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Imaging Dynamics Beneath Turbid Media via Parallelized
Single-Photon Detection

Shiqi Xu, Xi Yang, Wenhui Liu, Joakim Jönsson, Ruobing Qian, Pavan Chandra Konda,
Kevin C. Zhou, Lucas Kreiß, Haoqian Wang, Qionghai Dai, Edouard Berrocal,
and Roarke Horstmeyer*

Noninvasive optical imaging through dynamic scattering media has
numerous important biomedical applications but still remains a challenging
task. While standard diffuse imaging methods measure optical absorption or
fluorescent emission, it is also well-established that the temporal correlation
of scattered coherent light diffuses through tissue much like optical intensity.
Few works to date, however, have aimed to experimentally measure and
process such temporal correlation data to demonstrate deep-tissue video
reconstruction of decorrelation dynamics. In this work, a single-photon
avalanche diode array camera is utilized to simultaneously monitor the
temporal dynamics of speckle fluctuations at the single-photon level from 12
different phantom tissue surface locations delivered via a customized fiber
bundle array. Then a deep neural network is applied to convert the acquired
single-photon measurements into video of scattering dynamics beneath
rapidly decorrelating tissue phantoms. The ability to reconstruct images of
transient (0.1–0.4 s) dynamic events occurring up to 8 mm beneath a
decorrelating tissue phantom with millimeter-scale resolution is
demonstrated, and it is highlighted how the model can flexibly extend to
monitor flow speed within buried phantom vessels.
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1. Introduction

Imaging deep within human tissue is a cen-
tral challenge in biomedical optics. Over
the past several decades, a wide variety
of approaches have been developed to ad-
dress this challenge at various scales. These
include confocal[1] and nonlinear[2] mi-
croscopy techniques that can image up to
1 mm deep within tissue, as well as novel
wavefront shaping,[3] time-of-flight diffuse
optics,[4,5] and photoacoustic techniques[6]

that can extend imaging depths to cen-
timeter scales at reduced resolution. While
there are many experimental demonstra-
tions of imaging through thick scattering
material, only a few of these techniques can
easily be translated to living tissue specifi-
cally, or to dynamic scattering media in gen-
eral. Dynamic scattering specimens, such
as tissue decorrelate[7]—microscopic move-
ments due to effects like thermal variations
and cell migration, for example, cause the
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optical scattering signature of a particular specimen to change
rapidly over time. This rapid movement often presents chal-
lenges to effective in vivo deep-tissue imaging. While prior
wavefront shaping methods can overcome such effects to fo-
cus within thick tissue at high speeds,[8–10] significant engineer-
ing challenges remain to achieve deep-tissue imaging in human
subjects.[11]

Instead of attempting to avoid or overcome the effects of decor-
relation on imaging measurements, one alternative strategy is
to directly measure such dynamic changes within the scattering
specimens, and use these changes to aid with image formation.
Here, the primary goal is not to form intensity-based images, as
in absorption or fluorescence microscopy, but to create a spa-
tial map of fluctuation. This is typically achieved by measuring
the temporal dynamics (e.g., temporal variance or correlation)
of scattered radiation. Several important biological phenomena
cause such temporal variation of an optical field, ranging from
blood flow to neuronal firing events.[12–15] Optical coherence to-
mography angiography,[16] laser speckle contrast imaging,[13] as
well as photoacoustic Doppler microscope[17] have been devel-
oped to image such dynamics close to the tissue surface. How-
ever, to detect an optical signal that has traveled deep inside living
tissue, which increasingly attenuates and decorrelates the optical
field, one typically needs to eventually rely on fast single-photon-
sensitive detection techniques that record optical fluctuations at
approximately mega-hertz rates.

One established technique to detect dynamic scattering mul-
tiple centimeters within deep tissue is termed diffuse correla-
tion spectroscopy (DCS),[18] which records coherent light fluctu-
ations. When coherent light enters a turbid medium, it randomly
scatters and produces speckle. Movements within the tissue vol-
ume (e.g., cellular movement or blood flow) occur at different
spatial locations and interact with the scattered optical field. By
measuring temporal fluctuations of the scattered light at the tis-
sue surface, it is possible to estimate a spatiotemporal map of
decorrelating events. While such methods are widely used to as-
sess blood flow variations across finite tissue areas as deep as
beneath the adult skull,[19] there has been limited work to date
to rapidly form spatially resolved images and video of dynamic
events beneath turbid media,[18] despite early work demonstrat-
ing that the temporal correlation of light transports through tis-
sue follows a well-known diffusion process.[20] Three main chal-
lenges have prevented imaging of deep-tissue dynamics: 1) a low
signal-to-noise (SNR) due to a limited number of available pho-
tons at requisite measurement rates, 2) a limited number of de-
tectors to collect light from different locations across the scatterer
surface, and 3) a challenging ill-posed inverse problem to map ac-
quired data to accurate imagery.

To solve the first two challenges listed above, this work
uses a single-photon avalanche diode (SPAD) array to simul-
taneously measure speckle field fluctuations across the tis-
sue surface at the requisite sampling rates (≈𝜇s) and single-
photon sensitivities needed for deep detection.[21] Recently de-
veloped SPAD arrays, based on standard complementary metal-
oxide–semiconductor(CMOS) fabrication technology, can inte-
grate up to a million SPAD pixels onto a small chip.[22,23]

This led to new imaging applications in fluorescence lifetime
imaging,[24] scanning microscopy,[25] confocal fluorescence fluc-
tuation spectroscopy,[26] Fourier ptychography,[27] as well as com-

puter vision tasks, such as depth profile estimation,[22,28] seeing
around corners[29] and through scattering slabs.[4,30] Most prior
DCS measurement systems relied on fast single-pixel single-
photon detectors (including single-pixel SPAD and photomulti-
plier tubes) for optical measurement.[18] Single-pixel strategies
for DCS-based image formation have several fundamental lim-
itations. While several works demonstrated DCS-based imag-
ing of temporal correlations in the past,[14,20,31–33] none simul-
taneously acquired DCS signal from multiple tissue surface ar-
eas, as required for rapid image formation (e.g. to avoid effects
of subject movement). Instead, these prior works mechanically
scanned the specimen, or illumination and detection locations
in a step-and-repeat fashion to measure speckle from differ-
ent surface locations on a single detector. Furthermore, as only
one or a few speckle modes can be sampled by a single detec-
tor while still maintaining suitable contrast, a long (seconds or
more) measurement sequence is typically required to obtain a
suitable signal-to-noise ratio for each measured temporal corre-
lation curve (i.e., each surface location). This limited correlation
measurement rate is quite detrimental—it precludes observation
of dynamic variations of the subject pulse signal, for example,
which can vary at sub-hertz rates. Recent work has demonstrated
how parallelized speckle detection across many optical sensor
pixels[34–38] can lead to significantly faster correlation sampling
rates. We build upon these insights to create a new system capa-
ble of recording spatially resolved videos of temporal decorrela-
tion without any moving parts.

The third challenge noted above relates to the computa-
tional formation of dynamic images from limited measure-
ment locations across the scatterer surface, typically formulated
as an ill-posed inverse diffusion problem. While model-based
solvers have demonstrated effective dynamics imaging in prior
work,[14,20,31–33] simple scattering geometries were typically as-
sumed (e.g., infinite and semi-infinite geometries). To allevi-
ate model-based reconstruction issues, one can adopt a data-
driven image reconstruction approach. Typically formed via train-
ing of a nonlinear estimator with large amount of labeled data,
neural network-based models have been used in the past to
image static amplitude or phase objects through and within
scattering medium using both all-optics[39–44] and photoacous-
tic methods.[45] Inspired by such recent progress, we have de-
veloped a system and data post-processing pipeline, termed par-
allelized diffuse correlation imaging (PaDI), that addresses the
above challenges to form images and video of transient dynam-
ics events beneath multiple millimeters of decorrelating turbid
media. Our new optical probe can image within a 140 mm2 field-
of-view at 5–8 mm depths beneath a decorrelating liquid tissue
phantom (𝜇a = 0.01 mm−1, 𝜇′

s = 0.7 mm−1, Brownian coefficient
D = 1.5 × 106 mm2, for example—although many of these pa-
rameters can be flexibly adjusted) without any moving parts at
multi-hertz video frame rate. Figure 1 presents an overview of
the proposed method.

2. Results and Discussion

2.1. PaDI

The phantom design and imaging setup is outlined in Figure 2.
To assess the performance of our PaDI system, we turn to an eas-
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Figure 1. Flow diagram of proposed method for imaging temporal decorrelation dynamics. A) Illustration of parallelized diffuse correlation imaging
(PaDI) measurement strategy. Scattered coherent light from source to multiple detector fibers travels through decorrelating scattering media along
unique banana-shaped paths. Fully developed speckle on the tissue surface rapidly fluctuates as a function of deep-tissue movement. Green dashed box
marks deep-tissue dynamics areas of interest for imaging. B) Computed autocorrelation curves from time-resolved measurements of surface speckle
at different tissue surface locations. C) Autocorrelation variations caused by deep-tissue dynamics are computationally mapped into spatially resolved
images of transient dynamics.

Figure 2. A) Schematic of PaDI system for imaging decorrelation. Back-scattered coherent light from single input port is collected by 12 multimode
fibers (MMF) at tissue phantom surface and guided to SPAD array camera. B) Profile view of the tissue phantom imaging experiment. Digital micro-
mirror device (DMD) and vessel phantom serve as source of temporal dynamics and is hidden beneath phantom by placing it immediately adjacent
(separated by coverglass). All sources and detectors are placed on the same side of phantom. Colormap provides qualitative photon distribution map,
where quantitative plot of sub-surface photon distribution is in Figure S1B, Supporting Information. C) A set of DMD patterns that can be used to
generate spatiotemporal varying dynamics. (D) Simulation of photon-sensitive region of our 12-fiber system. (E) A picture of the tissue phantom we use
in experiments.
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ily reconfigurable nonbiological liquid phantom setup that offers
the ability to flexibly generate unique image targets with known
spatial and temporal properties. To mimic decorrelation rates and
scattering properties of human tissue, we utilized a liquid phan-
tom filled with 1 μm-diameter polystyrene microspheres (4.55 ×
106# mm−3) solution enclosed in a custom-designed thin-walled
cuvette as rapidly decorrelating turbid volume to occlude the tar-
get of interest. The target exhibits a reduced scattering coefficient
of 0.7mm−1 as computed by the Lorenz–Mie method, and an ex-
perimentally measured absorption coefficient of 0.01mm−1. Also,
based on fitting using a Monte Carlo method,[46] the medium ex-
hibits an estimated Brownian motion diffuse constant of 1.5 ×
106mm2, which is close to the diffusion coefficient measured in
model organisms.[47] Section S3, Supporting Information details
how these values are estimated. To generate expected temporal
fluctuation variations within living tissue caused, for example,
by blood flow, we placed a digital micro-mirror device (DMD)
immediately behind this tissue phantom, with which we compu-
tationally created spatiotemporally varying patterns at kilohertz
rates.[35] Further, for the second generalizability study discussed
in Section 2.3, we also place two plastic tubes containing flow-
ing scattering liquid with the same optical properties as the back-
ground volume. The movement of the liquid inside the tube is
controlled with two syringe pumps (New Era, US1010).

Our light source is a 670 nm diode-pumped solid-state (DPSS)
laser (MSL-FN-671, Opto Engine LLC, USA) with a coherence
length ⩾10 m, which we attenuated to 200 mW to match standard
ANSI safety limits for illuminating tissue with visible light.[48] We
guided this light to the liquid phantom surface using a 50 μm,
0.22 numerical aperture (NA) multi-mode fiber (MMF). Before
the MMF, we ensured that the DPSS laser output was effectively
a single transverse mode with a fiber coupler, such that either
an MMF or a single-mode fiber (SMF) could serve as the source
waveguide,[35,36] with MMF being a generally less expensive op-
tion. After entering the liquid phantom, the light randomly scat-
ters and decorrelates, and a small fraction of which reaches the
DMD placed immediately behind the turbid medium. The side
of the phantom cuvette facing the DMD is made of microscope
slide coverglass. Each square DMD pixel has 13.7 × 13.7 μm2

area. With 768 × 1024 pixels, the entire DMD panel has a screen
size of 10.4 × 13.9mm2. We chose to use a DMD to generate
the spatiotemporal dynamic scattering patterns first because it
is easily configurable: light reaching the quickly flipping pixels
decorrelates faster than light that does not, and these pixels are
digitally addressable and thus can be changed both spatially and
temporally without moving the setup. Second, because it can
meet requisite dynamic variation speeds (we run the DMD be-
tween 5–10 kHz), which we have selected to correlate with the
response of blood flow at tested depths (5–8 mm).[35] As the re-
flected multi-scattered light penetrates on average about 1

2
− 2

3
times the source-detector distance (𝜌) deep into the phantom
tissue,[49] we place 12 multi-speckle detection fibers circularly
around the source in the center with 𝜌 = 9.0mm. Each multi-
speckle detection fiber is a MMF with a 250 μm core diameter
and 0.5 NA. Quantitative plots of an x–z cross section of the most
probable scattered and collected photon trajectories, as well as
the expected number of photons per speckle per sampling pe-
riod, are provided in Figure S1B, Supporting Information. We
use a modern Monte Carlo simulator called “multi-scattering”[50]

that models anisotropy from spherical scattering centers using
a Lorenz–Mie based scattering phase functions. The model has
recently been rigorously validated against experimental results
as shown in refs. [51, 52] and can obtain 3D representations of
photon paths within the simulated scattering medium. Such re-
sults are shown in Figure 2C for the experimental configuration
presented in this article, where 12 optical fibers are used for col-
lecting photons, which is the imaging space of our PaDI system.
Visualizations of 3D trajectories for detected photon using differ-
ent numbers of fibers are also provided in Figure S2B, Support-
ing Information. Away from the tissue surface, the distal ends of
the 12 MMFs are bundled together and imaged onto the SPAD
array (PF32, Photon Force, UK) with a magnification M = z2

z1
us-

ing a single lens with an iris diaphragm placed directly adjacent
to the lens. As labeled in Figure 2B, r, z1, and z2 are the radius of
the iris diaphragm, the distance between fiber bundle exist and
lens, and the distance between lens and SPAD array sensor plane,
respectively. To form an image of the fiber bundle on the camera,
z1 and z2 satisfy the thin lens equation. In practice, r

z1
is much

smaller than the fiber NA that we choose, which determines the
NA of the overall speckle imaging system. As illustrated in Fig-
ure S4B, Supporting Information, the 32 × 32 SPAD array has
an overall size of 1.6 × 1.6 mm2 with a pixel pitch of wp = 50 μm
and an active area that is ϕ = 6.95 μm in diameter. As the mag-
nification is fixed for imaging the light exiting the fiber bundle
onto the whole camera, we tune the radius of the iris diaphragm
to alter the average speckle size, such that ≈1 speckle on average
is mapped onto each SPAD pixel active area; that is, we want the
speckle size on the sensor plane to match ϕ. Given that the col-
lected light experiences ≈440 scattering events on average (see
Figure S1C, Supporting Information), the emerging light at the
tissue surface is a fully developed speckle pattern with an average
speckle size of 𝜆

2
[53] and uniformly distributed phase.[54] Hence,

setting M𝜆/2NA = ϕ gives the desired iris radius r = 𝜆M
2𝜙z1

.

2.2. Supervised Learning for Image Reconstruction

For our first demonstration of PaDI, we use an artificial neu-
ral network to reconstruct images and video of deep temporal
dynamics from measured surface speckle intensity autocorrela-
tion curves. As detailed in “Parallelized Diffuse Correlation Imag-
ing” and “Data Acquisition and Preprocessing” sections, we col-
lect speckles from 12 distinct surface positions using multimode
fibers (MMF), and estimate the intensity autocorrelation for each
location. Each intensity autocorrelation curve has 400 sampled
time-lags (1.5 μs sampling rate). There are 12 such curves, each
computed from the associated SPAD pixels that measure scat-
tered light from the PaDI probe’s 12 fiber detectors. A new set
of such 12 curves is produced every frame integration time Tint
(variable between 0.1 and 0.4 s). Combining and vectorizing our
system’s 12 autocorrelation curves gives the neural network in-
put, x ∈ R4800. The output of the neural network is an image x ∈
R48×64, with an image pixel size of 220 × 220 μm2. This pixel size
is a tunable parameter in our reconstruction model, which we
select as smaller than the expected achievable resolution[18,35]).

Figure 3 depicts our image reconstruction network. While
prior works[40–45] have used image-to-image translation networks
to form images of fixed objects through scattering material, our
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Figure 3. Proposed artificial neural network architecture for PaDI reconstruction, which takes a set of 12 computed intensity auto-correlation curves as
input. The network first encodes the high-dimension measurement into a low-dimension manifold through a stack of fully-concerted layers, and decodes
the embedding into a spatial reconstructions of the dynamics hidden underneath decorrelating phantom tissue, using convolutional layers. Bent green
arrows are skip connections.

reconstruction task here is quite different from these alternative
networks and thus required us to develop a tailored network
architecture. First, the format of our network input is unique
(multiple autocorrelations created from noninvasive measure-
ment of second-order temporal statistics of scattered light).
Second, the contrast mechanism of our network output is
also different—a spatial map of dynamic variation described by
speed of change per pixel. Our network mapping problem (multi-
autocorrelation inputs into spatial maps of temporal dynamics) is
thus in some ways similar to domain transform problems. There-
fore, our employed network design is most similar to that intro-
duced by Zhu et al.[55] Overall, the network is composed of an
encoder f𝜃(·) to compress the input into a low-dimensional mani-
fold, and a decoder g𝜃(·) to retrieve the spatial map of temporal dy-
namics from the embedding. The encoder is composed of three
fully-connected layers, with skip connections to allow the error to
propagate more easily. All fully-connected layers uses leaky-ReLU
activation functions with a slope of 0.1, and the first three fully-
connected layers have a dropout rate of 0.05. After the inputs are
embedded into a low-dimensional manifold, the decoder maps
the embedding into the 2D reconstruction of dynamics using five
transposed convolution layers with stride 2 and padding 1. The
network is updated to solve the following problem

min
𝜃

M∑
i=1

(
(xi, x̂i) +(x̂i)

)
(1)

where x̂i := g𝜃(f𝜃(yi)) is the output of the network from ith set of
measurements yi, and M is the total number of training pairs.

(̂xi, xi) = 1
2
‖x̂i − xi‖2

2 (2)

is the data-fidelity term that train the network to find prediction
that matches the ground truth, and

(̂xi) = 𝜆‖x̂i‖1 + 𝜁TV(̂xi) (3)

The ℓ1 norm is used to promote sparsity of the reconstruction,
and TV(·) is the isotropic total variation penalty that makes the
reconstruction piecewise constant. These regularizations have
been successfully applied to improve diffuse optics imaging

reconstructions.[56,57] 𝜆 and 𝜁 are hyperparameters empirically
chosen to be 0.02 and 0.1, respectively, to balance the data fidelity
and image prior knowledge. As we have a small dataset for train-
ing, we do not divide the data further to create a validation dataset.
Instead, we apply early stop to avoid overfitting. The networks for
all tasks used Xavier initialization[58] and trained for 2000 epochs
using the Adam optimizer[59] with a 8 × 10−4 learning rate and
256 batch size.

2.3. Experimental Validation with Digital and Bio-Inspired
Phantoms

We validated our learning-based image reconstruction method
with four unique experiments that each utilized a unique training
data set. First, since detecting deep-tissue blood flow is a primary
aim of PaDI system development, we studied the ability of our
network to image vessel-like structures using 1428 vasculature
patterns extracted from biomedical image data[60] (1190 for train-
ing, 238 for testing). Image data was rescaled to an appropriate
size (10.4 × 13.9 mm2) and displayed as a dynamic pattern with
a 5 kHz variation rate. By comparing PaDI and standard inverse
diffusion model-based reconstructions (as detailed in Section S3,
Supporting Information), we highlight significant improvement.
Second, we tested the generalizability of PaDI by training the net-
work with objects drawn from one type of dataset, and testing
the network with objects drawn from a second distinct dataset
type (i.e., from a different distribution). For this generalizability
experiment, we trained with 1280 hand-written letters from the
EMNIST dataset and assessed reconstruction accuracy used 128
digits from the MNIST dataset during algorithm testing. Third,
we explored the potential of our method to jointly image both
temporal and spatially varying dynamic potentials by using PaDI
to image objects of different sizes and unique fluctuation rates (5
and 10 kHz). Finally, we further tested system generalizability by
acquiring PaDI data from a completely unique phantom tissue ar-
rangement, containing 3 mm diameter phantom vessels buried 5
mm beneath scattering material, through which we flowed liquid
at variable speeds. We then applied a DMD-trained image forma-
tion model, trained with 1046 patterns containing two tube-shape
objected demonstrated in Figure 6A, to spatio-temporally resolve
buried capillary flow dynamics, highlighting the flexibility of both
the imaging hardware and post-processing software.
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Figure 4. PaDI measurements and reconstructions of phantom vasculature patterns located 5 mm beneath a tissue-like decorrelating turbid volume. A)
Recorded raw SPAD array speckle intensity (colorbar: photons detected per pixel). B) Processed intensity auto-correlations using Tint = 0.4 s where x-axis
is time-lag 𝜏. Each plot labeled with ground truth of dynamic scattering image on the top-left, with zoom-ins showing curve regions most sensitive to
spatially varying decorrelation. C) Ground truth dynamic scattering object 5 mm beneath tissue phantom with PaDI reconstructions using a model-based
method (for comparison) and proposed learning-based method. All figures in (C) share same color wheel (dynamic scatter fluctuation rate), scale bar,
and x–y coordinates

Figure 4A shows a few representative raw SPAD array mea-
surements (1.5 μs exposure time). 12 circular spots in the raw
frame are roughly discernible. Each spot contains photon count
statistics of scattered light collected from one of 12 different lo-
cations on the tissue phantom surface and delivered to the ar-
ray via MMF. Figure 4B plots the intensity autocorrelation curves
for each of the 12 unique SPAD array regions (i.e., each unique
location on the tissue phantom surface). These curves are aver-
ages computed over space (all SPAD measurements per fiber)
and time (a frame integration time here of 0.4 s). The dynamic
scattering patterns used to generate each set of auto-correlation
curves are labeled on the upper right corner of each plot, and the
regions most sensitive to the perturbations are enlarged.

The first row of Figure 4C displays several examples of dy-
namic patterns from the vasculature dataset produced in our
phantom setup beneath 5 mm of turbid decorrelating media.
The second and third rows show PaDI reconstructions for these
patterns using our proposed learning-based method and a reg-

ularized model-based reconstruction method, for comparison.
Details regarding the model-based reconstruction method can
be found in Section S3, SUpporting Information. Due to the
ill-posed nature of the inverse problem and model-experiment
mismatch, model-based reconstruction results are less spatially
informative compared to our proposed learning-based method,
even when strong structural image priors are used. We observe
some marginal artifacts in reconstructions using the proposed
learning-based method, where the reconstructed edge values are
typically lower than the ground-truth, as the high frequency on
the edge is harder to reconstruct. While Figure 5A shows the
dynamic scattering potential reconstructions for unseen objects
drawn from a distribution that matches the training dataset, Fig-
ure 5B shows dynamic scattering reconstructions for unseen ob-
jects drawn from a different distribution as compared to the train-
ing dataset. These results suggest that the trained network has
the generalizability to predict unseen dynamic scattering objects
that have limited correlation with expectation. At the same time,
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Figure 5. PaDI reconstructions of spatiotemporal dynamics for various patterns and decorrelation speeds hidden beneath 5–8 mm thick turbid volume.
A) Reconstructions of letter-shaped dynamic scatter patterns hidden underneath 5 mm turbid volume, sampled from a distribution that matches training
data distribution. B) Reconstructions of digit-shaped dynamic scatter patterns hidden underneath 5 mm turbid volume, drawn from a different distribu-
tion as compared to training data distribution. C) Reconstructions of objects at varying dynamic scattering rate hidden beneath 5 and 8 mm-thick turbid
volume, along with E) resolution analyses for different depths using different number of fiber detectors. D) A few reconstruction frames from a video
taken over 3 s. F) plots four of decorrelation rates change in time. A set of autocorrelation curves from these four-fiber detection at 1.4 s is presented on
the right. G) Plots of average SSIM between ground-truth and reconstructed speed maps as a function of frame integration time Tint for various tested
datasets. H) Plots of average SSIM between ground-truth and reconstructed speed maps as a function of number of detection fibers used for image
formation. (G) and (H) share the same legend listed at the bottom of the figure. Imaging datasets are described in the Section 2.3.

we also observe that the reconstructions for the objects drawn
from a different distribution are less sharp than reconstructions
for objects drawn from the same distribution as the training
set, even though the average structural similarity index measure
(SSIM)[61] values between the two testing datasets are compara-
ble, as shown in Figure 5G–H.

Next, we tested the ability of PaDI to resolve decorrelation
speed maps that vary as a function of space and at different phan-
tom tissue depths. PaDI reconstructions for two variable-speed
perturbations under both 5 and 8 mm of turbid medium are in
Figure 5C. In this experiment, 1280 and 108 patterns of variable
speed and shape were utilized for training and testing, respec-
tively. First, we observe that PaDI can spatially resolve features
while still maintaining an accurate measure of unique decorrela-
tion speeds. When structures with different decorrelation speeds
begin to spatially overlap, the associated reconstructed speed val-

ues close to the overlap boundary are either lifted or lowered
toward that of the neighboring structure. This is expected, as
the detected light travelling through the “banana-shaped” light
path contains information integrated over a finite-sized sensi-
tivity region that will effectively limit the spatial resolution of
the associated speed map reconstruction. Moreover, we also ob-
served that PaDI reconstructions of dynamics hidden beneath a
thicker 8 mm scattering medium are less accurate than those
for dynamics beneath a 5 mm scattering medium. A resolution
analysis based on the contrast in the edge regions of the circles,
and the width of 10–90% edge response is also provided in Fig-
ure 5E. Speckle fluctuations sampled by our current configura-
tion on the phantom tissue surface are less sensitive to decor-
relation events occurring within deeper region. Creating a PaDI
probe with larger source-detector separations can help address
this challenge, as detailed in the Section 2.4. Further, we collect
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Figure 6. A) Illustration of deep tissue phantom capillary flow experiment. PaDI network is first trained on synthetic data generated by DMD phantom,
then applied to reconstruct images from separate capillary flow phantom setup. B) Examples of dynamic scattering patterns used for training, generated
at up to 12 kHz on DMD phantom. C) Representative images reconstructed with proposed learning-based method, along with ground truth. Dynamics
are generated with two capillary tubes buried beneath a 5 mm scattering volume exhibiting variable-speed liquid flow.

continuous data for 3 s, where the dynamic patterns hidden un-
derneath present for 0.3 s, and change every 0.5 s. We show re-
constructions of a few frames at Figure 5D. Figure 5F plots four of
decorrelation rates change in time. The decorrelation rates are ex-
tracted by fitting each autocorrelation curves (using a Levenberg–
Marquardt algorithm) with 1 + 𝛽e𝛾𝜏 , where 𝜏 is delay-time and 𝛾

is the decorrelation rates. These autocorrelation curves are used
to generate reconstructions in Figure 5D. 3 s continuous mea-
surements are taken, and the curves are estimated using 0.3 s in-
tegration window and 66.7% overlap between sliding windows.
A set of autocorrelation curves from these four-fiber detection at
1.4 s is presented on the right. We additionally conducted an ex-
periment to study how our model, trained with data generated on
our digital phantom, can reconstruct images of the dynamic scat-
tering introduced by more biologically realistic contrast mecha-
nisms. Noninvasive imaging of deep blood flow dynamics, such
as hemodynamics within the human brain, is an important ap-
plication for diffuse optical correlation-based measurements. Ac-
cordingly, we modeled deep hemodynamic flow by placing two
capillary tubes (3 mm diameter) directly beneath a dynamic scat-
tering volume (same optical properties: 𝜇a = 0.01 mm−1, 𝜇′

s =
0.7 mm−1) flowing at two different speeds (2.7 and 8.0 mm s−1)
via syringe pump injection. After training an image formation
model with PaDI data captured on our DMD-based phantom (630
maps of randomly oriented tube-like objects varying at 4–12 kHz,
see Figure 6A), we acquired PaDI data from this unique capillary
flow phantom and applied the DMD phantom-trained model to
produce images as shown in Figure 6B. Here, we observe recon-
structed image measurements of relative flow speed with spatial
and temporal structures that match ground truth, pointing to-
ward a system that can potentially image dynamic scattering be-
neath tissue in vivo using learning-based reconstruction methods
trained with more easily accessible synthetic data.

Finally, we assessed experimental PaDI performance as a func-
tion of detection speed and number of spatial measurement
points using the SSIM metric,[61] as more than one contrast
mechanism (DMD, fluid dynamics) used in different experi-
ments. Figure 5G,H plot average SSIM as a function of frame
integration time Tint and as a function of number of surface

detectors P for all datasets above. Figure 5G’s data used all 12
unique phantom surface locations for its reconstructions. 5(H)’s
data used a 0.4 s frame integration time. From these plots, it is
clear that a longer frame integration time improves reconstruc-
tion performance, at the expense of a proportionally decreased
PaDI frame rate. In addition, collecting speckle dynamics from
more surface locations improves the reconstruction results, as
expected. This is not only because the imaging (photon-sensitive)
region of the 12-fiber system is larger than that using fewer
fibers, but also because the overlap between banana-shaped pho-
ton paths from adjacent fiber detectors (e.g., see Figure S2, Sup-
porting Information) provides redundant data that is beneficial
to accurate image formation.

2.4. Discussion

In summary, we have developed a new parallelized speckle sens-
ing method that can spatially resolve maps of decorrelation dy-
namics that occur beneath multiple millimeters of tissue-like
scattering media. Our approach utilizes diffuse correlation prin-
ciples to sample speckle fluctuations from different locations
along a scattering medium’s surface at high speed. Unlike prior
work, our system records all such measurements in parallel to re-
construct transient speed maps at multi-hertz video frame rate,
and uses a novel machine learning approach for this reconstruc-
tion task that outperforms standard model-based solvers.

While we demonstrated that PaDI can rapidly image dynamic
events occurring under a decorrelating tissue phantom, several
potential improvements can be made to ensure effective trans-
lation into in vivo use. First, as shown in the raw speckle data
from the SPAD array, the fiber bundle we use was not optimized
to maximize the speckle detection efficiency—our fiber bundle
array did not map surface speckle to all SPADs within the ar-
ray. Future work will endeavor to utilize a custom-designed fiber
bundle that provides better array coverage. We note that detec-
tion efficiency was further reduced in our phantom setup by the
cover glass surfaces on both sides of the cuvette holding the liq-
uid tissue phantom, both via reflection and by enforcing a finite
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standoff distance from the phantom for the fiber probe, which
decreased light collection efficiency. This can be resolved in the
future using a more suitable material,[62] which we expect to fur-
ther improve the sensitivity of our PaDI system. In addition, we
used a DMD in this work to generate simulated deep-tissue dy-
namics because it provided an easily reconfigurable means to as-
sess performance for a variety of decorrelating structures. The
use of a DMD restricted the total lateral dimension of the phan-
tom tissue and hidden structure that we were able to probe, which
additionally prevented us from being able to investigate larger
source-detector separations that are well-known to improve de-
tection accuracy for deeper dynamics. Based upon the findings
in this work, a tissue phantom with embedded vessel phantoms
containing flowing liquid can be designed to provide additional
verification of PaDI imaging performance at greater depths.[63]

Recently developed time-of-flight[64,65] methods also enhance sig-
nal from greater depths and can be considered as additional av-
enues through which PaDI can be improved.

In the future, we also plan to study how our system can jointly
image blood flow at variable oxygenation levels. By adding an
isosbestic wavelength to the current system, we can potentially
spatially resolve blood flow speed as a function of oxygen level.
On the computational side, one of the problems of using classic
supervised deep learning methods as a maximum likelihood es-
timator is reconstruction reliability concern. One expensive so-
lution is to expand the training set to include large amount of
objects. In this data-rich scenario, meta-learning approaches can
also be considered, where part of the network weights are allowed
to be changed depending on different imaging setups.[66] In a re-
source limited situation, however, an alternative strategy might
assess the reliability by predicting the uncertainty along with the
reconstruction using approximate deep Bayesian inference.[67]

These additional investigations will aid with the eventual transla-
tion of PaDI into a practical and reliable tool for recording video
of deep-tissue blood flow in in vivo subjects in the future.

3. Experimental Section
Data Acquisition and Preprocessing: The SPAD array’s 1024 (32 × 32)

independent single SPADs were used to count photons arriving at each
pixel with a frame rate of 666 kHz and a bit depth of 4. This is equiva-
lent to an exposure time of Ts = 1.5 μs. To extract the temporal statistics
from measurements of randomly fluctuating surface speckle at 666 kHz,
then a temporal autocorrelation was computed on a per-SPAD basis. Al-
though it was noted that there were a number of strategies available to
compute such temporal statistics across a SPAD array (e.g., joint process-
ing across pixels, examining higher-order statistics, or more advanced au-
tocorrelation inference methods[68,69]), the per-pixel method was selected
here as it was well-established.[34–36] The temporal autocorrelations was
computed across “frame integration time” of typically Tint = 0.4 s, which
yielded N = Tint/Ts frames per autocorrelation measurement. Rather than
using a physical correlator module, the time-resolved photon stream was
recorded as a 1024 × N array and compute the autocorrelations in soft-
ware, where typically N = 266 k. The effect of using a shorter Tint and
fewer SPADs per measurement were also explored and the results were
compared in Figure 5G,H.

As illustrated in Figure S4, Supporting Information, the normalized
temporal intensity autocorrelation[18] of each pixel were computed as

gp,q
2 (𝜏) =

⟨Ip,q(t)Ip,q(t + 𝜏)⟩Tint

⟨Ip,q(t)⟩2
Tint

(4)

where Ip, q(t) is the photon count detected by the qth SPAD for pth fiber at
time t; 𝜏 is time-lag (or delay or correlation time), and ⟨⋅⟩Tint

denotes time

average estimated by integrating over Tint. After calculating gp,q
2 (𝜏) for each

single SPAD, an average, noise-reduced curve was ten obtained by aver-
aging curves that were produced by the Qp unique SPADs that detected
light emitted by the same MMF detection fiber

gp
2(𝜏) = 1

Qp

Qp∑
q=1

gp,q
2 (5)

for the pth MMF fiber, where a total of 12 MMF were used. A straightfor-
ward calibration procedure allowed to identify the Qp SPADs within the
array that received light from the pth MMF, which was saved as a look-up
table. Next, the gp

2(𝜏) was compiled from each fiber into a set of 12 average
intensity autocorrelation curves per frame, with the aim of reconstruct-
ing the spatiotemporal scattering structure hidden beneath the decorre-
lating phantom. An example set of intensity autocorrelation curves is in
Figure 1B. The maximum lag or delay time 𝜏max was selected at 600 μs, as
the values of the intensity autocorrelation started approaching 1 asymp-
totically.

Statistical Analysis: In addition to the quantitative analysis reported
in Figure 5, here, the computed decorrelation rates 𝛾 of the autocorrela-
tion curves for the phantom itself, and when DMD is flickering, was also
reported. To estimate decorrelation rates for the phantom when no per-
turbation occurs, 10 sets of data were captured and computed within 1 h.
Each set contained measurements from 12 fibers. From those parallelized
speckle sensing data, an average 𝛾 = 8.384 × 103s−1 was estimated, with
a standard deviation 𝜎𝛾 = 0.518 × 103 s−1. The average and standard devi-
ation of decorrelation rates for the Letter, Digit, Circles dataset described in
Section 2.3 are 8.476± 0.396× 103, 8.480± 0.460× 103, and 8.515± 0.435
× 103 s−1, respectively. Again, the curves were fitted using a Levenberg–
Marquardt algorithm. While this suggests light decorrelated faster on aver-
age when the DMD was flicking, a single number was not used to represent
how fast the light decorrelated. Instead, all 12 decorrelation curves were
used per event for image reconstructions, as described in Section 2.2.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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