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Abstract: In heart failure with reduced ejection fraction (HFrEF), cardiogenic edema develops from
impaired cardiac function, pathological remodeling, chronic inflammation, endothelial dysfunction,
neurohormonal activation, and altered nitric oxide-related pathways. Pre-clinical HFrEF studies
have shown that treatment with sodium–glucose cotransporter-2 inhibitors (SGLT-2i) stimulates
natriuretic and osmotic/diuretic effects, improves overall cardiac function, attenuates maladaptive
cardiac remodeling, and reduces chronic inflammation, oxidative stress, and endothelial dysfunction.
Here, we review the mechanisms and effects of SGLT-2i therapy on cardiogenic edema in various
models of HFrEF. Overall, the data presented suggest a high translational importance of these
studies, and pre-clinical studies show that SGLT-2i therapy has a marked effect on suppressing the
progression of HFrEF through multiple mechanisms, including those that affect the development of
cardiogenic edema.

Keywords: edema; HFrEF; dilated cardiomyopathy; excessive extracellular fluid; fluid management;
endothelial dysfunction; inflammation; cardiac remodeling

1. Introduction

Heart failure (HF) affects about 64.3 million people worldwide [1], including an esti-
mated 6.2 million in the United States [2]. The prevalence of symptomatic HF is expected to
increase 46% by 2030, in comparison to 2012 [3]. HF with reduced ejection fraction (HFrEF)
is characterized by progressive heart enlargement and declining contraction that leads
to clinical symptoms (breathlessness, fatigue, swelling, etc.) from pathological fluid and
sodium retention (edema) [4,5]. Sodium retention and the dysregulation of neurohumoral
systems, including the sympathetic nervous system, renin–angiotensin–aldosterone system
(RAAS), and the natriuretic peptide (NP) system, lead to excessive extracellular fluid ac-
cumulation in the interstitial space or edema (pulmonary, pleural effusion, ascites and/or
gross/systemic peripheral fluid retention), which are hallmarks of symptomatic HF [5–12].
Symptomatic HF adversely impacts quality of life, is the primary cause of patient hospital-
ization, and is associated with premature mortality [13–20]. The prognostic role of edema is
confirmed by clinical trials and post hoc analysis [13,19,21–23]. Maintaining physiologically
relative fluid homeostasis is one of the primary goals of HF management [17,24].

During the last decade, significant progress has been made in the management of
HFrEF with clearly defined, guideline-directed therapies [5,25–31]. Pharmaco-therapeutic
interventions for HFrEF include modulating the neurohumoral response by targeting
RAAS with angiotensin-converting enzyme inhibitors and angiotensin II (Ang II) receptor
blockers; the sympathetic nervous system with beta-blockers; the mineralocorticoid system
with mineralocorticoid receptor blockers (MRBs); and both RAAS and NP systems with
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combined Ang II receptor–neprilysin inhibitors (ARNI). However, better pharmacological
interventions for reversing or preventing cardiogenic edema are needed. Early treatment at
the pre-clinical stages may prevent HF progression to symptomatic stages with or without
decompensation and improve outcomes. Most recently, the US Food and Drug Adminis-
tration approved a new class of drug for the management of HF with reduced, mid-range
or preserved ejection fraction called sodium–glucose cotransporter-2 inhibitors (SGLT-2i,
originally developed as glucose-lowering agents), including canagliflozin, dapagliflozin,
empagliflozin, and ertugliflozin [32,33]. In patients with HFrEF, SGLT-2i-based thera-
pies enhance natriuresis/diuresis, modulate neurohumoral activation, improve cardiac
and renal functions, functional status, duration, and quality of life [34]. These agents
reduce HF-related hospitalization rates that are due to the aggravation of HF signs and
symptoms caused by edema, independent from the reduction in glycemic level and the
co-administration of guideline-directed HF therapy [34].

In HF, the retention of sodium and water by the kidneys leads to an expansion of
free fluid in the interstitial compartments or edema. The expansion of the interstitial
fluid volume is aggravated by vascular leakage caused by inflammation and endothelial
dysfunction [35,36] and is associated with impaired extra fluid removal from the interstitial
to intravascular space, which is in part caused by pathological alteration in the capillary
dynamics and lymphatic system [24,37–39]. Fluid accumulation in the lungs manifests
as cardiogenic pulmonary edema, while peripheral interstitial fluid overload manifests
as soft tissue or third space edema. In contrast to classical diuretics, which affect blood
plasma volume, SGLT-2i efficiently lowers edema by reducing pathological HF-related
sodium retention and intestinal fluid volume [34,40–43]. Treatment with SGLT-2i also
reduces the plasma level of N-terminal pro B-type natriuretic peptide (NT-pro-BNP) as an
indicator of HF-associated reduced edema [44]. SGLT-2i receptor SGLT-2 is not expressed
by cardiac tissue [45], excluding direct action of this class of drug on the heart. Therefore,
the molecular and pathophysiological mechanisms of action of SGLT-2i in HFrEF remain
inconclusive, although many intriguing hypotheses and mechanisms of action have been
proposed [46–49].

This review aims to summarize the current evidence from pre-clinical translational
studies, providing mechanistic experimental support for SGLT-2i action targeting the
normalization of sodium–water homeostasis and the attenuation or prevention of edema
signs and symptoms in HFrEF.

2. Contribution of Neurohumoral Activation, Cardiorenal Dysfunction and Cardiac
Remodeling to Edema in HFrEF

Regardless of the etiology causing ventricular dysfunction, the ensuing compensatory
mechanisms that occur in response to decreased cardiac output will be the same. Decreased
cardiac output leads to a reduction in the intra-arterial effective circulating volume [24].
Subsequent sympathetic nervous system activation leads to an increase in heart rate and
peripheral vasoconstriction. Concurrent RAAS activation and decreased renal perfusion
lead to a reduction in sodium and water excretion from the kidneys [26,50]. Increased
adrenergic tone and (Ang II)-induced vasoconstriction cause cardiac pressure overload.
Increased intra-cardiac filling pressure leads to a backup of fluid in the pulmonary vascula-
ture and the development of pulmonary congestion symptoms [9]. Increased water and
sodium retention leads to intravascular blood volume expansion as well as interstitial fluid
accumulation (extracellular water). Increased blood volume leads to increased central fill-
ing pressures and contributes to the development of peripheral congestion symptoms [9,24].
Edema directly increases pre-load as a feedback mechanism, contributing to left ventricular
wall stress, cardiac remodeling and overall further decline in cardiac function [17].

During the asymptomatic stage of ventricular dysfunction (at risk for HF or at pre-HF
stage [5]), the effects of elevated intra-cardiac filling pressures are mitigated by structural
ventricular remodeling and the compensatory interdependent activation of neurohumoral
systems. Thus, the early activation of the sympathetic nervous system and RAAS ini-
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tially may help to maintain cardiac output and systemic perfusion. This compensatory
response prevents the development of clinically evident signs or symptoms associated
with the dysregulation of sodium–water homeostasis. As systolic dysfunction progresses,
increased volume within the ventricles leads to an alteration in ventricular architecture,
including myocyte hypertrophy/dilation, myocyte apoptosis, myofibroblast proliferation,
and interstitial fibrosis [51]. Decreased forward flow as a result of decreased contractility
leads to pathological neurohumoral activation, and the increased production of pro-atrial
(ANP) and pro-B-type (BNP) natriuretic peptides by atria and ventricles as a compensatory
mechanism. However, as HFrEF progresses, the NP system becomes impaired [52–54]
and unbalanced persistent neurohumoral activation eventually becomes maladaptive and
contributes to extracellular fluid retention or edema via vascular exchange to the interstitial
space [26,41,50,55–57].

3. Evidence Supporting Edema Attenuation by SGLT-2i in Pre-Clinical HF Models

SGLT-2i inhibits renal sodium reabsorption and increases the urinary excretion of
sodium, which may attenuate symptomatic HFrEF by reducing pulmonary and systemic
edema and/or preventing edema formation [34]. Pre-clinical studies in animal models of
HFrEF have shown that, in addition to natriuretic and osmotic/diuretic effects, treatment
with SGLT-2i positively modulates edema-related plasma biomarkers and physiological
outcomes contributing to edema modulation. Thus, SGLT-2i improves cardiac output
and attenuates maladaptive cardiac remodeling, chronic inflammation, oxidative stress,
and endothelial dysfunction (ED) by restoring the activity of nitric oxide (NO) within the
vascular endothelium. The ability of SGLT-2i to attenuate inflammation and ED strongly
suggests that SGLT-2i may help prevent fluid leakage from the vascular compartment to the
interstitial space and prevent edema development. Despite the fact that the direct action of
SGLT-2i on cardiac tissue is unlikely since SGLT-2 protein is not expressed in the heart, the
combined impact of anti-inflammatory, anti-oxidative stress, and anti-ED effects of SGLT-2i
may improve ventricular and global cardiac output, reduce fibrosis, suppress edema, and
overall, attenuate HF progression.

3.1. Impact of SGLT-2i on Neurohumoral Activation toward Edema Restraining in HFrEF

SGLT-2i might retard HF-associated chronic activation of the sympathetic nervous
system and RAAS, which stimulates salt and water retention by the kidneys and crucially
contributes to pulmonary and systemic edema formation [26,58,59].

Experimental data related to the association between SGLT-2i treatment and RAAS
modulation are limited to translational models of type 2 diabetes mellitus [60]. Overstimu-
lation of the sympathetic nervous system in HFrEF is associated with elevated levels of
norepinephrine in circulation [59]. Neurohormonal activation was attenuated in a group
of non-diabetic pigs with post-MI HFrEF treated with empagliflozin, as demonstrated
by reduced plasma levels of norepinephrine catabolites in comparison with the control
experimental group [61]. Persistent sympathetic activation causes tachycardia [62]. In
contrast to diuretics that elevate resting heart rate, SGLT-2i treatment is not associated with
heart rate elevation [49] and may even reduce it [63], therefore suppressing pathologically
elevated sympathetic activity. A trial in patients with HFrEF is warranted to align this
mechanism with SGLT-2i outcomes in the clinic.

3.2. SGLT-2i Positively Affect Natriuretic Peptide System, Diuresis/Natriuresis, HF Signs, and
Edema-Associated HF Plasma Biomarkers

The natriuretic peptide system plays a central role in natriuresis, diuresis, and va-
sodilatation, and balances the outcomes of the sympathetic nervous system and RAAS;
however, in symptomatic HFrEF, its physiologic activity is impaired [52,54,64,65]. The as-
sociations between plasma BNP/NT-pro-BNP levels and edema were incorporated into the
Universal Definition of Heart Failure [5]. In pre-clinical models of HFrEF, elevated plasma
and cardiac pro-BNP/BNP (and pro-ANP/NT-pro-ANP) levels were strongly associated



Biomedicines 2022, 10, 2016 4 of 16

with extracellular fluid accumulation and clinically relevant edema manifestation as pleural
effusion and pulmonary edema [53,56,66–69].

In a spontaneous hypertensive rat (SHR) HF model, treatment with empagliflozin
reduced expression levels of ANP/BNP and tumor necrosis factor alpha (TNFα) in the
ventricular tissue that were upregulated by HF [70]. In a zebrafish model of HF (induced
by aristolochic acid), treatment with empagliflozin (0.1%, 10 µg) dampened the expression
of ANP/BNP and downregulated related signaling pathways [66]. In an obese rat model
of spontaneous hypertensive HF, empagliflozin treatment (925 mg/kg body weight by oral
gavage for 6 months) decreased hepatic congestion [71]. In a post-myocardial infarction
(MI) rat model of HFrEF, empagliflozin treatment increased urinary sodium excretion
associated with a substantial reduction in body weight [72]. Utilizing a TAC-induced mouse
HFrEF model, the beneficial effects of empagliflozin treatment on cardiac function were
not dependent on natriuresis since the diuretic effect of SGLT-2i was not associated with
any significant changes in electrolyte balance (blood or urine Na+ and K+ concentrations).
ANP/BNP levels were not provided in this study [73].

3.3. SGLT-2i May Depress Edema by Improving Cardiac Function

Left ventricular function is an important indicator of HFrEF progression [1]. Reduced
cardiac output stimulates chronic activation of the sympathetic nervous system and RAAS
and promotes edema. The impact of SGLT-2i on systolic and diastolic function has been
evaluated in rat, mouse and pig translational models of HFrEF. Several studies have inves-
tigated cardiac function outcomes in post-MI HFrEF models of left anterior descending
(LAD) coronary artery ligation. In an ischemic reperfusion (IR) model of pre-diabetic obese
insulin-resistant Wistar rats on a high-fat diet, dapagliflozin improved LVEF [74]. In a post-
MI HFrEF model: (1) empagliflozin treatment increased LVEF [72], improved contractility,
stroke volume, and end-systolic blood pressure despite diuresis, and improved diastolic
function (reduction in LV end-diastolic pressure) [75]; canagliflozin IR model treatment
alleviated left ventricular (LV) systolic and diastolic dysfunction, which may be explained
by the increased phosphorylation of adenosine monophosphate-activated protein kinase,
eNOS, and subsequent vasodilation [76]; (2) in non-diabetic mice, dapagliflozin treatment
improved LV systolic function and LV mass [77]. In an MI porcine model, empagliflozin
treatment improved LV systolic function [61] and ameliorated diastolic dysfunction [78].
In a model of cardiomyopathy induced by Ang II infusion in diabetic mice, dapagliflozin
treatment increased LV fractional shortening [79]. In a genetic rat model of HFrEF (in-
ducible diabetes and hypertensive HF), treatment with empagliflozin increased EF [80].
In a mouse model of doxorubicin (DOX)-induced cardiomyopathy, treatment with em-
pagliflozin ameliorated LV dysfunction [81]. In a mouse model of cardiac pressure overload
(by transverse aortic constriction (TAC)), the treatment of empagliflozin attenuated LV sys-
tolic and diastolic dysfunction, perhaps by increasing glucose and fatty acid oxidation [82].
Treatment with empagliflozin blunted the decline in cardiac function in a mouse model of
TAC-induced HFrEF [73]. In a hypertensive HF model (spontaneous hypertensive rats fed
a high fat diet for 32 weeks), treatment with empagliflozin normalized end-systolic and
end-diastolic volume, but LV ejection fraction was not significantly improved [70]. Through
the various species and models presented, SGLT-2i—at a minimum—maintains, but in
most cases shows an overwhelming objective improvement in, cardiac function. Overall
outcomes of SGLT-2i in translational models of HFrEF are summarized in Table 1.
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Table 1. Cardiac outcomes of treatments with SGLT-2i in pre-clinical models of HFrEF.

Preclinical
Models

(species)

Drug
Dosage

Duration
Cardiac Function Cardiac

Remodeling Inflammation, ROS, ED

Hypertensive HF
model
(rat)

Empagliflozin
20 mg/kg/day

12 weeks
[70]

• Normalized end
diastolic, end systolic
volume.

• LVEF not significantly
improved [70]

• Reduced cardiac
fibrosis [70]

Genetic HFrEF model
(rat)

Empagliflozin
10 mg/kg/day

4 weeks

• Increased cardiac
function and LVEF [80]

• Decreased infiltration
by macrophages [80]

Post-MI
HFrEF model

(rat; mouse, pig)

Empagliflozin
10mg orally

2 months [61]

• Increased LV systolic
volume [61]

• Attenuated
remodeling post-MI
(lower LV, dilation,
sphericity) [61]

20 mg/kg/day
6 weeks [75]

• Improved contractility,
stroke work,
end-systolic blood
pressure diastolic
function [75]

• No improvement in
interstitial fibrosis or
cardiomyocyte
hypertrophy [75]

30 mg/kg/day
2 weeks [72]

• Improved LVEF [72]
• Attenuated

cardiomyocyte
hypertrophy, fibrosis
[72]

• Decreased
inflammation
alleviated oxidative
stress [72,83–85];

10 mg/day
2 months [78]

• Improved diastolic
function [78]

• Ameliorated diastolic
dysfunction [78]

• Reduced extracellular
volume [78]

• Increased eNOS
activity and NO
production and
bioavailability
associated with
cGMP-PKG axis [78]

10 mg/kg/day
2 weeks [81]

• Improved cardiac
remodeling [81]

Dapagliflozin
1 mg/kg/day
28 days [72,74]

• Improved LVEF [72,74]

1.5 mg/kg/day
4 weeks [77] • Systolic function [77]

• Inhibited cardiac
apoptosis and reduced
LV mass, cardiac
collagen 1/3,
ANP/BNP, TGF-β1
transcripts, cardiac
fibrosis [77]

• Lowered levels of
inflammatory
cytokines [77]

Canagliflozin
3 µg/kg

5 mins [76,82]

• Alleviated LV systolic
and diastolic
dysfunction [76,82]

Ang II-induced
cardiomyopathy

(mouse)

Dapagliflozin
1.5 mg/kg/day

30 days [79]

• Increased LV fractional
shortening [79]

• Decreased
inflammation and ROS
production [79]

DOX-induced
cardiomyopathy

(mouse)

Empagliflozin
(not provided) [81]

• Ameliorated LV
function [81]

• Lowered myocardial
fibrosis [81]

LPS-induced
cardiomyopathy

(mouse)

Empagliflozin
5 mg/kg [86]

• Preserved cardiac
function [86]

• Reduced cardiac iNOS,
plasma TNFα and
creatine kinase
MB [86]
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Table 1. Cont.

Preclinical
Models

(species)

Drug
Dosage

Duration
Cardiac Function Cardiac

Remodeling Inflammation, ROS, ED

TAC-induced HFrEF
(mouse)

Empagliflozin
10 mg/kg/day

2 weeks
post-surgery

[73,82]

• Attenuated the decline
in cardiac function
[73,82]

• Attenuated LV
remodeling [82]

• Decreased expression
of markers of cardiac
inflammation [73]

Heart failure (HF); Left ventricular ejection fraction (LVEF); Heart failure with reduced ejection fraction (HFrEF);
Left ventricular (LV); Angiotensin II (Ang II); Reactive oxygen species (ROS); Endothelial dysfunction (ED);
Doxorubicin (DOX); lipopolysaccharides (LPS); Inducible nitric oxide synthase (iNOS); Tumor necrosis factor
alpha (TNFα); Transverse aortic constriction (TAC).

3.4. SGLT-2i May Block Edema by Reducing Cardiac Remodeling

Pathological cardiac remodeling contributes to the development of edema and the
progression of HF [5,51]. Beneficial effects of SGLT-2i treatment were demonstrated on
inducible rat and mouse models of HFrEF (Table 1). In a hypertensive HF model (sponta-
neous hypertensive rats on a high-fat diet for 32 weeks), the treatment of empagliflozin
significantly attenuated cardiac fibrosis in atrial and ventricular tissues [70]. Empagliflozin
treatment attenuated adverse LV remodeling in post-MI HFrEF in pigs [61] and reduced
interstitial cardiac fibrosis in pigs HFrEF induced by 2 h balloon occlusion of the proxi-
mal left anterior descending artery [78], which was associated with reduced extracellular
volume [78]. In a rat post-MI model of HFrEF, empagliflozin treatment attenuated car-
diomyocyte hypertrophy and fibrosis [72], but did not show any improvement in interstitial
fibrosis or cardiomyocyte hypertrophy in another study [75]. In a mouse post-MI HFrEF
model: empagliflozin treatment improved cardiac remodeling by the inhibition of apopto-
sis, alleviated oxidative stress, restored mitochondrial membrane potential, and activated
AMPK signaling [83]; dapagliflozin treatment inhibited cardiac apoptosis and reduced
LV mass, the expression of cardiac collagen 1/3, atrial natriuretic peptide (ANP), B-type
natriuretic peptide (BNP), and transforming growth factor-β1 (TGF-β1) transcripts of
cardiac fibrosis histological staining [77]. Treatment with empagliflozin (10 mg/kg/day)
administered 3 weeks before MI improved cardiac remodeling and ameliorated fibrosis
and hypertrophy post-MI in both diabetic and non-diabetic rats. This is possibly due to the
increase in the myocardial expression of cardiac guanosine-5′-triphosphate enzyme cyclo-
hydrase 1 (cGCH1), which activates neuronal nitric oxide synthase (nNOS) and endothelial
nitric oxide synthase (eNOS) and inhibits inducible nitric oxide synthase (iNOS) [84]. In a
mouse model of DOX-induced cardiomyopathy, treatment with empagliflozin (dosage not
provided) lowered myocardial fibrosis [81]. In a rat model of cardiomyopathy (salt-sensitive
hypertensive rats fed a high-salt/high-fat diet) treatment with tofogliflozin (0.005% for
9 weeks) reduced cardiomyocyte hypertrophy, perivascular fibrosis and associated fibrosis
genes (ANP, BNP and interleukin 6) [87]. In an Ang II-induced model of cardiomyopathy
in diabetic mice, dapagliflozin treatment attenuated fibrosis [70]. Overall, SGLT-2i reduce
cardiac remodeling pathology, help to maintain a healthy cardiac tissue architecture, and
prevent diastolic dysfunction, thus preventing HF progression and edema development.

3.5. Impact of SGLT-2i on Cardiorenal Function Leading to Edema Suppression

Cardiac and renal function are highly interdependent and modulate sodium and
water retention. Increased sodium retention by the kidneys leads to intravascular blood
volume expansion, as well as interstitial fluid accumulation (extracellular water). SGLT-2i
may restrict excessive sodium and water retention in the interstitial space of the kidney
parenchyma and reduce edema formation in HFrEF [88]. In a rat chronic kidney disease
model caused by 5/6 subtotal nephrectomy and DOX-induced dilated cardiomyopathy,
empagliflozin treatment (20 mg/kg/day for 60 days) was associated with a lower kidney
injury score, decreased myocardial fibrosis, inhibited LV remodeling, and decreased BNP
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protein level in LV (an indicator of HF/pressure overload). This may be explained by
empagliflozin treatment causing downregulated autophagy, apoptosis, reduced markers
of oxidative stress (NADPH oxidase, NOX-1, NOX-2) in renal tubular cells, decreased
markers of DNA damage (phosphorylated histone H2AX) and mitochondrial damage (cy-
tosolic cytochrome C), and increasing indicators of mitochondrial integrity (mitochondrial
cytochrome C) [89].

3.6. SGLT-2i Block Activation of Sodium–Hydrogen Exchangers in the Heart and Kidneys That
Contribute to the Clinical Progression of HFrEF Associated with Edema

SGLT-2i may slow edema development and HF progression by blocking the activity of
sodium–hydrogen exchangers (NHE) expressed in the myocardium (NHE-1 isoform) and
in the proximal convoluted tubule of kidneys (NHE-3 isoform) [90], as well as the activity
of the late component of the cardiac sodium channel current in cardiomyocytes [91]. NHE-1
regulates cardiomyocyte pH and volume. NHE-3 is responsible for the reabsorption of
approximately 70% of filtered sodium [90]. In HFrEF, chronic neurohumoral activation
stimulates the activation of cardiac NHE-1 and renal NHE-3, leading to enhanced sodium
retention that contributes to the physiological and clinical progression of HFrEF associated
with fluid retention (edema) and increased sodium influx and intracellular calcium linked
to cardiac hypertrophy, cell injury and fibrosis [90,92,93].

Excess intracellular calcium within cardiac myocytes also increases arrhythmogenicity
due to increased cytosolic calcium during the relaxation phase of the cardiac cycle. The
inhibition of NHE-1 activity with cariporide in animal models of HF adequately restored
sodium and calcium handling, caused the regression of ventricular hypertrophy, and
improved several markers of electrophysiological remodeling such as reduced QT and
QRS intervals [94]. SGLT-2i antagonizes the effects of NHE in the heart and kidneys. An
in silico analysis of the mechanism of action of empagliflozin showed that it binds to and
inhibits the downstream signaling effects of NHE activation. The NHE blockade prevents
cardiomyocyte death by increasing the expression of apoptotic inhibitors in cardiomyocytes.
These findings were validated by an in vivo HF rat model, which showed that treatment
with empagliflozin led to an increased expression of anti-apoptotic proteins and slowed
HF progression [95]. However, several studies do not support empagliflozin as a potent
inhibitor of NHE-1 in the healthy heart [96,97].

3.7. SGLT-2i May Restrain Edema by Suppressing Chronic Inflammation and ROS

Chronic inflammation and oxidative stress promote maladaptive systolic dysfunction,
cardiac remodeling, and pulmonary/systemic edema, and therefore are hallmarks of HFrEF
pathophysiology [36,98–100]. Treatment with SGLT-2i decreased inflammation and/or the
production of reactive oxygen species (ROS) in inducible and genetic rat/mouse mod-
els of HFrEF. Empagliflozin treatment attenuated oxidative stress [72], and dapagliflozin
treatment lowered cardiac transcripts of inflammatory cytokines (TNFα, TGF-β1, Vcam-1,
MCP-1, Icam-1, IL-6) [77] in mouse/rat MI models. Incardiac dysfunction mouse mod-
els induced by administering lipopolysaccharide (LPS, 5 mg/kg) co-administration of
empagliflozin preserved cardiac function possibly by improved AMPK phosphorylation
and ATP/ADP, as well as reduced cardiac iNOS, plasma TNFα, and creatine kinase MB
(isoenzyme, found mostly in cardiac and some skeletal muscles) levels [86]. In a model of
cardiomyopathy by Ang II infusion in diabetic mice, dapagliflozin decreased inflammation
and ROS production [70]. In a genetic rat model of HFrEF (inducible diabetes and hyperten-
sive HF), treatment with empagliflozin decreased the infiltration of macrophages [80]. In a
mouse TAC-induced model of HFrEF, empagliflozin decreased the expression of markers
of sterile cardiac inflammation, possibly by attenuating the activity of the neutrophil-to-
lymphocyte ratio (NLR) family pyrin domain containing 3 (NLRP3) inflammasome; this
occurred in the absence of changes to ketone bodies or cardiac ATP use [73]. SGLT-2i
therapy clearly attenuates cardiac inflammation and ROS associated with HFrEF.
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3.8. SGLT-2i May Prevent Vascular Leakage and Edema by Improvement of
Endothelial Dysfunction

The endothelium is a semi-permeable barrier that plays a crucial role in tissue fluid
hemostasis by the tight control of fluid exchange from the vascular compartment to the
interstitial space [101]. The proper function of the vascular endothelium is vital for prevent-
ing the inadvertent extravasation of fluid into surrounding tissues or edema. Clinical and
translational HF is associated with a significant impairment of endothelium-dependent
vasodilation (endothelial dysfunction (ED)), which is mediated almost entirely by the
excess formation of superoxide radicals and other oxidant species that interfere with the
activation of nitric oxide (NO) and the bioavailability of cyclic guanosine monophosphate
(cGMP) [35,69,102]. Thus, in chronic HF, increased oxidative stress and the dysregulation
of NO pathways lead to coronary/peripheral arteries and/or lung ED, which contribute to
HF decompensation (NYHA class IV, pulmonary edema) and are associated with hospital-
ization and heart transplantation [103–105].

In HFrEF, treatment with SGLT-2i may prevent vascular leakage leading to edema
by the prevention or improvement of ED. The impact of SGLT-2i on attenuating ED by
restoring the activity of NO within the vascular endothelium in pre-clinical and clinical
studies has been comprehensively overviewed [106–109]. Several pre-clinical studies
have demonstrated that one of the off-target effects of SGLT-2i may involve a reduction
in ED [106,107]. These pre-clinical studies were predominantly conducted on models
of diabetes, since ED is known to be a major mediator of diabetic vascular disease. In
a porcine model of HFrEF induced by 2 h balloon occlusion of proximal LAD artery,
treatment with empagliflozin increased the activity of eNOS and NO production and the
bioavailability associated with the activation of the cGMP–PKG axis [78]. Ex vivo studies
have demonstrated that SGTL-2i may directly induce vasodilation by several mechanisms,
including the modulation of cell adhesion molecules, the attenuation of inflammation,
and reduced oxidative stress [106]. Treatment with empagliflozin was associated with a
significant improvement in endothelial-dependent vasodilation in streptozotocin (STZ)-
induced type 1 diabetes mellitus (T1DM) rat models [107]. Empagliflozin has been found to
improve the enzymatic activity of eNOS, a key enzyme in the production of the one of the
most important mediators of vasodilation, NO, in STZ-induced diabetic rats [107]. Thus,
SGLT-2i may exert its vasodilatory effects by restoring the activity of NO within the vascular
endothelium. Another possible mechanism by which SGLT-2i carriy out their vasorelaxant
effect is by inhibiting glucose-mediated membrane depolarization [110]. One study found
that canagliflozin and phlorizin induced membrane hyperpolarization in pulmonary artery
smooth muscle cells. This finding was attributed to the activation of potassium channels in
the plasma membrane of these cells by NO [110]. Empagliflozin restored the beneficial effect
of cardiac microvascular endothelial cells on cardiomyocyte function in a co-culture system
of human cardiac microvascular endothelial cells with adult rat ventricular cardiomyocytes
by reducing mitochondrial oxidative damage and, ROS accumulation, and increasing
the bioavailability of endothelial NO [109]. Still, an investigation of SGLT-2i treatment
outcomes on pre-clinical model(s) of DCM-HFrEF characterized by impaired NO-cGMP
bioavailability and cardiac eNOS production [69] is warranted.

3.9. Alteration of Cardiac Metabolism and Energy Utilization by SGLT-2i Improves Cardiac
Structure and Function, Which May Contribute to Edema Reduction

As noted in earlier sections, the effects of SGLT-2i on cardiac tissue are largely indirect.
However, cardiac metabolism is directly altered with the inclusion of SGTL-2i therapy.
The failing heart is characterized by altered cardiac muscle contraction, increased oxygen
demand, and high cellular turnover, resulting in an increased metabolic demand to sup-
port the pathologic condition which can manifest symptomatically as cardiac cachexia
and sarcopenia [56,111]. By lowering circulating glucose levels, SGLT-2i shifts the cardiac
metabolism to function under a fasting-like state (catabolic), with energy provided by
gluconeogenesis and ketogenesis [112]. The energy-deficient state increases cardiac au-
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tophagy (cellular cleanup) by activating the SIRT1/PGC-1α/FGF21 pathway, thus reducing
local inflammation, lowering oxidative stress, and removing dysfunctional cells that may
otherwise contribute to myocardial remodeling as a consequence of cellular necrosis [112].
Ketone utilization produces more ATP than glucose or other metabolites [113], thus im-
proving the energy supply for HFrEF. The increased availability of cardiac energetics with
SGLT-2i therapy has been shown to improve cardiac structure and function in mice with
and without T2DM [114,115]. These improvements should reduce cardiogenic-associated
edema in HFrEF models treated with SGLT-2i therapy, though additional studies are needed
to specifically investigate this correlation.

4. Limitations

Pathological RAAS overactivation and the impairment of the NP system significantly
contributes to sodium retention and fluid accumulation in the interstitial space leading to
edema. However, pre-clinical studies targeting the impact of SGLT-2i on these systems and
overall neurohumoral activation are currently lacking. In HFrEF clinical and pre-clinical
studies, treatment with SGLT-2i leads to an overall improvement of left ventricular function
and the attenuation of cardiac remodeling, which are essential promoters and indicators
of edema development and HF progression. Still, the direct mechanisms responsible for
such beneficial action of SGLT-2i remain unclear, since cardiac tissue lacks the SGLT-2i
receptor SGLT-2.

One major issue surrounding clinical and pre-clinical cardiogenic edema is the ability
to detect early changes in excess fluid during the transition from the pre-symptomatic to
the symptomatic phase of HF. Current diagnostic imaging modalities include echocardiog-
raphy, MRI, CT, and thoracic radiography, though they often require specialized training
for image collection and analysis. Quantitative magnetic resonance (QMR) has been intro-
duced as an objective and longitudinal method for diagnosing and monitoring systemic
cardiogenic edema in animal models [56,67,69,116,117], which may offer a refined method
for monitoring edema therapeutic response throughout all phases of HF.

The locomotive and anatomical differences between human and animal models
(mice, rats, pigs) used should also be considered. Upright (bipedal) versus horizontal
(quadrupedal) orientation may have translational differences for the effects of edema devel-
opment, manifestation, and clearance. Known differences include: pedal edema (humans),
which is less commonly observed in the forelimbs of animals exhibiting HF due to changes
in subcutaneous space [118]; the alteration of fluid lines and pulmonary patterns in thorax
imaging due to gravity-dependence [119]; and evolutionary changes in baroreceptor sites
and function throughout mammalian species [120]. Additional considerations for manag-
ing hospitalized HF patient positioning (horizontal recumbent, supine) when undergoing
treatment and care for cardiogenic edema should be examined, as unanesthetized HF ani-
mal models rarely adopt this orientation. Newer studies suggest proning edema patients,
and thus placing them in a more animal-like posture [119,121] to improve outcomes.

SGLT-2i is recommended in the outpatient setting for all patients with stable HFrEF
conditions [122]. As with most pharmacological treatments, side effects and limitations for
use have been reported from clinical trials and medical practice with SGLT-2i [123–125].
The most common clinical side effects might include fatigue, nausea, increased drinking,
sudden urge to urinate, dry mouth, female urinary tract infections, hypotension, changes
in blood pH, and, more rarely, acute renal pathology, bone fractures, and lower limb
amputations. As a result of study design and inability to communicate directly with the
patient, unfortunately, most pre-clinical studies are not able to account for all potential side
effects prior to advancing to human administration.

5. Conclusions

Effective edema prevention and treatment are the primary goals of HF management
and an unmet need to improve quality of life, reduce HF-related hospitalization rate, and
prolong life. HFrEF pre-clinical studies have demonstrated that SGLT-2i treatment may
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attenuate edema formation through the stimulation of natriuretic and osmotic/diuretic
effects, improvement in overall cardiac function, and the suppression of maladaptive
cardiac remodeling, chronic inflammation, oxidative stress, and endothelial dysfunction
(Figure 1). By repressing inflammation and endothelial dysfunction, SGLT-2i may prevent
vascular leakage and edema development associated with extensive fluid accumulation
in the interstitial space. In addition to its anti-inflammatory, anti-oxidative stress, and
anti-fibrotic effects, SGLT-2i improves ventricular and global cardiac output, suppresses
edema, and slows the rate of HF progression, locally in terms of cardiac function, and
systemically at the kidneys, which appear to be the primary site of action.
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