Skip to main content
. 2022 Aug 22;12(8):2030. doi: 10.3390/diagnostics12082030

Table 2.

Comparison with previously published methods based on SSD, WCE, CVC-ClinicDB, and ETIS-Larib test sets. Pre-train means that a pre-trained backbone was adopted to initialize the model or it was initialized from scratch. The speed (FPS) and the (mAP) performances were tested using google Colab pro+ GPU.

Training Data Methods Backbone Input Size Pre-Train FPS mAP@0.5(%)
WCE
SSD300 VGG16 300 × 300 × 3 46 77.2
SSD300 ResNet-101 300 × 300 × 3 47.3 81.65
SSD500 VGG16 300 × 300 × 3 19 79.45
SSD500 ResNet-101 300 × 300 × 3 20 84.95
WCE FSSD300 VGG16 300 × 300 × 3 65.9 89.78
FSSD500 VGG16 500 × 500 × 3 69.6 88.71
DF-SSD300 [41] DenseNet-S-32-1 300 × 300 × 3 11.6 91.24
L_SSD [58] ResNet-101 224 × 224 × 3 40 89.98
MP-FSSD [18] VGG16 300 × 300 × 3 62.57 93.4
Hyb-SSDNet (ours) Inception v4 299 × 299 × 3 44.5 93.29
CVC-ClinicDB ETIS-Larib
SSD300 VGG16 300 × 300 × 3 46 74.5 74.12
SSD300 ResNet-101 300 × 300 × 3 47.3 78.85 75.73
CVC-ClinicDB SSD500 VGG16 500 × 500 × 3 19 78.38 75.45
& SSD500 ResNet-101 500 × 500 × 3 20 82.74 80.14
ETIS-Larib FSSD300 VGG16 300 × 300 × 3 65.9 87.26 86.3
FSSD500 VGG16 500 × 500 × 3 69.6 87.54 86.92
DF-SSD300 [41] DenseNet-S-32-1 300 × 300 × 3 11.6 89.92 86.84
L_SSD [58] ResNet-101 224 × 224 × 3 40 88.18 87.23
MP-FSSD [18] VGG16 300 × 300 × 3 62.57 89.82 90
Hyb-SSDNet (ours) Inception v4 299 × 299 × 3 44.5 91.93 91.10