Table 16.
Feature | Model | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Original | LSTM | 0.84 | 0.84 | 0.83 | 0.83 |
CNN | 0.93 | 0.94 | 0.92 | 0.93 | |
CNN-LSTM | 0.90 | 0.90 | 0.88 | 0.88 | |
FS | LSTM | 0.62 | 0.63 | 0.59 | 0.59 |
CNN | 0.86 | 0.87 | 0.84 | 0.85 | |
CNN-LSTM | 0.77 | 0.78 | 0.73 | 0.74 | |
BE | LSTM | 0.57 | 0.61 | 0.54 | 0.54 |
CNN | 0.86 | 0.87 | 0.84 | 0.84 | |
CNN-LSTM | 0.86 | 0.87 | 0.84 | 0.85 | |
BiDFE | LSTM | 0.83 | 0.83 | 0.80 | 0.80 |
CNN | 0.85 | 0.84 | 0.81 | 0.82 | |
CNN-LSTM | 0.87 | 0.88 | 0.84 | 0.86 | |
ML FS | LSTM | 0.57 | 0.63 | 0.54 | 0.55 |
CNN | 0.89 | 0.89 | 0.87 | 0.88 | |
CNN-LSTM | 0.92 | 0.91 | 0.91 | 0.91 |