Skip to main content
. 2022 Aug 11;12:900049. doi: 10.3389/fonc.2022.900049

Table 3.

Effectiveness of the three models in discriminating AIS-MIA from IAC in the derivation, internal validation, and external validation sets.

Az (95% CI) Cutoff value SEN (%) SPE (%) PPV (%) NPV (%) ACC (%) F1-score MCC Model-fitting information
AIC (%) R2 value
Derivation set
Clinical-radiographic model 0.779 (0.747-0.809) >0.471 64.8 76.8 71.9 70.3 71.0 0.682 0.443 47.5 0.225
Radiomics model 0.865 (0.839-0.889) >0.456 75.3 81.5 78.9 78.2 78.5 0.770 0.569 63.2 0.398
Combined model 0.872 (0.846-0.895) >0.494 78.7 82.0 80.1 80.7 80.4 0.794 0.607 64.5 0.415
Internal validation set
Clinical-radiographic model 0.810 (0.762-0.852) >0.416 66.9 76.8 72.7 71.6 72.1 0.697 0.439 53.0 0.279
Radiomics model 0.884 (0.843-0.917) >0.531 78.1 83.5 81.4 80.6 81.0 0.797 0.618 66.8 0.444
Combined model 0.887 (0.847-0.920) >0.560 80.1 84.8 82.9 82.2 82.5 0.815 0.650 68.4 0.466
External validation set
Clinical-radiographic model 0.855 (0.799-0.901) >0.419 71.3 80.8 77.0 75.7 76.3 0.740 0.523 60.9 0.367
Radiomics model 0.924 (0.878-0.957) >0.444 83.5 84.2 83.5 84.2 83.8 0.835 0.613 73.3 0.535
Combined model 0.917 (0.869-0.951) >0.472 84.5 86.1 85.4 85.3 85.4 0.850 0.707 73.8 0.542

Az, area under the receiver operating curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy; MCC, Matthews correlation coefficient; AIC, Akaike information criterion; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma.