Skip to main content
. 2022 Aug 22;12(8):2030. doi: 10.3390/diagnostics12082030

Table 3.

WCE or colonoscopy test detection results, or both (IOU > 0.5, batch-size 1).

Training Dataset Methods Testing Dataset Backbone Network Pre-Train Input Size Prec Recall F1 Score
WCE images Hyb-SSDNet (ours) WCE images Inception v4 299×299 93.29%(mAP) 89.4%(mAR) 91.5%(mAF)
ETIS-Larib+CVC-ClinicDB Hyb-SSDNet (ours) CVC-ClinicDB Inception v4 299×299 91.93%(mAP) 89.5%(mAR) 90.8%(mAF)
ETIS-Larib+CVC-ClinicDB Hyb-SSDNet (ours) ETIS-Larib Inception v4 299×299 91.10%(mAP) 87%(mAR) 89%(mAF)
WCE +CVC-ClinicDB Souaidi et al., 2022 [18] ETIS-Larib VGG16 300×300 90.02%(mAP) × ×
CVC-ClinicDB + ETIS-Larib Shin et al., 2018 [59] ETIS-Larib Inception ResNet 768×576 92.2% 69.7% 79.4%
SUN+ PICCOLO+ CVC-ClinicDB Ishak et al., 2021 [32] ETIS-Larib YOLOv3 448×448 90.61% 91.04% 90.82%
CVC-ClinicDB Liu et al., 2021 [60] ETIS-Larib ResNet-101 384×288 77.80% 87.50% 82.40%
GIANA 2017 Wang et al., 2019 [61] ETIS-Larib AFP-Net(VGG16) 1225×996 88.89% 80.7% 84.63%
CVC-ClinicDB Qadir et al., 2021 [62] ETIS-Larib ResNet34 512×512 86.54% 86.12% 86.33%
CVC-ClinicDB Pacal and Karaboga, 2021 [63] ETIS-Larib CSPDarkNet53 384×288 91.62% 82.55% 86.85%
CVC-ClinicDB Wang et al., 2019 [61] ETIS-Larib Faster R-CNN (VGG16) × 224×224 88.89% 80.77% 84.63%
CVC-VideoClinicDB Krenzer et al., 2019 [64] CVC-VideoClinicDB YOLOv5 × 574×500 73.21%(mAP) × 79.55%