissue.
This is due to a persistent rise in temperature, other secondary
inflammation such as autoimmune response, and unexpected side
effects such as steroid and oxidative stress from COVID-19 med-
ications. Infertility in males may be the possible long-term effect
of COVID-19 infection.

• Liver dataset:
Six cell clusters are detected in the human liver. Cluster 0 is
annotated as hepatocyte cell with the corresponding marker genes
CYP1A2, JUN. Cluster 1 is annotated as cholangiocyte cell with
the marker genes EPCAM, ONECUT1. Cluster 2 is annotated as an
endothelial cell using the marker genes CLEC14A and SPARCL1.

Cluster 3 is annotated as hepatic stellate cell with the marker
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genes BAMBI, CSF1, HEXIM1. Cluster 4 is annotated as macro-
phage from the marker genes HMOX1, MERTK, and MS4A7.
Cluster 5 is annotated as lymphoid cell following the marker
genes CD8A, IL7R. The cell cluster are shown in Suppl Fig. 2(E).
ACE2 has an expression value 0.4636, 0.1032, 0.0289, 0.3899,
0.0037, and 0.0105 when associated with hepatocyte cell, cholan-
giocyte cell, endothelial cell, hepatic stellate cell, macrophage,
and lymphoid cell. A high expression value of ACE2 in hepatocyte
cells (0.466) indicates that it is the leading site of infection of
SAR-CoV-2 infection. CEACAM1, IGF1R, BAX, LEPR, INSR, XBP1,
LRP5, HFE, MET, COX7B, COX8C, COX8A, CADM1, CLDN1 are
the possible co-receptor of ACE2 and TMPRSS2 membrane pro-
tein. The expression profiles of ACE2 and its co-receptor protein
are shown in Suppl Fig. 2(F).
There is a close association between SARS-CoV-2 infection and
liver disease. Liver injury, chronic liver disease (CLD), liver cir-
rhosis, inflammation, and viral hepatitis are the possible outcome
of COVID-19 illness. An elevated level of alanine aminotrans-
ferase (ALT), gamma-glutamyltransferase (GGT), and aspartate
aminotransferase (AST) as an impact of cytokine storm could
damage the liver and produce more inflammation. Elevation of
AST and GGT cause ischemia and liver cirrhosis and has been
associated with cytokine-mediated injury. Tocilizumab is now
approved to treat severe lung injury in COVID-19 disease.

• Kidney dataset: In the kidney organoid, six main clusters are
identified. Cluster 0 is annotated as distal tubule cell using the
marker genes GATA3 and EGF, cluster 1 is annotated as glomeru-
lar parietal epithelial cell using the marker gene PECAM1 and
PDGFRB, cluster 2 is annotated as immune cell using the marker
gene IL1RL1, cluster 3 is annotated as collecting duct principal
cell using the marker gene KCNE1, cluster 4 is annotated as
proximal tubule cell, using the marker gene SLC22A8, CUBN.
Cluster 5 is annotated as collecting duct intercalated cell using
the marker gene SLC26A7 and FOXL1. The cell cluster are shown
in Suppl Fig. 4(A)).
ACE2 has an expression value of 0.00344, 0.03650, 0.00828,
0.01373, 0.9081, and 0.02984 associated with distal tubule cell,
glomerular parietal epithelial cell, immune cell, collecting princi-
pal duct cell, proximal tubule cell and collecting duct intercalated
cell. ACE2 expression is primarily expressive in proximal tubule
cell (shown in Suppl Fig. 4(B)).
ICAM1, CX3CR1 and CD81 are the viral receptors correlated
with ACE2 protein. Acute renal ischemic injury is one of the
common features observed in comorbidities of COVID-19 patients.
Ischemic injury upregulates proinflammatory mediators such as
cytokines and arachidonic acid metabolism. This increases the ex-
pression of CD11/CD81 on leukocytes and ICAM1 on endothelial
cells. A monoclonal antibody directed against ICAM1 prevents
functional impairment of renal failure. Acute renal ischemic is
characterized by loss of renal function and accumulation of end
product of nitrogen metabolism. Several inflammatory responses,
such as chemokines, promote the recruitment of immune cells
to the injured kidney. The chemokines receptor CX3CR1 recruits
monocyte or macrophage, induces chemotaxis towards kidney
tissue damage, and initiates the repair process. The exosomes rich
in tetraspanins (CD9, CD63, and CD81) and heat shock and Rab
proteins act as a shuttle to transfer biologically active proteins,
lipids, and RNAs. The plasma from COVID-19 recovered exosomes
reproduce molecular patterns to develop immune responses and
activate coagulation and complement pathways in the damaged
tissue.
LRP1, NRP1, JAG1 and NOTCH2 are the membrane protein
strongly correlated with ACE2 in renal proximal tubular cells.
SARS-CoV-2 infection initiates cytokine storms in renal proximal
tubule cells and activates multiple genetic programs leading to
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kidney dysfunction. Acute kidney injury has been the main cause
of cytokine storms. It is reported in article [57] that type I
interferon lead to renal damage after acute kidney injury. The
type I interferons upregulates interleukins (IL), toll-like recep-
tors (TLR2, TLR4), interferon regulatory factors (IRF1, IRF7,
IRF9), interferon-induced proteins (IFIT1, IFIT2, IFIT3, IFI44),
and chemoattractants (CXCL10, CXCL11) enhancing ACE2 protein
expression. To counteract the effect, Interferon𝛽 (IFN𝛽) simulate
immune response through JAK/STAT pathway in COVID-19 pa-
tient. LRP1 or CD91membrane protein is responsible for initiating
cell migration, proliferation and differentiation process. It also
regulates multiple immune signaling pathways such as JAK/STAT
and ERK1/ERK2 in renal COVID-19 patients. NRP1 is highly ex-
pressed in diabetic kidney patients with podocytes cells. A strong
correlation of ACE2 protein with NRP1 suggests the increased
risk of COVID-19 and the development of diabetic nephropathy
disease condition. The research article [58] suggests that notch
signaling in renal tubular epithelial cells (RTECS) induces the
development of fibrosis in the kidney. JAG1 and NOTCH2 are
significantly correlated with ACE2 protein in renal tubule cell.
JAG1 along with NOTCH2 reprogrammed the metabolic activity
of RTEC via mitochondrial transcription factor A (TFAM). It
results in cell proliferation, differentiation, and ultimately devel-
oped fibrosis in RTECS [58]. Ischemic acute renal failure is one of
the common effects of SARS-CoV-2 infection. Expression profiles
of some ACE2 co-receptor proteins are shown in Fig. 8(B).

• Pancreas dataset: A total of eight-cell clusters are detected in
the pancreas. The cell clusters are alpha, beta, delta, epsilon,
pancreatic polypeptide, acinar, ductal, and endothelial cells. The
cell cluster are shown in Fig. 3(C).
The studies in Ref. [59] show a close association between SARS-
CoV-2 infection and the development of diabetes. SARS-CoV-2
infection induces pancreatic 𝛽 cell death through several mech-
anisms such as programmed cell death, inflammation, autoimmu-
nity against 𝛽 cell, direct cell lysis, etc. The receptor proteins
DPP4, NRP1 and HMGB1 along with ACE2 protein facilitates
SARS-CoV-2 viral entry in 𝛽 cell. Type 2 diabetes mellitus (T2DM)
develops due to 𝛽 cell dysfunction in the presence of insulin
resistance. DPP4 plays a significant role in glucose metabolism,
neuropeptide, and cytokine activity. DPP4 inhibitors could reduce
the severity of COVID-19 disease and prevent lung inflammation
and injury.
NRP1 acts as the co-receptor that enhance SARS-CoV-2 virus in-
fectivity when co-expressed with ACE2 protein. SARS-CoV-2 uses
spike protein (S) to facilitate cell entry, and its cleavage allows
attachment to NRP1 membrane protein. Therefore, tissue with
increased NRP1 expression levels may raise infection risk. NRP1
exists in two isoforms: one is secreted form of NRP1 (sNRP1), and
the other is the transmembrane form that interacts with SARS-
CoV-2 infection. sNRP1 inhibits the interaction of vascular en-
dothelial growth factor A (VEGF-A) or other growth factors with
some specific receptor and membrane protein NRP1. NRP1 inter-
acts with RAS to protect from hypertension-induced angiotensin
II. T2DM is a feature associated with severe SARS-Cov-2 infection
and acute respiratory distress syndrome (ARDS). Diabetic patients
have overactive RAS due to increased ACE2 expression in the
kidney. Thus, activating RAS increases the levels of sNRP1 and
its associated ligands (VEGF-A) in hypoglycemia T2DM patients
hospitalized with COVID-19. The expression profiles and ACE2
and its co-receptor are shown in Fig. 3(D).

• Gastrointestinal tract: Stomach, Ileum, colon and rectum
The SARS-CoV-2 virus replicates inside the gastrointestinal tract
cell inferring the intestine as the main site of SARS-CoV-2 in-
fection. It is observed that CD147 or basigin correlates strongly
with ACE2 protein in the intestinal epithelial cell. An increased
expression of ACE2 and CD147 damage the vascular endothelium

and cause thrombosis in COVID-19 patients. The SARS-CoV-2
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infection elevates vascular endothelial growth factor (VEGF) and
its receptor VEGFR-1 and VEGFR-2 in COVID-19 patients. VEGF
supplies adequate oxygen and nutrient to the gastrointestinal tis-
sue and removes its metabolic toxins. Elevated serum VEGF level
is seen in COVID-19 patients with intestinal edema. SAR-CoV-2
spike protein promotes VEGF production by activating mitogen-
activated protein kinases (MAPK) or extracellular signal-regulated
kinase 1/2 (ERK) signaling in enterocytes cell and induces per-
meability and inflammation. The ERK/VEGF pathway blockage
reduces intestinal inflammation and allows vascular permeability.
Besides ACE2 and CD147, NRP1 also promotes the entry of SARS-
CoV-2 infection into the gastric cell. NRP1 is critical in tumor
progression, cell invasion, migration, and angiogenesis. NRP1
promotes tumor angiogenesis of gastric cancer by interacting with
VEGF and its receptor. In the tumor microenvironment (TME),
tumor cells interact with immune cells, stromal cells, and fibrob-
last cells, providing an environment of tumor immune escape,
resulting in malignancies. In TME of gastric cancer, macrophages
produce a variety of cytokines, proteases, and growth factors
to regulate tumor immunity. In addition to macrophages, the
regulatory 𝑇 (Treg) cell acts on the innate immune cell to suppress
immune responses by secreting cytokines and TGF-𝛽. Thus, NRP1
could work as a prognostic marker in gastric cancer by predicting
the infiltration of Treg cells and macrophages. The cell cluster
and expression profile of ACE2 and its co-receptor in stomach are
shown in Suppl Fig. 3(A) and (B).

• Skin dataset: A total of seven cell clusters are detected in skin
tissue, and the obtained cluster are shown in Suppl Fig. 3(E).
A few cases of cutaneous manifestations have been reported as the
outcome of COVID-19 disease. Few cutaneous symptoms arising
from COVID-19 disease are atopic dermatitis, urticarial eruptions,
acral ischaemia, retiform purpura, papular dermatoses, etc [60].
ADAM17, GPR78, CD147, CD209, DPP4 are the receptors that
manifest skin infection as a consequence of COVID-19 disease.
ADAM17 is important in skin protection and acts as an intesti-
nal barrier during adulthood. ADAM17 cleaves the ectodomain
of transmembrane protein such as heparin-binding epidermal
growth factor (HB-EGF). Because of that, it activates EGFR and
promotes cell proliferation. ADAM17 encourages the shedding
of ACE2 receptors from the membrane to cytosol forming sol-
uble ACE2 (sACE2). sACE2 potentially blocks the spike protein
and protects from cell infection [60]. Recently, a patient with a
homozygous loss of function mutation of the ADAM17 gene pre-
sented with repeated skin infections. The gene ADAM17 depends
on rhomboid-related protein 1 (RHBDL1/RHBDL2) for maturation
and functioning. A slight mutation in RHBDL2 causes tylosis, a
rare hereditary disorder characterized by hyperkeratosis of the
palms and soles. Keratinocytes sample from this patient is char-
acterized by EGFR signaling, which is not detected in a normal
person [61].
During the second wave of the COVID-19 pandemic, many inci-
dences of mucormycosis as a result of post-COVID-19 symptoms
rises in India. Mucormycosis is a life-threatening fungal infection
caused by Rhizopus oryzae. The factor that caused COVID-19-
associated mucormycosis is the injudicious use of steroids in
hyperglycemia patients with a history of glucocorticoid therapy.
Mucorales use GPR78 as a host receptor to enter the endothelial
cell, and tissues [62,63]. Studies conducted in Ref. [63] show
an interaction between the receptor binding domain (RBD) of
SARS-CoV-2 spike protein and GPR78. SARS-CoV-2 viral infec-
tion induces endoplasmic reticulum (ER) stress by accumulating
excess unfolded protein in the ER lumen and activating unfolded
protein response (UPR) signaling pathway. The UPR pathway up-
regulates the GPR78 synthesis process to overcome the unfolded
protein. In this situation, GPR78 is exported out oF ER lumen and
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expressed on the cell surface. The increased GPR78 expression
enhances the viral entry by positive feedback cycle [62,63].
The expression profile of ACE2 and its co-receptor are shown in
Suppl Fig. 3(F).

• Lymphatic tissue: Bone marrow
Eight cell populations are detected in the human bone marrow.
The cell clusters are B cell, NK/NKT cell, erythrocytes, hematopoi-
etic stem cells (HSCs), endothelial progenitor cells (EPCs), mono-
cytes, dendritic cells, and myeloid cells. It is shown in Suppl
Fig. 4(E).
ACE2 is expressed in bone marrow-derived in HSCs and EPCs.
This shows that SARS-Cov-2 infection infects and damages the
stem cell. It is observed from the result that NRP1 is strongly
correlated with ACE2 protein in an immune cell derived from
macrophages. NRP1 mediates SARS-CoV-2 infection in bone
marrow-derived macrophages (BMMs). The entry of SARS-CoV-2
infection on BMMs depends on the expression of NRP1 rather than
ACE2 expression. SARS-CoV-2 infection hinders the differentia-
tion process of BMM to osteoclast. COVID-19 disease is associated
with a disorder in calcium metabolism and osteoporosis. Severe
COVID-19 patients have lower blood calcium and phosphorous
levels than moderate COVID-19 patients. Approaches such as the
knockdown of NRP1 expression or blockage of NRP1 expression
can inhibit SARS-CoV-2 infection in BMMs [64]. A recent study
in Ref. [65] observed that SARS-CoV-2 envelope protein activates
NLRP3 inflammasome, thereby inducing interleukin-1𝛽 (IL-1𝛽)
secretion. IL-1𝛽 induces an inflammatory response by activat-
ing nuclear factor-𝜅B (NF-𝜅B) and the c-Jun N-terminal kinase
signaling pathway. As a result, many cytokines are released in
acute inflammatory disease and are associated with more severity
in COVID-19 patients. The expression profile of some ACE2 co-
receptors is plotted in the form of a dot matrix and is shown in
Suppl Fig. 4(F).

• Brain dataset: A total of seven cell clusters are detected in the
human brain. Cluster 0 is annotated as the astrocyte cell with
the prominent marker genes FGFR3. Cluster 1 is annotated as
the microglial cell with the known marker genes CSF1R and
CD83. Cluster 2 is annotated as neurons using the marker genes
SLC10A4, C14ORF37. Cluster 3 is annotated as the oligoden-
drocyte precursor cell (OPC) using the prominent marker genes
MEGF11. Cluster 4 is annotated as the vascular cell using the
marker genes GRM8, TRPM3. Cluster 5 is annotated as oligo-
dendrocytes with the canonical marker genes MAG. Cluster 6 is
annotated as endothelial cell using the marker genes TM4SF1,
ICAM1, VCAM1. The cell clusters are shown in Suppl Fig. 4(C).
ACE2 protein is detected mainly in the astrocytes and microglial
cells to a small extent. This means astrocytes and microglial
cells both express ACE2 protein. The receptor responsible for
causing SARS-CoV-2 infection are co-expressed in the astrocyte
and microglial cells [66]. ACE2 is associated with astrocyte cell,
microglial cell, neuron cell, oligodendrocytes precursor cell, vas-
cular pericytes cell, oligodendrocytes and endothelial cell with
an expression value 0.9912, 0.0039, 0.0007, 0.0008, 0.00034,
0.0019, 0.0009 respectively. A high ACE2 expression value shows
that the SARS-CoV-2 virus initially infects the astrocytes cell after
crossing the blood–brain barrier and impairs neuronal viability.
A similar kind of observation has also been reported in Ref. [67].
Besides, ICAM1, VCAM1, DAG1, LDLR and MXRA8 are the ssRNA
receptors correlated significantly with ACE2 protein in human
brain cell.
Endothelial cells (EC) are the primary site of leukocyte trafficking
from the circulating blood into the areas of infection and inflam-
mation. During SARS-CoV-2 infection, early cytokines response
interleukin 1 receptor type 1 (IL1R1) and tumor necrosis factor-
alpha (TNF-𝛼) initiates various kinase cascades and activates
transcription molecules such as ICAM1, E-selectin, P-selectin and
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Fig. 2. ACE2 expression level of proposed clustering in all human tissue.
Table 3
A comparative account of ACE2 expression profiles based on IHC, MS, and Seurat tool with Fuzzy based Improved GWO clustering method.

Dataset Immunohistochemistry (IHC) Mass spectrometry (MS) Single-cell transcriptomics
profiling (Seurat)

Fuzzy-based Improved
GWO Clustering method

Bonemarrow 0.049 0.65 0.16 0.14910
Brain 0.045 0.48 0.31 0.33808
Colon 4.695 4.5 1.53 4.09998
Heart 12.309 3.4 2.01 2.94387
Kidney 30.81 4.8 2.14 1.48309
Liver 1.294 1.45 0.23 1.40624
Lung 0.345 2.5 1.61 5.65387
Pancreas 0.199 4.3 0.35 1.92722
Skin 0.089 0.65 0.28 1.34841
Small Intestine 93.724 4.6 1.53 2.74684
Spleen 0.007 0.21 0.26 0.01932
Stomach 1.177 2.9 0.51 0.84124
Testis 26.895 4.75 1.72 4.02471
VCAM1. VCAM1 mediates the recruitment of monocytes to in-
fection and injury sites. ICAM1 mediates the transmigration of
monocytes and lymphocytes to active infection sites.
The membrane protein ADAM9, FGFR1, EFNB1, NRP1, FURIN
and CD147 co-expressed with ACE2 protein in astrocytes cell of
the brain. ADAM9 and FGFR1 facilitate the binding and genome
translation of encephalomyocarditis virus (EMCV) to the cell sur-
face. It is involved in inflammation and tumorigenesis and causes
meningitis or encephalitis. EFNB1 initiates 𝑇 cell exhaustion dur-
ing SARS-CoV-2 viral infection. SARS-CoV-2 infection impacts
𝑇 cells, and lymphopenia is its common cause. A reduction in
the number of 𝑇 cells causes severe diseases. NRP1 mediates
the entry of the SARS-CoV-2 virus into the brain through the
olfactory epithelium. The highest expression of NRP1 is found
in the astrocytes cell. NRP1 induces multiple effects such as cell
proliferation, angiogenesis, and axon control. NRP1 is involved
in various neurological symptoms such as encephalomyelitis and
stroke in COVID-19 patients. Both CD147 and NRP1 mediate the
entry of SARS-CoV-2 infection into the human brain cell. The
expression profiles of ACE2 co-receptor are displayed in the form
of a dot plot in Suppl Fig. 4(D).

5.2. Comparison of ACE2 expression profiles with other methods

The expression level of ACE2 at each specific cell type is analyzed
for all human tissue as described in the previous subsection 4.3. Sup-
pose the expression pattern vector of ACE2 in the upper respiratory
tract is 0.3796, 0.067, 0.091, 0.489 when associated with the goblet,
basal cell, non-ciliated secretory cell, and ciliated cell, respectively.
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ACE2 has the highest expression level in ciliated and goblet cells and
is 2%–3% and 4%–5%. A similar result has also been observed in
recent studies [68,69,11] where ACE2 expresses primarily in ciliated
and goblet cells (2%–3% and 4%–5%). In adult testis, ACE2 expression
pattern vector is 0.055, 0.294, 0.0341, 0.165, 0.035, 0.285, and 0.130
when associated with the myoid cell, sertoli cell, spermatids, germ,
Leydig cell, SSC and SPG cell. ACE2 is highly expressed in Sertoli and
Leydig cells (> 2.9%). Similar observation has also been reported in
Ref. [68]. ACE2 protein showed a high expression value of > 3% in
Leydig or Sertoli cells.

A comparative study is conducted to analyze the expression pro-
files of ACE2 protein in various human tissues. We have compared
expression profiles of ACE2 based on IHC [68], scRNA-seq transcrip-
tomics profiling using Seurat tool (Seurat tool) [68], MS [68] and
proposed clustering technique. Table 3 presents a comparative account
of ACE2 expression profiles in different human tissue using IHC, MS,
and Seurat packages. In IHC based expression profile, the highest level
of ACE2 expression is detected in the small intestine (93.724), testis
(26.895), kidney (30.81), and heart (12.309). A medium value of
ACE2 expression is detected in the colon (4.695), liver (1.294), and
stomach (1.177), while very low ACE2 expression level is detected in
bone marrow (0.049), brain (0.045), and spleen (0.007) (as refer from
Table 3).

Based on the MS study, a high ACE2 expression level is observed
in the kidney (4.8), testis (4.75), small intestine (4.6), and pancreas
(4.3). Low ACE2 expression is detected in bone marrow (0.16), brain
(0.31) and spleen (0.26) (Referring Table 3). Single-cell transcriptomics
profiling using the Seurat tool detects high ACE2 expression levels in
the heart (2.01), kidney (2.14), small intestine (1.53), testis (1.72), lung
(1.61), and colon (1.53). Low ACE2 expression level is detected in bone
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Table 4
Confidence score and PCC of ssRNA protein with ACE2.

SARS-CoV-2 protein ssRNA viral receptor Confidence score PCC

ACE2 CD209 0.455 0.8642
ACE2 CEACAM1 0.420 0.8660
ACE2 CLEC4M 0.420 0.7421
ACE2 DPP4 0.898 0.715
ACE2 ITGA2 0.530 0.728
ACE2 ITGB1 0.591 0.7914
ACE2 TFRC 0.618 0.9743
ACE2 VCAM1 0.410 0.8156

Table 5
Confidence score and PCC of membrane protein with ACE2.

SARS-CoV-2 protein Membrane protein Confidence score PCC

ACE2 BET1 0.422 0.8660
ACE2 CD209 0.455 0.8642
ACE2 DPP10 0.420 0.7437
ACE2 DPP4 0.980 0.8010
ACE2 DPP6 0.420 0.7157
ACE2 ECE1 0.445 0.8620
ACE2 FURIN 0.525 0.8750
ACE2 MEP1A 0.925 0.5814
ACE2 MEP1B 0.878 0.9569
ACE2 TRHDE 0.408 0.9088
ACE2 VCAM1 0.410 0.8156

marrow (0.16), brain (0.31), pancreas (0.35), skin (0.28), spleen (0.26)
and stomach (0.51).

Fuzzy-based improved GWO clustering method detects a high ACE2
expression level in the lung (5.653), upper respiratory tract (5.073),
testis (4.024), colon (4.0998), kidney (1.483). Low ACE2 expression
level is detected in brain (0.338), spleen (0.019) and bone marrow
(0.149) (as Refer from Table 3 and Fig. 2).

In all the previous studies and proposed fuzzy-based improved GWO
clustering technique, it is observed that intestinal cells, heart, kidney,
testis, and lung show elevated ACE2 expression. In contrast, low ACE2
expression is detected in the stomach, lymphatic tissue, skin, and brain.

5.3. Interaction of SARS-CoV-2 protein with other membrane protein and
ssRNA viral receptor

To identify the gene set (ssRNA viral receptor or membrane) that
interact with SARS-CoV-2 protein, PPI network is constructed using
string database https://string-db.org/, with a confidence score of ≥ 0.4.

he list of predicted ssRNA viral receptors and membrane protein are
hen queried from STRING database with ACE2 and TMPRSS2 protein
s the hub genes. The PPI network is then visualized using the open
ytoscape software available at: https://cytoscape.org/.
CD209, CEACAM1, CLEC4M, DPP4, ITGA2, ITGB1, TFRC, VCAM1

re the top ssRNA viral receptor protein interacts strongly with ACE2
rotein. PCC is calculated between ACE2 protein and CD209, CEA-
AM1, CLEC4M, DPP4, ITGA2, ITGB1, TFRC, VCAM1. Also, ACE2

nteract with the membrane protein BET1, DPP10, DPP4, DPP6, ECE1,
URIN, MEP1A, MEP1B, TRHDE and VCAM1. Table 4 gives the confi-
ence score and PCC obtained between ACE2 and ssRNA viral recep-
or. Table 5 gives the confidence score and PCC between ACE2 and
embrane protein.
DPP4, TFRC, CEACAM1, ICAM1, ITGA4 and ITGB1 are the viral

eceptor protein correlate strongly with TMPRSS2 protein. The mem-
rane protein that interacts with TMPRSS2 are ALK, DPP4, EPCAM,
RBB2, FOLH1, FURIN, GOLM1 and PCSK5. Table 6 gives the con-
idence score and PCC between TMPRSS2 and ssRNA viral receptor.
able 7 gives the confidence score and PCC between TMPRSS2 and
embrane protein. The PPI network of the predicted receptor protein
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nd SARS-CoV-2 protein are given in Fig. 3(A)–(D). G
Table 6
Confidence score and PCC of ssRNA protein with TMPRSS2.

SARS-CoV-2 protein ssRNA viral receptor Confidence score PCC

TMPRSS2 DPP4 0.685 0.8229
TMPRSS2 TFRC 0.500 0.974
TMPRSS2 CEACAM1 0.526 0.7451
TMPRSS2 ICAM1 0.474 0.9608
TMPRSS2 ITGA4 0.488 0.6721
TMPRSS2 ITGB1 0.975 0.7914

Table 7
Confidence score and PCC of membrane protein with TMPRSS2.

SARS-CoV-2 protein Membrane protein Confidence score PCC

TMPRSS2 ALK 0.510 0.9091
TMPRSS2 DPP4 0.685 0.8229
TMPRSS2 EPCAM 0.451 0.983
TMPRSS2 ERBB2 0.441 0.8581
TMPRSS2 FOLH1 0.568 0.883
TMPRSS2 FURIN 0.663 0.866
TMPRSS2 GOLM1 0.422 0.673
TMPRSS2 PCSK5 0.449 0.885

5.4. Experimental comparisons

• Computational complexity: With the simulation in Fig. 4(a) and
(b), the population size is varied between 20 to 220, and the CPU
execution time is noted for all the repeated experiments. Table 8
shows the maximum execution time for all the experimental runs.
It is observed from Fig. 4. that fuzzy-based improved GWO con-
sume less CPU time to execute all the operation when compared
to fuzzy-based DE and fuzzy-based GWO algorithm.

• Convergence analysis: With the simulation result in Fig. 4(c)
and (d), the objective value is noted at each iteration of fuzzy-
based GWO and fuzzy-based improved GWO algorithm. It is seen
that the fuzzy-based improved GWO algorithm (blue curve line)
minimizes the Jm and XB objective function effectively at each
iteration compared to the fuzzy-based GWO algorithm (orange
curve line).
In Table 8, we have reported the performance metrics scores
achieved by fuzzy-based DE, fuzzy-based GWO, and fuzzy-based
Improved GWO algorithm when executed on different datasets.
It is observed that our proposed fuzzy-based improved GWO
clustering algorithm gives a good SC on brain, heart, kidney, lung
and testis dataset. Least DBI value is achieved in brain, small
intestine, heart, kidney, pancreas, skin, stomach and testis data.
A high CHI value is also achieved in brain, small intestine, heart,
kidney, pancreas, lung, skin and stomach dataset.

6. Pathway enrichment analysis

In this work, we have predicted 58 potential viral receptors that
mediate SARS-CoV-2 infection in different human organoids. These
are: AXL, CD55, CD151, CD209, CD46, CD74, CD80, CD86, CEACAM1,
CLDN1, CLEC4G, CXADR, CX3CR1, CACNA1C, CD300LD, CR1, CR2,
DAG1, DPP4, EPHA2, EFNB2, EFNB3, FCGRT, F11R, GPR78, GPC5,
GRM2, MRC1, MERTK, MXRA8, MOG, ICAM1, ITGB1, ITGB3, ITGB6,
ITGB8, ITGA2, KREMEN1, PHB, NGFR, NCAM1, NECTIN4, PVR, RPSA,
LC10A1, OCLN, SCARB1, SCA-RB2, SLAMF1, LAMP1, LDLR, HAVCR1,
LA-DRA, TFRC, TYRO3, VCAM1, CLEC4M and CLEC5A.

816 membrane proteins that are co-expressed with SARS-CoV-2
eceptor protein (ACE2 and TMPRSS2) are also predicted in this work.
he molecular mechanism of the identified host receptors is studied to

nvestigate their role in the pathogenesis of SARS-CoV-2 infection using

O term and KEGG pathway enrichment analysis.

https://string-db.org/
https://cytoscape.org/
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Fig. 3. (A) A PPI network of ACE2 and predicted viral receptor protein (B) A PPI network of ACE2 and predicted membrane protein (C) A PPI network of TMPRSS2 and predicted
viral receptor protein (D) A PPI network of TMPRSS2 and predicted membrane protein.
Table 8
Comparing the result of clustering method applied to the scRNA-Seq data.

Dataset Clustering method Optimal
cluster No.

SC CHI DBI CPU execution
time (in s)

Brain Fuzzy-based DE 6 0.40111 129.2800 1.0981 4324.1590
Fuzzy-based GWO 7 0.51035 199.4293 0.8838 3468.0252
Fuzzy-based Improved GWO 7 0.518334 203.3781 0.9540981 1421.2521

Small Intestine Fuzzy-based DE 7 0.28990 47.1200 0.9250 3170.5995
Fuzzy-based GWO 7 0.32706 166.5812 1.1416 2404.980
Fuzzy-based Improved GWO 7 0.32172 160.070 1.0754 1885.6229

Heart Fuzzy-based DE 9 0.16777 106.9702 1.2495 2624.3186
Fuzzy-based GWO 9 0.2503 105.3301 1.38 2735.812
Fuzzy-based Improved GWO 10 0.26988 121.28160 1.30915 2636.09339

Kidney Fuzzy-based DE 9 0.18920 174.2728 1.30155 5443.17944
Fuzzy-based GWO 8 0.2378 187.7814 1.2034 5064.9636
Fuzzy-based Improved GWO 6 0.24466 122.8541 0.96017

Pancreas Fuzzy-based DE 7 0.1578 52.59440 1.375780 1881.48332
Fuzzy-based GWO 9 0.14269 50.4459 1.3097 1770.2553
Fuzzy-based Improved GWO 9 0.17971 50.78220 1.25620 1301.22989

Lung Fuzzy-based DE 11 0.1660 25.55930 1.25809 281.25560
Fuzzy-based GWO 10 0.230 32.394 1.072 290.8825
Fuzzy-based Improved GWO 13 0.29951 38.41294660 1.051319 215.390135

Skin Fuzzy-based DE 6 0.296880 133.97489 1.04126 2042.38863
Fuzzy-based GWO 7 0.22799 60.4798 1.20528 1422.42468
Fuzzy-based Improved GWO 7 0.21182 100.504201 1.12764 1342.23049

Stomach Fuzzy-based DE 7 0.363190 181.50296 1.01722 2157.03084
Fuzzy-based GWO 7 0.31017 59.4220 1.17966 1365.365395
Fuzzy-based Improved GWO 11 0.201755 105.90519 1.16535 1522.731694

Testis Fuzzy-based DE 7 0.31205 180.6621 1.2418 2997.6370
Fuzzy-based GWO 9 0.33008 203.9592 1.1515 2914.64364
Fuzzy-based Improved GWO 9 0.334947 160.96580 0.88774 3152.23961
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Fig. 4. Performance comparisons of different clustering algorithms.
6.1. Gene ontology term enrichment analysis

The GO term enrichment analysis examines the functional charac-
teristics of the predicted 816 membrane protein and 58 ssRNA viral
receptors. The GO annotation term of the predicted genes is collected
from DAVID bioinformatics resources [70]. The GO term enrichment
analysis is performed to know the biological function (BP) of the
predicted membrane protein at the cellular (CC) and molecular level
(MF). Those genes involved in similar biological processes or molecular
functions are expected to interrelate.

Some of the enriched CC terms of GO analysis process are mem-
brane, plasma membrane, lysosome membrane, endosome membrane,
nuclear membrane, endoplasmic reticulum membrane, mitochondrial
membrane, cell surface, cytosol, cytoplasm, nucleoplasm and extracel-
lular exosome, etc. The GO-CC term refers to the locations relative to
the cellular structure where a gene performs a function, either cellular
compartment (e.g., mitochondria) or a part of stable macromolecu-
lar complexes (e.g., ribosomes), etc. The SARS-CoV-2 virus invades
the host nucleus or cytoplasmic cell and causes severe respiratory
complications such as pneumonitis leading to upper acute respiratory
distress syndrome (ARDS). Therefore, the membrane proteins involved
in the CC terms mediate the entry of coronaviruses into the host cell
membrane.
17
Some of the enriched BP terms of the GO process are regulation of
membrane protein, ectodomain proteolysis, cell–cell adhesion mediated
by integrin, adaptive and innate immune response, positive regulation
of host by the replication of the viral genome, fusion of membrane, reg-
ulation of I-kappaB kinase/NF-kappaB signaling pathway, processing
of antigen and representation of peptide antigen through major histo-
compatibility complex (MHC) I, regulate the inflammatory response to
the stimulus of antigens, regulation of host morphology or physiology
through the virus, mediate receptor endocytosis, activate mitogen-
activated protein kinase (MAPK) activity, toll-like receptor signaling
pathway, involved in protein ubiquitination catabolic process, activate
the protein tyrosine kinase transmembrane receptor protein, etc

A few of the top MF terms of the GO process are binding of receptor,
protein, complex molecular, and cell adhesion, endopeptidase activity,
binding of adenosine triphosphate (ATP), guanosine triphosphate (GTP)
and antigen, binding of lipid antigen, endogenous lipid antigen, and
exogenous lipid antigen, amide binding, peptide binding, lipopeptide
binding, virion binding, etc.

6.2. KEGG pathway enrichment analysis

The KEGG enrichment pathway analysis of the predicted viral re-
ceptor and membrane protein helps identify the target protein that
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Fig. 5. Schematic flow of SARS-CoV-2 pathogenesis pathway analysis.
mediates or restricts SARS-CoV-2 infection. It helps understand the
pathogenesis mechanism of SARS-CoV-2 infection and identify the tar-
get protein for developing effective drugs and therapeutics for COVID-
19 disease. We have determined 816 membrane proteins involved in
the SARS-CoV-2 condition. The pathogenicity mechanism or pathway
of SARS-Cov-2 infection identified through GO and KEGG enrichment
analysis is shown in Fig. 5.
18
Initially, the SARS-CoV-2 virus uses its spike glycoprotein to interact
with the host cell surface. The glycosylated protein attaches to ACE2
receptor via glycosaminoglycans (GAGs) and induces a conformational
change on the host cell surface. The protein CHST1, CHST2, CHST3,
CHST4, CHST17, CHPF2, GLCE, EXT1, EXTL1, EXTL2, NDST2, NDST3,
NDST4, XYLT1 and XYLT2 synthesize GAGs. SARS-CoV-2 then pene-
trates the endocytic membrane of the host cell to create an infection.
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Research conducted in Ref. [71] shows that the SARS-CoV-2 S1 re-
ceptor can bind to heparin derivative GAGs. Because the SARS-CoV-2
protein envelope contains positively charged amino acid and are prone
to interact with the negatively charged heparin sulfate proteoglycans
group. The membrane proteins NDST1, NDST2, NDST3, NDST4, EXT1,
XTL1, EXTL2, GLCE, XYLT1 and XYLT2 synthesized glycosaminogly-
an heparin sulfate or heparin that inhibit SARS-associated coronavirus
ell invasion. Ref. [72] also demonstrate that GAGs heparin derivative
ould prevent the spread of SARS-CoV-2 infection and hence can use as
n anticoagulant drug against any other members of coronaviridae. The
ntiviral drugs carboplatin and gemcitabine could act as therapeutic
gents to prevent SARS-CoV-2 infection.

After interacting the viral spike protein with the host cell mem-
rane, the SARS-CoV-2 virus uses clathrin and caveolin-dependent
ndocytosis to insert the viral particle into the host cell membrane. The
ARS-CoV-2 virus then penetrates through the endocytic membrane
f the host cell to establish an infection. It then transfers its viral
NA particles from the lumen to the cell cytosol of the endosomal
ystem. [73] demonstrates that the knockdown of clathrin-dependent
eavy chain process could reduce virus infectivity. The viral plasma
rotein low-density lipoprotein receptor (LDLR) is required to reg-
late plasma lipoprotein levels. LDLR internalizes lipoprotein cargo
hrough the clathrin or caveolin-mediated endocytosis process. LDLR
rotein level is regulated by an inducible degrader of the LDLR (IDOL)
nd proprotein convertase subtilisin/kexin type 9 (PCSK9). IDOL, an
3-ubiquitin ligase, promotes the degradation of LDLR through the
biquitination process. PCSK9 induces LDLR internalization by forming
lathrin-coated pits similar to the binding of lipoprotein ligands. LDLR
s important lipid metabolism and risk associated with cardiovascular
isease. A better investigation into the pathway of degrading LDLR
evels could provide a new therapeutic target. It is found that other
embrane proteins AP2A2, APLP1, DNM2, EPS15, EPN1, EPN2, LY75,
RC2, SNX5 mediate the clathrin-dependent endocytosis process in

ARS-CoV-2 infection. These membrane proteins are responsible for
orming clathrin-coated pits in the host cell’s cytoplasmic membrane.
he protein involved in the clathrin-dependent endocytosis pathway
an be extensively studied in the future to find antiviral therapy’s
arget.

The ubiquitin–proteasome interaction is also essential for the var-
ous stages of the coronavirus infection cycle [74]. The membrane
rotein FBXW11 mediates the ubiquitination process and degrade the
arget protein in SARS-CoV-2 infection. The protein ligase namely:
ERC2, HERC4, HERC1, WWP1, MGRN1, NEDD4, NEDD4L, UBE2D2,
BE2E1, UBE2G1, UBE2K and UBA2 accept ubiquitin from a conju-
ating ubiquitin enzyme and transfers the ubiquitin directly to the
arget substrate. Epithelial growth factor receptor (EGFR) plays a vital
ole in the internalization process of coronaviruses. SARS-CoV-2 infec-
ion can over-activate the EGFR signaling pathway and consequently
roduce inflammation in the lung. Ref. [71] shows the possible way
f preventing SARS-CoV-2 disease is by downregulating the signal-
ng pathway that promotes the endocytosis process. EGFR tyrosine
inase inhibitors (TKIs) inhibit the endocytosis of the SARS-CoV-2
irus through EGFR. Imatinib, an inhibitor, can inhibit the replication
rocess of SARS-CoV-2 infection before their reproduction [71].

When the SARS-CoV-2 virus invades the human cell, viral pro-
eins trigger an immune response to counteract the virus. These vi-
al antigens are recognized by the B cell and presented by MHC
o the 𝑇 cell for developing innate immunity. It results in natural
ntibody production and enhances cytokine secretion and cytolytic
ctivity in the initial phase of infection. During the innate immune
esponse, pattern-recognition receptors (PRRs) are activated to recog-
ize the molecular structure of the invading pathogens [75]. Once
PRs identify the pathogen molecular pattern, several signaling path-
ays and transcription factors are activated via Janus kinase-signal
19

ransducer and activator of transcription (JAK-STAT) pathway [76]. l
he transcription factors induce gene expression that encodes pro-
nflammatory cytokines, chemokines, and several adhesion molecules.
nterleukin-1 (IL-1), interleukin-6 (IL-6), type I interferon (IFN-I), and
NF-𝛼 are the necessary pro-inflammatory cytokines response. The
ast cell, macrophages, endothelial and epithelial cells generate pro-

nflammatory cytokines during the immune response. The sudden in-
rease in the circulating level of pro-inflammatory cytokines results
n the cytokine storm [77]. The cytokines storm caused the influx of
arious immune cells such as 𝑇 cells, neutrophils, and macrophages
rom the blood capillary to the infection site, which inflames the injury
nd promotes ARDS [77,76].

The co-receptor protein EPHB2, KIT, MCL1, CRLF2, EGF, ERBB4,
POR, GHR, IL21R, IL23R, IL5RA, IL9R and LEPR of ACE2 mediate
ytokine–cytokine interaction via proximal JAK-STAT signaling path-
ay. Suppression of interferon pathway is a common approach used
y the virus to degrade innate antiviral immunity. Targeting the viral
ediators of immune evasion may help block virus replication in pa-

ients with COVID-19. The deficiency of human interleukin 21 receptors
IL21R) cause chronic cholangitis and liver disease in severe SARS-
oV-2 infected patients. Thus, IL21 is a new therapeutic target for
aintaining immune homeostasis [78].

Other possible immunopathological manifestations of SARS-CoV-2
nfection are neutrophilia, dysregulation of monocytes and macroph-
ges, delayed IFN-I response, lymphopenia, etc. Severe COVID-19 pa-
ients usually have an increased neutrophil count than a mild case
nd average person. Neutrophils protect against infection by producing
eutrophil extracellular traps (NETs). However, excessive activation
f neutrophils in SARS-CoV-2 patients can damage the surrounding
ell and dissolve connective tissues [75]. Treatment using the NETs
pproach decreased the pulmonary hyperinflammation caused due to
evere COVID-19 infection.

Macrophages and monocytes are the primary immune cell involved
n infection and inflammation. At the initial stages of acute lung injury,
n immune response is triggered by macrophages and dendritic cells
y activating antigen-presenting cells, which produce pro-inflammatory
ytokines, prostaglandins, and histamine. The increased permeabil-
ty of microcirculatory into the infection site obstructs the blood-air
arrier and promotes pulmonary hemorrhages, and ARDS [77,76,75].
ysfunction of endothelial cells and pulmonary tissue oxygenation
ay promote bacterial pneumonia and sepsis. Ref. [65] article sug-

ests DPP4 inhibitors could suppress the production of interleukin
nd interferon, reducing 𝑇 cell proliferation. DPP8/9 inhibitor re-
uced cell activation by reducing the secretion of TNF-𝛼 and IL-6 from
acrophages. Thus, the food and drug administration (FDA) approve
sing DPP4 inhibitors for managing chronic inflammatory diseases such
s atherosclerosis and type II diabetes.

Interferons (IFNs) activate immune cells. IFNs regulate the infiltra-
ion of monocyte-derived macrophages in the lung. Delayed IFNs induc-
ion in SARS-CoV-2 infection accumulates excessive active macrophages
n the lung and causes immunopathology. Impaired production of IFNs
uring SARS-CoV-2 infection creates an imbalance in upper airway
acrophages’ pro-inflammatory and repair function. A delayed IFNs
roduction inhibits 𝑇 cell progression from lymphoid tissue and can
ause cell death of 𝑇 cells. Acute lung injury in SARS-CoV-2 patients is
ue to the failure of 𝑇 cells to activate immunosuppressive mechanism
imely [76,75]. The toll-like receptor membrane protein TLR3 and
LR7 induce macrophage cells to generate innate lung immunity. TLR
ignaling activates pro-inflammatory cytokine factors such as IL-1𝛼, IL-
𝛽, IL-4, IL-6, and interferon. Thus, TLRs could act as a potential target
or controlling SARS-CoV-2 infection in an early stage of the disease
79,75].

SARS-CoV-2 infection induce lymphopenia by activating systemic
nflammation and directly neutralizing or destroying human lymphoid
rgans. SARS-CoV-2 infected patients have low lymphocyte count,
maller lymphoid follicles, enhancement of immunoblastic cells, and

ow 𝑇 zone proliferation. This shows that SARS-CoV-2 infection can
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Table 9
The KEGG pathway enrichment analysis of some significant membrane protein.

KEGG pathway P value Predicted protein of SARS-CoV-2

Proteosome/Protolysis 6.9E−2 VTI1A, ZFPL1, MYRF, MGAT2, CLCA4, PRSS8,
ST14, TRHDE, MEP1A, MMP24, PSMC5, PSMD14,
PSME1, PSMB1, PSMA2, OLR1, POMP

Ubiquitin mediated proteolysis 6.9E−2 FBXW11, HERC2, HERC4, HERC1, WWP1, MGRN1,
NEDD4, UBE3A, UBA2, UBE2K, UBE2G1, UBE2E1,
UBE2D2, NEDD4L

Clathrin dependent endocytosis 2.2E−6 AP2A2, DNM2, APLP1, EPS15, EPN1, EPN2,
LDLR, LY75, MRC2, SNX5

Endocytosis 1.2E−8 FGFR4, IGF1R, IL2RA, PSD2, TPCN2, ARF1,
ARAP2, CLTA, CYTH1, RAB11, FIP1, RAB11A,
SNF8, VPS29, VPS37B, WWP1, ARPC1B,
GITI, ARPC2, CAPZB, CHMP5, HLA-F, NEDD4,
PSD2, PDCD6IP, CHMP2A

Glycosaminoglycan biosynthesis 2.5E−3 NDST1, NDST2, NDST3, NDST4, CHST1, CHST2,
CHST3, CHST4, CHST17, CHPF2 GLCE, EXT1,
EXTL1, EXTL2, GLCE, XYLT2, XYLT1

Cytokine mediated signaling pathway 2.6E−5 BCL2, CD226, CD27, CD276, CD28, FCER2,
KIT, LRP8, MCL1, NFAM1, TRIL, VTCN1,
EDA, EREG, ICAM1, PTPRN, STX1A, STX3

Cytokine–cytokine receptor interaction 7.0E−2 CD70, ACVR1, AMHR2, BMPR2, CSF1, CRLF2,
EDAR, EPOR, GHR, L1R2, IL2RA, IL21R,
IL23R, IL5RA, IL9R, LEPR, OSMR, PRLR

T cell receptor signaling pathway 8.0E−1 CD8A, CD226, CD276, CD28, CD3D, CD3G,
CD8A, CD8B, CTLA4, ICOS, LAT,

Leukocyte transendothelial migration 3.9E−3 THY1, ESAM, ICAM1, JAM2, JAM3, VCAM1
MAPK signaling pathway 8.9E−4 FLT3, EPHA8, KIT, MET, AREG, CSF1,

EREG, ERBB2, ERBB3, ERBB4, FGFR4, FLT3,
IGF1R, INSR, NTRK1, NTRK2, PTPRR, TGFA, EPHA2

JAK-STAT signaling pathway 2.9E−2 KIT, MCL1, CRLF2, EGF, EPOR, GHR
, IL2RA, IL21R, IL5RA, IL9R, LEPR, OSMR,
PRLR, BCL2,

EGFR tyrosine kinase inhibitor 8.4E−3 IGF1R, EGF, ERBB2, ERBB3, IGF1R, NRG1,
NRG2, TGFA, BCL2, MET, BAX

Unfolded protein response 1.4E−2 VAPB, XBP1, ATF6B, CREB3, EDEM1
Protein processing in 1.0E−2 EDEM1, XBP1, ATF6B, VCP, HSPA5, PDIA6,

LMAN1, PREB, RRBP1,
Endoplasmic reticulum DNAJB1, SIL1, SEC61G, XBP1, DERL2, PRKCSH,

CAPN1, CALR, CKAP4, DERL1, EIF2AK1, HSP90AB1,
NFE2L2, PREB, PDIA3, CANX

Viral carcinogenesis 6.0E−2 BAX, BAK1, DCC, REB3, BAD, CREBBP, J
UN, KRAS, RASA2, SP100, TRADD, CCND1,
CCND3, CDK2, CDK6, CDKN1B, GTF2A2, MAPK3
SYK, NFKB2, CDKN1A

Viral myocarditis 1.4E−2 DAG1, ICAM1, SGCA, SGCB, SGCD, ICAM1,
HLA-F, SGCC, CD28, CD55, CXADR, CYCS

Antigen processing and presentation 1.1E−4 CD8A, CD8B, CD74, HLA-DRA, CD1B, LGMN,
HLA-F,

Carbon metabolism 9.4E−2 KIT, MET, FLT3, NTRK1, NTRK3, RET,
RAF1, ERBB2

Biosynthesis of antibiotics 3.2E−2 ACLY, SQLE, NME2, ACAT1, CDC42, FDFT1,
FNTA, FMO1, FMO3, FMO4, FMO5, UGT1A1,
GMPS, MGST1, PGP
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cause more severe damage to human lymphoid organs and spleen than
hepatitis B virus (HBV) and Epstein–Barr virus (EBV) infection [80].
Lymphatic endothelial cells require Ephrin B4 and Ephrin B2 membrane
protein to maintain the integrity of lymph vessels. Ephrin B4 and
Ephrin B2 signaling pathways provide a potential therapeutic target
to modulate the permeability of lymphatic vessels. The loss of Ephrin
B4 and Ephrin B2 signaling increases the vessel leakage in response to
bacterial and viral infection [81].

Ref. [82] reported that coronavirus replication induces excessive
stress in the endoplasmic reticulum (ER). The excessive synthesis of
protein and folding of a viral protein is the main reason for causing
ER stress in coronavirus infection. The excessive protein accumulation
disrupts the protein synthesis and ER folding capacity balance. This
led to the accumulation of excessive unfolded proteins in ER. The
membrane proteins EDEM1, XBP1, ATF6B, DERL1, DERL2, HSPA5,
FE2L2, and VCP initiate the unfolding protein response in the ER.
he SARS-CoV-2 protein CANX, CALR, HSP90B1, HSPA5, PDIA3 fold a
20

ransmembrane protein into ER. We find drugs brefeldin, indapamide, i
zogabine, dolasetron, and repaglinide prevent protein assembly, dis-
upt coatomer protein I (COP–I) transport, and partially block viral
NA synthesis.

The proteins CD28, CD55, CXADR, CYCS, ICAM1, DAG1, HLA-F,
GCA, SGCB, SGCD, and SGCG, are responsible for causing myocar-
ial damage in SARS-CoV-2 infection. Stingi and Cirillo reported that
ncogenic might be the long-term secondary effect of SARS-CoV-2
nfection [83]. SARS-CoV-2 infection may develop cancer by inhibiting
umor suppressor genes, ST14. Also, SARS-CoV-2 infection induces
arcinogenesis via tyrosine kinase receptors [71] by penetrating the
lood–brain barrier (BBB). Another potential cause of cancer develop-
ent and progression in SARS-CoV-2 infection is the activation of IL-6

nd JAK/STAT3 signaling pathways in the tumor microenvironment
f bladder cancer patients. A high pro-inflammatory cytokine triggers
ancer development and progression through tyrosine kinase receptors.
he membrane proteins BAK1, BAX, KRAS, CCND1, CDK2, CDKN1A,
DKN1B, and NFKB2 promote mutagenesis in SARS-CoV-2 infection.
he identified KEGG signaling pathway of the target membrane protein

s shown in Table 9.
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Table 10
List of approved drugs associated with the SARS-CoV-2 membrane protein for the treatment of COVID-19.

Membrane protein Drugs composition

TLR3 Rintatolimod, Hiltonol, Hydroxychloroquine, Aspirin
Azd-8848 Imiquimod, Resiquimod, Isatoribine, Loxoribine, Hydroxychloroquine
TLR7 Telratolimod, Vesatolimod, Hydroxychloroquine sulfate, Gsk-2245035
TLR9 Hydroxychloroquine sulfate, Agatolimod sodium, Tilsotolimod, Emd-1201081
MICB Ribavirin
UGT1A1 Bilirubin, Indinavir, Tranilast, Nilotinib, 7-Ethyl-10-hydroxycamptothecin

Dolutegravir, Letermovir, Raltegravir, Raloxifene, Etoposide
PSMC5 Carfilzomib, Ixazomib, Bortezomib, Ixazomib citrate, Oprozomib
PSMD11 Carfilzomib, Bortezomib, Ixazomib, Oprozomib
PSMD14 Carfilzomib, Bortezomib, Ixazomib citrate, Oprozomib Sulfuretin
PSME1 Carfilzomib,Bortezomib
PSMA2 Carfilzomib, Bortezomib,Ixazomib citrate, Oprozomib, Marizomib
PSMB2 Carfilzomib, Bortezomib,Ixazomib citrate, Oprozomib, Marizomib, KZR-616
MGAT4A Bevacizumab, Capecitabine, Oxaliplatin, Cetuximab
ALDH2 Prunetin, Acetaldehyde, Diacetylmorphine, Disulfiram
CHST3 Docetaxel, Thalidomide
CHST1 Imatinib
KIT Imatinib, Quizartinib, Nilotinib, Sunitinib, Amuvatinib
GGT1 Cannabinol, Ditiocarb, Mannitol, Aminoglutethimide, Mestranol
VCAM1 Tamoxifen, Piroxicam, Dexamethasone, Liothyronine Sodium

Mercaptopurine, Dexamethasone, Troglitazone, Cyclosporine
CTLA4 Tremelimumab, Ipilimumab, Zalifrelimab, Abatacept, Atezolizumab,

Sirolimus, Wortmannin, Dexamethasone, Methimazole, Antibiotic
LDLR Cholestyramine, Evolocumab, Mipomersen, Tributyrin, Alirocumab

Acetylcysteine, Gemfibrozil, Corticotropin, Retinol
SDC1 Indatuximab Ravtansine, Heparin
BCL2 Docetaxel, Paclitaxel, Hypoxanthine, Navitoclax

Oblimersen, Venetoclax, Obatoclax, Beauvericin, Isosorbide, Protuboxepin A
FOLH1 Capromab, Technetium TC-99 m Trofolastat Chloride, Mipsagargin, MDX-070

MLN-2704, MLN-591RL,Androstanolone, Methotrexate, Docetaxel, Mercaptopurine
FMO3 Itopride, Tamoxifen, Nicotine, Rosuvastatin, Tacrolimus
FMO1 Tamoxifen, Nicotine, Olanzapine
COL18A1 Glutamine, Tamoxifen, Aspirin, Collagenase clostridium histolyticum

Thrombin, Celecoxib, Ocriplasmin
ERBB3 Afatinib, Seribantumab, Patritumab,Cetuximab, Lapatinib

Pertuzumab, Panitumumab, Erlotinib, Aspirin, Alteplase
ERBB2 Lapatinib, Afatinib, Trastuzumab, Pertuzumab, Dacomitinib

AC-480, Margetuximab, Tucatinib, MM-111, Sapitinib
NRG1 Afatinib, Seribantumab, Patritumab, Cetuximab, Lapatinib

Pertuzumab, Panitumumab, Erlotinib, Aspirin, Alteplase
CD38 Daratumumab, Isatuximab, Thrombin
LEPR Metreleptin, Atorvastatin, Simvastatin
Table 11
List of drugs in clinical trials associated with SARS-CoV-2 membrane protein for the treatment of COVID-19.

Membrane protein Drugs composition

IL2RA Basiliximab, Daclizumab, Aldesleukin, Inolimomab, Lmb-2, Lentinan
Dinitrochlorobenzene, Denileukin diftitox, Thyroxine, Methimazole

KCNQ1 Indapamide, Bepridil, Tacrolimus, Celecoxib, Ezogabine, Dolasetron
Repaglinide, Insulin, Indomethacin

COL18A1 Glutamine, Tamoxifen, Aspirin, Collagenase clostridium histolyticum
Thrombin, Celecoxib, Ocriplasmin

CDKN1B Raltitrexed, Epoetin Beta, Celecoxib, Methotrexate, Lapatinib
Epoetin Alfa, Tretinoin, Progesterone, Streptozocin

IL23R Celecoxib
CRLF2 Ruxolitinib
PTPRB Razuprotafib, Sunitinib
CR1 Eculizumab, CDX-1135
CTLA4 Tremelimumab, Ipilimumab, Zalifrelimab, Abatacept, Atezolizumab

Sirolimus, Wortmannin, Dexamethasone, Methimazole, Antibiotic
HLA-DRA Floxacillin, Amoxicillin, Clavulanic acid, Pembrolizumab, Atezolizumab, Nivolumab
NME2 Zidovudine, Tenofovir, Lamivudine, Progesterone
CYYR1 Cixutumumab, Teprotumumab, Trandolapril, Verapamil, Pioglitazone
CD34 Fludeoxyglucose-F18, Puromycin, Prednisolone, Quercetin
TPCN2 Verapamil
FMO3 Itopride, Tamoxifen, Nicotine, Rosuvastatin, Tacrolimus
HSPA8 Bupivacaine, Denosine Diphosphate, Tretinoin
CHST3 Docetaxel, Thalidomide
DPP4 Sitagliptin, Saxagliptin, Gosogliptin, Vildagliptin, Begelomab

Alogliptin, Linagliptin, Bisegliptin, Valacyclovir, Anagliptin
GHR Pegvisomant, Somatropin, Somatrem, Somatrogon, ACP-001
PRLR Endostatin, Somatropin, Androstanolone
21
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Table 12
Gene name and its abbreviation used in the article.

Gene name Abbreviation Gene name Abbreviation

DPP10 Dipeptidyl peptidase 10 EPN2 Epsin 2
ADAM9 Disintegrin and metalloproteinase domain 9 MYH7 Myosin 7
ADAM17 Disintegrin and metalloproteinase domain 17 LAMA2 Laminin subunit alpha 2
CLDN1 Claudin MRC1 Macrophage mannose receptor 1
PLXNA2 Plexin A2 PRSS8 Prostasin preproprotein
CD63/CD151 Tetraspanin SCARB2 Scavenger receptor class B member 2
EPAP2 Endoplasmic reticulum aminopeptidase 2 GRM2 Metabotropic glutamate receptor 2
CYP1A2 Cytochrome P450 family 1 family A member 2 GPC5 Glypican 5
CLEC14A C-type lectin domain family 14 member A EFNB2 Ephrin-B2
HLA-DRA Histocompatibility antigen, DR alpha chain EFNB3 Ephrin-B3
NECTIN4 Nectin cell adhesion molecule 4 CR1/CR2 Complement receptor 1/2
ITGB3 Integrin beta-3 ST14 Suppression of tumorigenicity 14
ITGB6 Integrin beta-6 CXCL11 Chemokine (C-X-C motif) ligand 11
ITGB8 Integrin beta-8 SLC22A8 Solute carrier family 22 member 8
CACNA1C Voltage dependent L-type calcium subunit alpha SLC26A7 Solute carrier family 26, member 7
CD81/CD9 Tetraspanin COX8C Cytochrome c oxidase subunit 8C
ERK1/ERK2 Mitogen-activated protein kinase COX8A Cytochrome c oxidase subunit 8A
CDKN1A Cyclin-dependent kinase inhibitor 1A CDKN1B Cyclin-dependent kinase inhibitor 1B
HSP90B1 Heat shock protein 90 beta family member 1 DERL2 Derlin-2
IL23R Interleukin 23 receptor IL5RA Interleukin-5 receptor subunit alpha
UBE2D2 Ubiquitin conjugating enzyme E2 D2 UBE2E1 Ubiquitin conjugating enzyme E2 E1
UBE2G1 Ubiquitin conjugating enzyme E2 G1 UBE2K Ubiquitin-conjugating enzyme E2
HERC1 HECT, RLD domain E3 ubiquitin ligase 1 EXTL1 Exostosin like glycosyltransferase 1
HERC4 HECT, RLD domain E3 ubiquitin ligase 4 EXTL2 Exostosin like glycosyltransferase 2
CHST2 Carbohydrate sulfotransferase 2 CHST3 Carbohydrate sulfotransferase 3
CHST4 Carbohydrate sulfotransferase4 MEP1B Meprin B subunit
ABCC9 ATP binding cassette family C member 9 MMP24 Matrix metallopeptidase 24
VTI1A Vesicle transport interaction with t-SNARE 1A ZFPL1 Zinc finger protein-like 1
MGAT2 Mannoside acetylglucosaminyltransferase 2 PSMC5 Proteasome 26S subunit, ATPase 5
CLCA4 Calcium activated chloride channel regulator 4 PSMD14 Proteasome 26S subunit, nonATPase 14
PSME1 Proteasome activator subunit 1 PSMB1 Proteasome subunit beta 1
OLR1 Oxidized low-density lipoprotein receptor 1 POMP Proteasome maturation protein
FBXW11 F-box and WD repeat domain containing 11 FGFR4 Fibroblast growth factor receptor
IL2RA Interleukin-2 receptor subunit alpha TPCN2 Two pore segment channel 2
PSD2 Phosphatidylserine decarboxylase proenzyme 2 ARF1 ADP-ribosylation factor
CYTH1 Cytohesin-1 CLTA Clathrin light chain
RAB11A Ras-related protein Rab-11A isoform 1 SNF8 Vacuolar-sorting protein SNF8
VPS37B Vacuolar protein sorting 37B ARPC2 Arp2/3 complex 34 kDa subunit
CAPZB F-actin-capping protein subunit beta CHMP2A Charged multivesicular body protein 2A
BCL2 B-cell CLL/lymphoma 2 FCER2 Fc fragment of IgE receptor II
LRP8 Low density lipoprotein receptor protein 8 NFAM1 NFAT activation molecule 1
VTCN1 V-set domain 𝑇 cell activation inhibitor 1 PTPRB Protein tyrosine phosphatase receptor B
STX1A Syntaxin 1A HSPA8 Heat shock protein 8
KCNQ1 Potassium voltage-gated channel family Q1 CYYR1 Cysteine and tyrosine-rich protein 1
COL18A1 Collagen type XVIII alpha 1 ALDH2 Aldehyde dehydrogenase 2 family member
MICB MHC class I polypeptide-related sequence B PGP Phosphoglycolate phosphatase
TLR3/7/9 Toll like receptor-3/7/9 MGST1 Microsomal glutathione S-transferase 1
UGT1A1 UDP-glucuronosyltransferase FDFT1 Farnesyl-diphosphate farnesyltransferase 1
ACAT1 Acetyl-CoA acetyltransferase 1 NME2 Nucleoside diphosphate kinase
SQLE Squalene epoxidase ACLY ATP citrate lyase
NTRK3 Neurotrophic tyrosine kinase receptor, type 3a MAPK3 Mitogen-activated protein kinase
TRADD Tumor receptor-associated DEATH domain CAPN12 Calpain 12
EIF2AK1 Eukaryotic initiation factor 2-alpha kinase 1 SEC61G SEC61 translocon subunit gamma
CREB3 cAMP responsive element binding protein 3 PRLR Prolactin receptor
We have identified some of the target membrane proteins related
o the pathogenesis of SARS-CoV-2 infection. The membrane protein
ist is then queried from the drug-gene interaction database3 https:
/www.dgidb.org/ and its drug combination is found. Tables 10 and
1 list the druggable membrane protein and its composition to treat
OVID-19 disease. A list of gene names and their abbreviation used in
his article is provided in Tables 12, 13, 14, 15.

. Conclusion

For the first time, the paper discusses a metaheuristic fuzzy-based
lustering approach for predicting the potential host receptor that
ither mediates or restricts SARS-CoV-2 infection in humans. The main
eason for identifying the host receptor of SARS-CoV-2 infection from

3 https://www.dgidb.org/
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single-cell gene expression data is to study the role of the receptor in
the pathogenesis of COVID-19 disease. It helps investigate the effect
of these target receptors in the search for treatment against COVID-19
illness.

The proposed fuzzy-based clustering approach utilizes the GWO
algorithm concept to find the optimal cluster number and centroid
from the scRNA-Seq data. The exploratory and exploitatory search
mechanism of the classical GWO algorithm is improved by hybridizing
a set of mutation, crossover, and selection operators of the evolutionary
algorithm. Towards the end of the optimization algorithm, the weak
search agents are removed from the population and reinitialized around
the position of the best search agent randomly to evolve through a
better individual in the next generation. The fuzzy-based improved
GWO clustering algorithm is then executed on various scRNA-Seq data
of human tissue to identify a set of transcriptionally and biologically
similar genes (membrane protein or ssRNA viral receptor protein) with
ACE2. Also, PCC is calculated between ACE2 protein and membrane

https://www.dgidb.org/
https://www.dgidb.org/
https://www.dgidb.org/
https://www.dgidb.org/
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Table 13
Gene name and its abbreviation used in the article.

Gene name Abbreviation Gene name Abbreviation

STX3 Syntaxin 3 CD70 CD70 molecule
ACVR1 Receptor protein serine/threonine kinase AMHR2 Anti-Muellerian hormone type-2 receptor
BMPR2 Receptor protein serine/threonine kinase EDAR Ectodysplasin A receptor
LIR2 Leukocyte immunoglobuli-like receptor 2 PRPL Plastid ribosomal protein L24
CD3D T-cell surface glycoprotein CD3 delta chain CTLA4 Cytotoxic T-lymphocyte protein 4
CD3G T-cell surface glycoprotein CD3 gamma chain ICOS Inducible 𝑇 cell costimulator
LAT Linker for activation of 𝑇 cells THY1 Thymus cell antigen 1, theta
ESAM Endothelial cell-selective adhesion molecule JAM3 Junctional adhesion molecule 3
FLT3 Fms related receptor tyrosine kinase 3 EPHA8 Ephrin type-A receptor 8
AREG Amphiregulin ERBB3 Receptor protein-tyrosine kinase
NTRK1 Neurotrophic tyrosine kinase, receptor 1 NTRK2 neurotrophic tyrosine kinase, receptor 2
PTPRR Receptor-type tyrosine-protein phosphatase R TGFA Transforming growth factor alpha
EPHA2 EPH receptor A2 NRG2 Neuregulin 2
VAPB Vesicle-associated membrane protein B PDIA6 Protein disulfide-isomerase A6
LMAN1 Lectin, mannose binding 1 PREB Prolactin regulatory element binding
RRBP1 Ribosome binding protein 1 SIL1 Nucleotide exchange factor SIL1
PRKCSH Protein kinase C substrate 80K-H CKAP4 Cytoskeleton associated protein 4
HSP90AB1 Heat shock protein HSP 90-beta isoform A DCC Development and carotenogenesis control-1
BAD Betaine aldehyde dehydrogenase 2 CREBBP Histone acetyltransferase
RASA2 Ras GTPase-activating protein 2 SP100 Nuclear autoantigen Sp-100
CCN1 Cellular communication network factor 1 CND3 Condensin complex non-SMC subunit
CDK6 Cyclin dependent kinase 6 CDKN1B Cyclin-dependent kinase inhibitor 1B
SYK Spleen associated tyrosine kinase CD74 Thyroglobulin type-1 domain protein
CD1B T-cell surface glycoprotein CD1b RET Ret proto-oncogene
RAF1 RuBisCO accumulation factor 1 FNTA Farnesyltransferase, CAAX box, alpha
GMPS Guanine monophosphate synthase FMO4 Flavin containing monooxygenase 4
FMO5 Flavin containing monooxygenase 5 PSMD11 Proteasome 26S subunit, non-ATPase 11
CD34 Hematopoietic progenitor cell antigen CD34 CD38 ADP-ribosyl cyclase 1
CD47 Leukocyte surface antigen CD47 CD74 Histocompatibility antigen gamma chain
CD80/86 Cluster of differentiation 80/86 CD300LD CD300 molecule like family member D
NDST2 N-deacetylase and N-sulfotransferase 2 NDST3 N-deacetylase and N-sulfotransferase 3
NDST4 N-deacetylase and N-sulfotransferase 4 XYLT2 Xylosyltransferase 2
EXT2 Exostosin glycosyltransferase 2 EXT3 Exostosin glycosyltransferase 3
IL2RA Interleukin-2 receptor subunit alpha IL23R Interleukin 23 receptor
IL5RA Interleukin 5 receptor subunit alpha IL9R Interleukin-9 receptor
Table 14
Gene name and its abbreviation used in the article.

Gene name Abbreviation Gene name Abbreviation

CD209 C-type lectin domain containing protein CLEC4G C-type lectin domain family 4 member G
CLEC4M C-type lectin domain family 4 member M CLEC5A C-type lectin domain family 5 member A
FURIN Furin, paired basic amino acid cleaving enzyme DNM1 Dynamin 1
ANPEP Aminopeptidase ENPEP Glutamyl aminopeptidase
DPP4 Dipeptidyl peptidase 4 DPP6 Dipeptidyl peptidase 6
SLAMF1 Signaling lymphocytic activation molecule APLP1 Amyloid beta precursor like protein 1
AP2A2 Adaptor protein complex 2 subunit alpha 2 EPS15 Epidermal pathway substrate 15
EPN1 Epsin 1 LDLR Low density lipoprotein receptor
LY75 Lymphocyte antigen 75 MRC2 Mannose receptor, C type 2
ADAM7 Disintegrin and metalloproteinase protein 7 SNX5 Sorting nexin-5
NRP1 Neuropilin ICAM1 Intercellular adhesion molecule 1
EGFR Epidermal growth factor receptor AXL Alpha-xylosidase
FCGRT Fc gamma receptor and transporter NRG1 Neuregulin 1
FCRL6 Fc receptor like 6 LRP1 lipoprotein receptor-related protein 1
FGFR1 Fibroblast growth factor receptor EFNB1 Ephrin B1
KREMEN1 Kringle containing transmembrane protein 1 ASGR1 Asialoglycoprotein receptor 1
ISLR Immunoglobulin superfamily leucine-rich SNCA Alpha-synuclein
PCDH7 Protocadherin 7 ANXA3 Annexin
CD14 Monocyte differentiation antigen 14 PDPN Podoplanin
CALRL Calreticulin FOXF1 Forkhead box F1
AGER Advanced glycosylation end-product receptor MYRF Myelin regulatory factor
TCF7L2 Transcription factor 7 like 2 LRP5 Low density lipoprotein receptor protein
CYP4B1 Cytochrome P450 family 4 subfamily B member 1 ACTA2 Actin alpha 2
SERPINB4 Serpin B4 KRT4 Keratin 4
PLXNA1 Plexin A1 VEGFA Vascular endothelial growth factor
EREG Epiregulin IGSF21 Immunoglobin superfamily member 21
APOE Apolipoprotein E TAGLN Transgelin
COL1A2 Collagen type I alpha 2 chain FABP4 Fatty acid-binding protein 4
MCEMP1 Mast cell expressed membrane protein 1 MYH11 Myosin heavy chain 11
MMP14 Matrix metallopeptidase 14 ALDH1A2 Aldehyde dehydrogenase 1 family, A2
NRXN1 Neurexin-1 MYH2 Myosin 2
PLP1 Proteolipid protein 1 VCAM1 Vascular cell adhesion protein 1

(continued on next page)
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Table 14 (continued).
Gene name Abbreviation Gene name Abbreviation

ERBB2 Receptor protein-tyrosine kinase ERAP1 Endoplasmic reticulum aminopeptidase 1
JUN Jun proto-oncogene EPCAM Epithelial cell adhesion molecule
ONECUT1 One cut domain family member SPARCL1 SPARC-like protein 1
BAMBI BMP and activin membrane-bound inhibitor CSF1 Colony stimulating factor 1
HEXIM1 Hexamethylene bisacetamide inducible 1 HMOX1 Heme oxygenase 1
MERTK MER proto-oncogene, tyrosine kinase MS4A7 Membrane spanning 4-domains A7
CD8A T-cell surface glycoprotein CD8 alpha IL7R Interleukin 7 receptor
FGFR3 Fibroblast growth factor receptor CSF1R Colony stimulating factor 1 receptor
SLC10A4 Solute carrier family 10 member 4 MEGF11 Multiple epidermal growth factor 11
GRM8 Glutamate metabotropic receptor 8 TRPM3 Transient receptor potential member 3
TM4SF1 Transmembrane 4 L six family member 1 DAG1 Dystroglycan 1
MXRA8 Matrix remodeling associated 8 CD147 basigin or BSG
ITGA2 Integrin subunit alpha 2 ITGB1 Integrin beta
TFRC Transferrin receptor BET1 BET1 isoform 4
ECE1 Endothelin converting enzyme 1 MEP1A Meprin A subunit
TRHDE Thyrotropin releasing hormone degrading enzyme ITGA4 Integrin subunit alpha 4
ALK Aurora-like kinase FOLH1 Folate hydrolase 1
GOLM1 Golgi membrane protein 1 CHST1 Carbohydrate sulfotransferase 1
PCSK5 Proprotein convertase subtilisin/kexin type 5 CHPF2 Chondroitin polymerizing factor 2
GLCE Glucuronic acid epimerase EXT1 Exostosin glycosyltransferase
EXTL Exostosin like glycosyltransferase NDST1 N-deacetylase and N-sulfotransferase 1
XYLT1 Xylosyltransferase 1 DNM2 Dynamin 2
Table 15
Gene name and its abbreviation used in the article.

Gene name Abbreviation Gene name Abbreviation

HERC2 HECT, RLD domain E3 ubiquitin ligase 2 WWP1 WW domain E3 ubiquitin protein ligase 1
MGRN1 Mahogunin, ring finger 1 NEDD4 Neural precursor cell, downregulated 4
UBE2 Ubiquitin conjugating enzyme E2 UBA2 Ubiquitin-activating enzyme E1 2
EPHB2 Ephrin type-B receptor 2 MCL1 Myeloid leukemia cell differentiation
CRLF2 Cytokine receptor-like factor 2 ERBB4 Receptor protein-tyrosine kinase
EPOR Erythropoietin receptor IL21R Interleukin 21 receptor
LEPR Leptin receptor XBP1 X-box binding protein 1
EDEM1 ER degradation enhancer, mannosidase alpha 1 ATF6B Activating transcription factor 6 beta
DERL1/2 Derlin-1/2 VCP Valosin containing protein
HSPA5 Heat shock protein 90 beta family member 1 CANX Calnexin
NFE2L2 Nuclear factor erythroid 2 factor 2 isoform 1 CALR Putative calreticulin
PDIA3 Protein disulfide-isomerase A3 CD55 Complement decay-accelerating factor
CXADR Coxsackievirus and adenovirus receptor SGC Sarcoglycan
CYCS Cytochrome c, somatic BAK1 BCL2 antagonist/killer 1
HLA-f HLA class I histocompatibility antigen, F BAX BCL domain-containing protein
KRAS GTPase KRas isoform X1 SYT Synaptotagmin
CCND1 Cyclin N-terminal domain-containing protein SIGLEC1 Sialic acid binding Ig like lectin 1
CDKN Cyclin-dependent kinase inhibitor MLN-4760 Promotilin-4760
FMO3 Flavin dimethylaniline monoxygenase 3 NRCAM Neuronal cell adhesion molecule
NFKB2 Nuclear factor kappa B subunit 2 TFR2 Transferrin receptor 2
CD46 Membrane cofactor protein GP2 Glycoprotein 2
PTPRC Protein tyrosine phosphatase receptor type C MET Methyltransferase
FXYD6 FXYD domain-ion transport regulator OSMR Oncostatin M receptor
CDHR3 Cadherin related family member 3 CLIC4 Chloride intracellular channel protein
SRPRB Signal recognition particle receptor subunit beta SDC1/SDC4 Syndecan -1/Syndecan-4
PLS3 Plastin 3 GDF15 Growth differentiation factor 15
CD8B2 T-cell surface glycoprotein CD8 beta-2 CNMD Chondromodulin-I
CD244 Ig-like domain-containing protein CXCL10 C-X-C motif chemokine ligand 10
MEGF9 Multiple epidermal growth factor 9 KRT5 Keratin 5
APMAP Adipocyte plasma membrane-associated protein IDO1 Indoleamine 2,3-dioxygenase 1
CXCL13 Chemokine (C-X-C motif) ligand 13 CCDC78 Coiled-coil domain protein 78
SCGB3A1 Secretoglobin family 3A member 1 IGF1R Insulin-like growth factor 1 receptor
CEACAM1 Carcinoembryonic antigen cell adhesion molecule 1 INSR Insulin receptor activity
HFE Homeostatic iron regulator COX7B Cytochrome c oxidase subunit 7B
CADM1 Cell adhesion molecule 1 VIM Vimentin
RHOX8 Reproductive homeobox 8 APOA1 Apolipoprotein A-I
SPAG6 Sperm-associated antigen 6 ZPBP Zona pellucida binding protein
ID4 Inhibitor of DNA binding 4 NEUROG3 Neurogenin-3
CYP11A1 Cholesterol side-chain cleavage enzyme MAGEA4 Melanoma-associated antigen 4
GGT5 Gamma-glutamyltransferase 5 GT7 Putative glycosyltransferase 7
JAM2 Junctional adhesion molecule 2 PLD6 Phospholipase D family, member 6
SPEM1 Spermatid maturation protein 1 SGPL1 Sphingosine-1-phosphate lyase 1
ROS1 Tyrosine-protein kinase receptor TYRO3 Receptor protein-tyrosine kinase
GGT1 Gamma-glutamyltransferase 1 EGF Epidermal growth factor
PECAM1 Platelet endothelial cell adhesion molecule 1 IL1RL1 Interleukin 1 receptor like 1
PDGFRB Platelet-derived growth factor receptor beta CUBN Cubilin
KCNE1 Potassium voltage-gated channel family E member 1 FOXL1 Forkhead box L1

(continued on next page)
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Table 15 (continued).
Gene name Abbreviation Gene name Abbreviation

JAG Jagged canonical Notch ligand CX3CR1 Chemokine (C-X3-C motif) receptor 1
NOTCH2 Neurogenic locus notch homolog protein 2 HMGB1 High mobility group box 1
HAVCR1 Hepatitis A virus cellular receptor 1 OCLN Occludin
LAMP1 Lysosomal associated membrane protein 1 PVR Poliovirus receptor
SCARB1 Scavenger receptor class B member 1 RPSA 30S ribosomal protein S1
SLC10A1 Solute carrier family 10 member 1 PHB Prohibitin
NCAM1 Neural cell adhesion molecule 1 NGFR Nerve growth factor receptor
protein or viral receptor protein to validate the co-expressed genes.
The interaction of the predicted receptor protein with the SARS-CoV-2
protein (ACE2 or TMPRSS2) is also analyzed through the PPI net-
work. Previous work using hierarchy clustering had confirmed that the
peptidases: DPP4, ANPEP and ENPEP are the co-receptor of ACE2 pro-
tein [7]. But our study successfully identified 816 membrane proteins
and 58 viral receptors that play a vital role in the pathogenesis of
SARS-CoV-2 infection.

The main advantage of the proposed fuzzy-based improved GWO
clustering approach is its ability to study the expression level of a gene
in every other cluster at one time. Previous work, such as IHC and MS
studies, required more detailed pathology information to determine the
biomarker of tissue at the microscopic level. As a result, it becomes
difficult to study the expression level of a protein at the molecular
level. It also requires a lot of effort and time for the specimen collection
and laboratory setup. Also, single-cell transcriptomics analysis using the
Seurat tool does not give a clear account of the biological functionality
of the receptor protein at the molecular level. We have predicted the
co-receptor protein of SARS-CoV-2 infection using the unsupervised
fuzzy clustering technique with the GWO algorithm and analyzed the
biological and cellular functioning of the receptor protein using PPI
network, GO term, and KEGG pathway enrichment analysis.

We have identified the set of proteins that either mediates or re-
stricts a biological pathway in the mechanism of SARS-CoV-2 infection.
The work has also successfully identified the membrane protein that
could inhibit the spread of SARS-CoV-2 infection. Antiviral drugs such
as carboplatin and gemcitabine could prevent SARS-CoV-2 disease. Be-
sides, one of the most significant findings is that one of the preventing
SARS-CoV-2 infection in the initial stage is by downregulating the
signaling pathway that promotes clathrin or caveolin mediated endocy-
tosis process. Drug, imatinib, has been shown to inhibit the replication
process of SARS-CoV-2 infection. In future, clathrin or caveolin me-
diated pathway can be studied to find the root cause of SARS-CoV-2
disease.
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