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Testing the significance of predictors in a regression model is one of the most important
topics in statistics. This problem is especially difficult without any parametric assump-
tions on the data. This paper aims to test the null hypothesis that given confounding
variables Z, X does not significantly contribute to the prediction of Y under the model-
free setting, where X and Z are possibly high dimensional. We propose a general
framework that first fits nonparametric machine learning regression algorithms onY |Z
and Y |(X ,Z ), then compares the prediction power of the two models. The proposed
method allows us to leverage the strength of the most powerful regression algorithms
developed in the modern machine learning community. The P value for the test can be
easily obtained by permutation. In simulations, we find that the proposed method is
more powerful compared to existing methods. The proposed method allows us to draw
biologically meaningful conclusions from two gene expression data analyses without
strong distributional assumptions: 1) testing the prediction power of sequencing RNA
for the proteins in cellular indexing of transcriptomes and epitopes by sequencing data
and 2) identification of spatially variable genes in spatially resolved transcriptomics data.

prediction test | sample splitting | machine learning | CITE-seq data | spatially variable genes

With the advancement of technology, scientists can collect massive datasets that contain
covariates of interest X, confounding variables Z, and response Y. X and Z are often high
dimensional. A central theme of statistics is to provide modeling and testing tools for the
relationship between X and Y. Traditional statistical theories usually consider parametric
models on the data, for example, assuming Y |(X ,Z ) follows a normal distribution
or E(Y |X ,Z ) follows a linear model. The modern machine learning community has
developed powerful predictive models without parametric assumptions. However, a
critical gap remains in the literature: in the model-free setting, how to test whether a
set of features have significant predictive power on a response variable. Specifically, we are
interested in testing

H0 : E(Y |Z ) = E(Y |X ,Z ) vs. [1]
H1 : E(Y |Z ) �= E(Y |X ,Z ).

The null hypothesis implies that the regression function E [Y |Z = z ] = E [Y |X = x ,
Z = z ] at every point (x , z ). When only X is included in the model, the problem of
interest becomes

H0 : E(Y ) = E(Y |X ) vs. H1 : E(Y ) �= E(Y |X ). [2]

Under the linear model or the single (multiple) index models, the testing problems [1] and
[2] are equivalent to testing whether the coefficient of X is equal to zero. From the view
of variable selection, [1] and [2] aim at testing whether X is relevant in the prediction
of Y. Even though the past decades have witnessed many contributions to the statistics
literature on variable selection (1), it is still extremely challenging to test hypotheses [1]
and [2] without parametric or structural assumptions on X and Y.

The key idea of our method is to compare whether a powerful machine learning
algorithm, fitted with X included as part of the input, performs significantly better than
without X. The method begins by splitting the data into two subsets: D1 and D2. We first
fit two machine learning regression algorithms on D1: one with X and the other without
X. Then, we compare the performance of the two fitted models on D2 by calculating the
difference between the two means of residual squares. The goal is to detect any potential
incremental predictive power for Y provided by X by differentiating the performance
of the two models. Under H0, the two models perform similarly to each other, and the
residuals should also have similar values. Under H1, the fitted machine learning algorithm
should produce a smaller residual compared to the null model. The test statistic has a
limiting normal distribution, and the P value can be computed efficiently.

The first application of the proposed method is in cellular indexing of transcriptomes
and epitopes by sequencing (CITE-seq) data, where surface protein and sequencing RNA
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Fig. 1. The power (vertical) versus signal (horizontal) for the all the methods when the response has heavy-tailed distribution and α = 0.05 . The RS stands for
rank-sum test, and TT stands for two-sample t test. M means multiple split, and S represents a single split. Across the 4 panels, the relationship between Y and
the first covariate is linear, sine (sin), exponential (exp) and logarithmic (log).

are measured simultaneously at the single-cell level. CITE-seq data
are a type of single-cell multimodal omics data, a research area
labeled “Method of the Year 2019” by Nature Methods. While
gene expression data have been extensively studied in the single-
cell literature, the prediction of surface proteins based on RNA
sequencing (RNA-seq) has only been studied in recent literature
(2). The imputation of proteins is of great interest because the
proteins are functionally involved in cell signaling and cell–cell
interactions (3). Due to the importance of CITE-seq data in
scientific discoveries of human biology, scientists implemented
various tools for studying the relationship between proteins and
RNA gene expression (4, 5). For example, Stuart et al. (6) and Hao
et al. (4) used k-nearest neighbors to predict protein levels. Zhou
et al. (2) implemented deep neural networks to impute surface
proteins based on gene expression. Our method can be used to
verify whether such models have nontrivial predictive accuracy via
a statistically principled test.

The other application arises in spatial transcriptomics data.
Scientists have collected high-throughput transcriptome profiling
that contains the spatial location of genetic measurements and
aim to find the genes that are variable across the tissue. This
topic has inspired great interest, and Nature Methods recently
selected spatially resolved transcriptomics as “Method of the Year
2020” (7). Gene expression and the spatial location play the
roles of Y and X, respectively. Existing literature on spatially
variable gene (SVG) detection can be roughly classified into two
categories. The first category assumes a parametric model for the

distribution of Y |X . For example, the gene expression profiles
Y were assumed to follow a normal distribution in ref. 8, given
X and other spatial structures. The spatial correlation in ref. 9 is
also derived under the normal distribution theory. Because gene
expression is usually count data, the other way is to assume Y
follows a Poisson distribution with rate parameter depending on
the spatial correlations among spots (10). The second approach
does not assume a parametric model. Some methods utilize certain
metrics that measure the spatial distribution within a local radius
constraint (11, 12). This method tends to be sensitive to the choice
of the local regions in the tissue. Another approach is to test
the independence of gene expression and spatial location (13). In
comparison, our test specifically targets the expectation of gene
expression and provides great flexibility and interpretative results
for the data. We illustrate the details in the numerical analysis.

Methods

Sample Splitting and Regression. Suppose we observe data (X1, Z1, Y1), . . . ,
(Xn, Zn, Yn) independently from the joint distribution of (X, Z, Y). We begin by
splitting the index set I = {1, . . . , n} into two subsets, I1 = {1, 2, . . . , n1}
and I2 = {n1 + 1, . . . , n}. Denote n2 := n − n1. Let D1 = {(Xi, Yi), i ∈ I1}
and D2 = {(Xi, Yi), i ∈ I2} be the two subsets of the data.

The key feature of our method is that it does not rely on a parametric model of
E(Y|X, Z) and can easily adapt to different data types or even high-dimensional
data. Specifically, we assume the most general form of regression model

Y = g(X, Z) + ε,
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Fig. 2. The power (vertical) versus dimension (horizontal) for the all the
methods when the response has heavy-tailed distribution and the dimension
of the covariates increases. α = 0.05. The RS stands for rank-sum test and TT
stands for two-sample t test. M means multiple split, and S represents single
split. Across the 4 panels, the relationship between Y and the first covariate is
linear, sine (sin), exponential (exp) and logarithmic (log).

where ε satisfies E(ε|X, Z) = 0. Our method begins with fitting a flexible ma-
chine learning algorithm for E(Y|X, Z) by optimizing

Ln1(Y , g(X, Z)) + Pλ(g) [3]

over a function class G and denoting the estimated regression function as ĝ1.
HereLn1(·, ·) is an empirical loss function. When Y is continuous, we can choose
the least square loss function. We may use the Huber loss when Y has a heavy
tail. When Y is discrete, we can use the hinge loss or cross-entropy loss functions.
The regularization term Pλ controls the complexity of the estimated model. It is
especially useful to let Pλ be the L1 regularization when the covariates X is of
high dimension. We also train the model without X by optimizing

Ln1(Y , g(Z)) + Pλ(g) [4]

and denote the estimated regression function as ĝ0.
To ensure the validity of the test, we train ĝ0 and ĝ1 based on the first subset

of the data D1. ĝ0 and ĝ1 can be fitted using any algorithms, including neural
networks, SVM, or random forest. Under H0, ĝ1 should not perform better than ĝ0

since X does not contribute to the prediction of Y, while under H1, a good machine
learning regression algorithm ĝ1 should pick up the information from X and result
in smaller residuals compared to the null model. This intuition motivates us to
implement a two-sample test to compare the squared residuals between ĝ0 and
ĝ1 when performing prediction based on D2.

Two-Sample Comparison. To evaluate the performance of ĝ0 and ĝ1, we
perform two-sample comparisons on the fitted residuals of the two models based
on the data in D2. The most natural approach is the two-sample t test (TS). Define

TTS =
1
n2

∑
i∈I2

[
{Yi − ĝ1(Xi, Zi)}2 − (Yi − ĝ0(Zi))

2
]

.

The test will reject H0 if TTS takes a large negative value. The test compares the
mean square errors (MSE) of two models, under the assumption of the existence
of the second-order moments of the data. The comparison of MSE is natural
because E(Y|Z) is the optimal predictor of Y (when only considering Z) in the
MSE sense:

E{[Y − r(Z)]2} ≥ E{[Y − E(Y|Z)]2} for allr(·) ∈ L2.

See, for example, theorem 2.1 ref. 14. To give some intuition about the validity of
such a test, consider the simpler case where only X is included in the model, and
the squared loss function is used. In this case, ĝ0(Zi) is equivalent to the sample
mean of Y in D1, which we write as μ̂.

Under H0, X does not contain predictive information about Y so that
E(Y|X) = E(Y) and ĝ1 performs no better than μ̂, and T tends to be
nonnegative, regardless of the choice of ĝ1. Under H1, ĝ1(X) aims to
approximate E(Y|X), and the positive component in TTS has a large sample
limit of E(Y − ĝ1(X))2 = E[(Y − E(Y|X))2] + E[(ĝ1(X)− E(Y|X))2] =
E[Var(Y|X)] + MSE(ĝ1). On the other hand, the large sample limit of
the negative component in TTS is Var(Y) = E[Var(Y|X)] + Var[E(Y|X)].
Therefore, when MSE(ĝ1)< Var[E(Y|X)], the test statistic TTS will be negative,
and the test will have nontrivial power.

To summarize, the test that rejects large negative values of TTS satisfies the
following properties.

1) Under H0, the false positive is always controlled regardless of the choice of ĝ1.
2) Under H1, the test has good power as long as MSE(ĝ1)< Var[E(Y|X)].

Our split-fit-test framework allows us to use other forms of two-sample com-
parisons. For example, in certain scenarios, we may want to use the rank-sum test
(RS):

TRS =
1
n2

2

∑
i,j∈I2

I (|Yi − ĝ1(Xi, Zi)|< |Yj − ĝ0(Zj)|)−
1
2

.

Due to the use of the indicator function, the rank-sum test performs well for data
with heavy-tailed distributions or outliers. The intuition behind this test is that
when X is informative about Y, the fitted residuals Yi − ĝ1(Xi, Zi) will likely be
smaller than those from the null model.

We briefly discuss the pros and cons of the two tests. The rank-sum test, as
later shown in the numerical studies, is very robust when the response variable Y
has a heavy-tailed distribution but may have an inflated type I error if the noise is
highly skewed as the quantiles are no longer aligned with expectation. Therefore,
we recommend using the rank-sum comparison only if the exploratory analysis
does not suggest a highly skewed noise distribution.

In this paper, we obtain the P value using permutation. The algorithm is
summarized as follows.

1. For i ∈ I2, calculate Ui = Yi − ĝ1(Xi, Zi) and Vi = Yi − ĝ0(Zi). Let S =
{Ui, i ∈ I2} ∪ {Vi, i ∈ I2}.

2. Calculate the test statistic T based on Ui and Vi, i ∈ I2.
3. For b = 1, . . . , B,

(a) Obtain sample {U∗
i , i ∈ I2}, {V∗

i , i ∈ I2} by randomly partitioning S
into two equal-sized subsets.

(c) Calculate T∗b using U∗
i and V∗

i , i ∈ I2.
4. Calculate P value: B−1 ∑B

b=1 I{T > T∗b }.

In this paper, we used equal random split and let n1 = n2. When the sample
size is too small, a V-fold cross-validation type unequal split can also be applied,
such as the V-fold algorithm proposed in ref. 15. Under suitable conditions, one
can show that the test statistic used in the above two-sample residual comparison
has a Gaussian asymptotic null distribution. For example, the asymptotic Gaus-
sianity of the t statistic TTS has been established in ref. 15. The asymptotic theory
for the rank-sum test can be derived using a similar strategy as in ref. 16. As a
result, the last step of the P value calculation can be modified by first estimating
the SD of {T∗b , b = 1, . . . , B}, denoted as σ̂B, and then calculating the P value
as Φ−1(T/σ̂B), where Φ−1 is the cumulative distribution function of standard
normal distribution. This will provide a P value with relatively high resolution.

Combine Multiple Splits. The method described so far is based on a single
random split of the data. In practice, multiple splits could be used to mitigate the
additional randomness introduced by the sample split. To combine the depen-
dent P values obtained from multiple splits, we use the Cauchy combination test
proposed in ref. 17. The idea is to first transform the P value of each test into
a standard Cauchy distribution, then compute the average of the transformed
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values and compare it with a standard Cauchy’s tail behavior. Specifically, assume
we perform B splits and obtain P values p1, . . . , pB. Let T0 be defined by

T0 =
1
B

B∑
j=1

tan{(0.5 − pi)π}.

The P value of the combined test can be approximated by

p-value = 0.5 − {arctan(T0)}/π.

In our numerical studies, we combine the results of 5 to 15 random splits
depending on the varying computation cost in different datasets. It turns out that
the type I error of the combined test can be controlled very well, and its power
exceeds those of single splits.

For notation simplicity, we name the single-split regression-based rank-sum
test as RS-S and its multiple version as RS-M. Correspondingly, we name the
single-split regression-based t test as TT-S and its multiple version as TT-M.

Test Predictability of Proteins in CITE-seq Data

Background. CITE-seq is a recent multimodal single-cell phe-
notyping technology (6). The dataset contains measurements of
single-cell gene expression and surface proteins. Researchers are
familiar with gene expression data, which are high-dimensional,
noisy, and sparse. By contrast, surface protein data are low-
dimensional, highly informative, but more expensive to measure.
Thus, it is of great interest to predict protein measurements based
on gene expression (2, 4–6). These prediction models provide a
better understanding of the translation from RNA-seq to proteins
and also enable researchers to predict the proteins when only the
RNA sequence is measured at the single-cell level.

We use the human peripheral blood mononuclear cell (PBMC)
CITE-seq data, which have been analyzed in ref. 4, as our primary
example. While different types of cells usually contain different
patterns of gene expression and proteins, it is unclear how the
predictability of proteins varies across cell types. In this section,
we investigate the predictability of protein expression in different
types of human blood immune cells.

Simulations. To verify the performance of the proposed method,
we perform simulations for the predictive tests based on rank-
sum test and two-sample t test. We consider both single-split and
multiple-split data and set the split times in multiple-split data
to be 10. XGBoost tree (18) is implemented as the regression
algorithm due to its fast computational speed and good flexibility
to capture nonlinear relationships. We also compare the perfor-
mance of XGBoost with linear regression in SI Appendix, Fig. S4
to demonstrate its superior performance. We compare our method
with the Martingale difference correlation (MDC), which has a
similar goal of testing mean independence and was proposed by
Shao and Zhang in ref. 19.

To demonstrate the performance for high-dimensional, sparse
signal and heavy-tail noise, we generate the response Yi as the
function of the first element of the covariates Xi,1 with a heavy-
tail distributed error term. Specifically, let

Yi = a × f (Xi,1) + εi , εi ∼ Cauchy(0, 1).

a is used to control the signal level. a = 0 implies that H0 is true,
and a > 0 represent H1 holds. The details of f (·) in each model
are given in SI Appendix.

We consider two simulation scenarios: 1) the signal level a
increases from 0 to 1 when the sample size and dimension are
fixed to be 200 and 1,000 and 2) the dimension of X increases
from 100 to 1,000 when keeping the sample size and a fixed.

Table 1. Number of cells and marker genes in each cell
type in the human PBMC data

Cell type Cells Marker genes
Mono 49,010 1,007
CD4 T 41,001 576
CD8 T 25,469 313
NK 18,664 519
B 13,800 598
Other T 6,789 122
DC 3,589 372
Other 3,442 273
Total 161,764 1,692

Each simulation is repeated 1,000 times, and we report the average
power in Figs. 1 and 2, where the type I error is controlled at
α= 0.05. As we can see, all methods have a valid type I error
rate. The multiple-split rank-sum test performs the best in terms
of power, followed by the single-split rank-sum test. The two-
sample t test seems to be unsuitable for the heavy-tailed data. As
for MDC, we see that it not only is unsuitable for heavy-tailed
data but also suffers from the curse of dimensionality when the
covariates are high-dimensional. This demonstrates the advantage
of the proposed methods.

Human PBMC Data. After applying standard quality control pro-
cedures (4), the human PBMC data contain 20,729 gene expres-
sions and 228 proteins measured on 161,764 cells. After removing
the two proteins (CD26-1 and TSLPR) that contain mostly zeros,
we obtain 226 proteins in total. According to the cell annotations,
we can classify all the cells into eight different types. Following the
standard convention in single-cell analysis, we restrict our analysis
to the top 5,000 highly variable gene sets. The marker genes for
each cell type are obtained by implementing the FindMarkers
function from Seurat (4). The number of cells and marker genes
of each type are summarized in Table 1. The total number of
marker genes is less than the sum of individual cell types because
different cell types may share the same marker genes. Under the
testing framework of [1] and [2], we are mainly interested in two
questions:

1) Do marker genes in different cell types (defined by single cell
RNA sequence data) provide prediction power for proteins?

2) Besides marker genes, do other gene clusters in different cell
types provide additional prediction power for proteins?

To answer these two questions, we implement our method by
using XGBoost tree and the rank-sum test with five splits. In each
cell type, we test the predictability of both the top 5,000 highly
variable genes and the marker genes. For each protein, we treat the
gene transcription as X and protein as Y in testing [2]. Because
226 tests are conducted for each cell type, we adjust all the P values
by applying the Benjamini–Yekutieli method (20) to control the
false discovery rate at 5%.

We first perform the hypothesis testing [2] by treating the
proteins as Y and the top 5,000 genes as X. We then replace
the top 5,000 genes by the marker genes and perform the same
testing procedure. It turns out that the inference results are very
similar. To better illustrate the similarity, we display the testing
results row by row in Fig. 3: specifically, the odd rows represent
the predictability using the top 5,000 genes, and the even rows
represent the predictability using the marker genes. The columns
represent the 226 proteins. Blue and orange bars highlight the
protein/cell type combinations for which we reject H0. The yellow
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Fig. 3. The predictability test of every protein across all cell types. The columns represent the 226 proteins, and the row blocks represent the eight different
cell types. In each cell type, the first row represents X being all 5,000 genes, and the second row represents X being the marker genes under the testing problem
[2]. The orange bars and blue bars represent the tests rejecting H0, and the yellow bars represent the tests failing to reject H0.

bars indicate combinations for which H0 is not rejected. Notably,
the testing results for the two batches of genes are quite similar
to each other: more than 93% of the tests reach the same con-
clusion. For the tests that disagree, 6.19% of the tests are the
cases where the top 5,000 genes reject H0 but the marker genes
fail to reject. Those cases cover 10 proteins with their cell type
given in SI Appendix, Table S1. For those cases, the interaction
effects between the marker genes and other genes might provide
additional prediction power. Besides, 0.22% of the tests are the
cases where the marker genes reject H0 but the top 5,000 genes
fail to reject. We believe this is because increased noise in the
data leads to inferior performance of the regression algorithm.
It is also interesting to observe that among the 226 proteins, 22
proteins can be predicted in all cell types, and 31 proteins fail to
be predicted in all cell types, based on the inference results using
the top 5,000 genes. As for the marker genes, 13 proteins can be
predicted in all cell types, and 42 proteins fail to be predicted in
all cell types. In general, proteins with rich measurements can be
predicted well.

To answer the second question, we let G1 represent the marker
genes for each cell type. Then we remove the 1,692 marker genes
from the set of top 5,000 genes and perform clustering analysis
(21) for the remaining genes. We obtain 13 clusters, G2, . . . , G14,
the size of which decrease from hundreds to dozens. The goal is to
test the prediction power of G1, . . . , G14 on the proteins in each
cell type.

We begin by testing the prediction power of the marker genes
(G1) in each cell type. Specifically, each protein is treated as Y,
and G1 is treated as Z in the testing problem [1]. Then, we test
whether adding G2, . . . , or G14 to G1 improves the predictability
of each protein. This is achieved by treating each of G2, . . . , or
G14 as X in the testing problem [1]. We present the inference
results for NK cells in Fig. 4 and relegate the other cell types to
SI Appendix, Figs. S24–S30, where the P values are also adjusted
by the Benjamini–Yekutieli method (20). Similarly, the blue bars
represent the rejection of H0, while the yellow bars represent the
failure of rejection. The rows correspond to G1, G2, . . . , and
the columns represent the proteins. As we expect, the marker
genes are extremely useful in predicting the proteins. Adding extra
gene clusters occasionally provides extra prediction power, and
one protein (CD177) that is not predictable by marker genes is
predictable with another gene cluster.

SVG Detection

Background. Recent technological advances in spatially resolved
transcriptomics have enabled gene expression profiling with spa-
tial information on tissues. The spatial transcriptomics sequencing
technique measures the expression level for thousands of genes
in different spots, which may contain multiple cells. The single
molecule fluorescence in situ hybridization technique detects
several messenger RNA (mRNA) transcripts simultaneously at
the subcellular resolution but usually has relatively low expression
levels compared to spatial transcriptomics. More recent technolo-
gies such as multiplexed error-robust FISH (MERFISH) (22) and
sequential fluorescence in situ hybridization (23) can substantially
increase the number of detectable mRNAs from hundreds to
thousands.

The gene expression data are represented in an n × p matrix,
where each column denotes a specific gene, and each row denotes
an observed sample spot in the tissue. Each spot may contain one
or multiple cells depending on the experimental method. The spot
is also associated with a two-dimensional spatial location in the
sample. It is of interest to identify the genes that display spatially

Cell type: NK

20 101 131 148157 187 214 226

≥5

4

3

2

1

Fig. 4. The predictability test of every proteins for NK cells. The first row
represents the group marker genes G1, and the second to fifth rows represent
the other clusters of genes G2, G3, . . . . We combine several clusters in the fifth
row since the rejection of H0 becomes rare.
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distinct expression patterns. Similar to existing approaches (8, 10),
we first test each gene separately, then control the false discovery
rate based on the P values for all genes. For each gene, we denote
its expression level as Y = (Y1, . . . ,Yn) and the corresponding
spatial location at the n spots as X = (X1, . . . ,Xn). In our
numerical analysis, we let Xi be a four-dimensional covariate:
intercept, horizontal coordinate, vertical coordinate, and the in-
teraction effect of horizontal and vertical coordinate. Under the
testing framework [2], we are interested in finding the genes that
satisfy E(Y ) �= E(Y |X ).

Simulations. We aim to determine via simulations if two versions
of the proposed method (TT-S and TT-M) work well when
compared with popular SVG methods, spatial pattern recognition
via kernels (SPARK) (10) and SpaDE (8). Both methods are
parametric models: SPARK assumes the gene expression follows
Poisson distribution, and spatial gene expression patterns by deep
learning of tissue images (SpaDE) assumes the data follow Gaus-
sian distribution.

To generate synthetic data, we use the spatial location of the
upcoming mouse olfactory bulb data and generate our spatial
signals. Following ref. 10, we consider three spatial patterns:
hot spot, gradient, and streak. A generic picture of all the three
simulated models is illustrated in Fig. 5. The random forest
algorithm is implemented in the regression step. We generate
the signals according to the three patterns and add a random
noise that follows the uniform distribution on [0, 1] to each spot.
Specifically, denote the signal as f (Xi), where Xi is the spatial
information at location i. The gene expression at location i is
generated by

Yi = a × f (Xi) + Ui , Ui ∼ U (0, 1). [5]

The details of f (·) for each spatial pattern are given in SI Appendix.
The signal level is controlled by the constant a ∈ [0, 1] in Eq. 5,
where a = 0 implies the H0 is true and a > 0 indicates that H1

holds. Because the real data are sparse, we also consider the settings
where we set Yi = 0 if Yi < median(Y ). Thus, 50% of all the
locations are set to zero.

The simulation is repeated 1,000 times, and we report the
average power for all the methods. The random forest algorithm
is implemented as the regression tool, and we set the number of
multiple splits to be 15. The power curves are illustrated in Fig. 6
where the type I error is set at 0.05. Additional simulation results
are reported in SI Appendix. The y axis is the power, and the x axis
is the signal level a. When a = 0, the null condition holds, and
all methods can control the type I error very well. As a increases,
the power also increases as expected. The proposed method shows
superior performance across all settings: hot spot, gradient, and
streak. The power curves also show that multiple splits are indeed
more powerful compared to a single split under the alternative
hypothesis. As the comparison between the two rows, we also find
that all methods tend to perform better when the data are sparse,
where half of the low expression levels are set to 0. This might be

hot spot gradient streak

Fig. 5. The three spatial patterns for the gene expression in the simulation
settings.
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Fig. 6. The power (vertical) versus signal (horizontal) for the regression-
based two-sample t test, SPARK, and SpaDE when α = 0.05. (Top) Hot spot,
(Middle) gradient, and (Bottom) streak patterns. (Left) Nonsparse and (Right)
sparse settings. Across the 6 panels, the spatial patterns are as indicated in
the main heading. Details provided in SI Appendix.

due to the low noise level under the sparse setting. SPARK tends to
perform better than SpaDE under the hot spot and streak settings,
and SpaDE outperforms SPARK when the signal is gradient. This
finding also echos the simulation results in ref. 10 where SPARK
and SpaDE have similar power only when the signal is gradient.

Next, we apply the proposed test to real datasets. The analyses
illustrate that our proposed method produces calibrated P values
under the null condition in the randomly permuted data and
shows impressive power compared with existing approaches. We
advocate the validity of our results since they do not require any
distributional assumptions on the gene expression data and have
less constraint when applied to real data. Because the real data
analysis involves multiple testing, we adjust all the P values by
applying the Benjamini–Yekutieli method (20) to control the false
discovery rate at 5%. The choice of regression algorithm and
the number of multiple splits are set to be the same as in the
simulation.

Mouse Olfactory Bulb Data. Spatial transcriptomics sequencing
was used to produce the mouse olfactory bulb data (24). Following
previous analyses using SpaDE (8) and SPARK (10), we used the
MOB Replicate 11 file, which contains 16,218 genes measured on
262 spots. Similar to ref. 10, we filter out genes that are expressed
in less than 10% of the array spots and select spots with at least
10 total read counts. After the filtering, we obtain 11,274 genes
on 260 spots.

All methods produce valid P values under the null condition
where the response is randomly permuted (Fig. 7A). With the
original data, SPARK, SpaDE, TT-S, and TT-M identified 772,
68, 234, and 731 SVGs, respectively. More than 40% of the genes
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Fig. 7. Analysis for the mouse olfactory bulb dataset. (A) The empirical
distribution of the P values under the null condition in the permuted data. The
solid blue line and solid red line denote the multiple splits (TT-M) and single
splits (TT-S). The green dashed line denotes SPARK, and the purple dotted line
denotes SpaDE. (B) The upset plot shows the overlap of genes for all the four
methods. (Left) The total size of each set and (Top) the intersection of each
method. (Bottom) Every possible intersection.

identified by TT-M overlap with SPARK (Fig. 7B). For the upset
plot, the left bar plot represents the total size of each set, and
the top bar plot represents the intersection of each method. Every
possible intersection is shown by the bottom plot.

As an advantage of our method, we can check the variable
importance of each feature as part of the random forest algo-
rithm. Specifically, %IncMSE gives the increase in mean square
prediction error as a result of the target variable being randomly
permuted, and a larger value indicates relatively higher impor-
tance. In our data analysis, the average %IncMSE is 0.072 for the
horizontal axis, 0.044 for the vertical axis, and 0.056 for the inter-
action effect of the horizontal and vertical axis. This indicates that
most spatial variability in expression occurs across the horizontal
axis as depicted by the most significant eight genes (Fig. 8A). The
variation in expression is notable and approximately symmetric in
the horizontal axis, indicating that the proposed method captures
the variability in the spatial distribution accurately.

Last, we perform gene ontology (GO) enrichment analysis for
molecular function and display the clustered GO annotations
by implementing Revigo (25). The enrichment results offer an
understanding of the SVGs detected by our method (Fig. 8B and
SI Appendix, Figs. S12 and S13). Most of the detected genes are
related to the binding of certain proteins or DNA. For example,
the cluster on the left colored in blue and green represent the genes
that are essential to cadherin binding in cell–cell adhesion. Our
results complement the GO terms identified by SPARK, which are
related to synaptic organization and olfactory bulb development.

Human Breast Cancer Data. The human breast cancer data are
also obtained by spatial transcriptomics sequencing (24). Fol-
lowing previous analyses using SpaDE (8) and SPARK (10), we
use the Breast Cancer Layer 2 file, which contains 14,789 genes
measured on 251 spots. We filter out the genes that are expressed
in less than 10% of the array spots and selected spots with at
least 10 total read counts. After filtering, we obtained 5,262 genes
measured on 250 spots.

The results are summarized in Fig. 9. As expected, all methods
produce valid P values under the null condition. SPARK identi-
fied 290 and SpaDE identified 115 SVGs. By comparison, TT-S
identified 335 genes with more than 1/3 overlapping with SPARK,
and TT-M identified 701 genes with around 1/4 overlapping with
SPARK. Our proposed methods found considerably more genes
compared to existing methods. We found that the breast cancer
data have 23% of nonzero elements in the gene expression matrix,
while the mouse olfactory bulb data have 56% of nonzero values.
One possible explanation is that our methods are more powerful
in picking up weak signals in sparse gene expression data.

To provide additional evidence of the findings, we look into the
overlaps of the detected genes with background information. We
found 8 among the 14 cancer-related genes that are highlighted in
the original study (24). SpaDE detected 7, and SPARK detected 9;
see Fig. 10C for the overlaps of those genes. The gene expressions
of the eight detected genes are illustrated in Fig. 10A, and the
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Fig. 8. Analysis for the mouse olfactory bulb dataset. (A) The eight genes
that have the smallest P values detected by TT-M. (B) The clustering of GO
annotations for the genes detected by TT-M.
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Fig. 9. Analysis for the human breast cancer data. (A) The empirical distri-
bution of the P values under the null condition in the permuted data. The
blue solid line and red solid line denote the multiple splits (TT-M) and single
splits (TT-S). The green dashed line denote SPARK, and the purple dotted line
denotes SpaDE. (B) The upset plot shows the overlap of genes for all the four
methods. (C) The clustering of GO annotations for the genes detected by TT-M.

six missed genes are plotted in Fig. 10B. Clearly, the detected
genes show strong spatial patterns. We also found 79 genes that
are previously known to be related to cancer according to the
CancerMine database (26). On the other hand, SpaDE detected
11, and SPARK detected 40.

In terms of variable importance, the average %IncMSE equals
0.036 for the horizontal axis, 0.120 for the vertical axis, and
0.070 for the interaction effect of the horizontal and vertical

axis. In contrast to the analysis of the mouse olfactory bulb
data (Fig. 8A), the vertical axis plays a more important role
in the spatial patterns. This phenomenon can be observed in
the detected cancer genes shown in Fig. 10A. The enrichment
results provide deep understanding of the detected SVGs (Fig.
9C and SI Appendix, Figs. S14 and S15). Most of the detected
genes are also related to bindings of important cell functions and
proteins.
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Fig. 10. Analysis of the cancer genes. (A) The 8 cancer genes that are
detected by the proposed method as the SVGs among the 14 cancer genes
highlighted in ref. 24. (B) The other six cancer genes that are missed by the
proposed method. (C) The upset plot shows the overlap of the cancer genes
for all three methods.
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Discussion

In this paper, we proposed an approach for the test of covariates
and applied the method to test both prediction power in CITE-seq
data and the identification of SVGs. Distinguished from previous
methods, the proposed method does not assume any parametric
distributions on the gene expression data, which provides great
flexibility for real data analysis. We are also able to implement a
large class of machine learning regression algorithms in the test,
such as neural networks, random forest, SVM, etc.

Due to the sample splitting and machine learning algorithms,
our test may not perform well when the sample size is too small.
In the analysis of a small seqFISH data shown in SI Appendix,
the proposed test found a relatively small number of SVGs. The
sample size in these data is only 131. Thus, the effective sample size
for training the random forest is only 65, which is not enough to
obtain a properly trained algorithm.

The model-X knock-off (27) is a related model-free variable
selection method. Our method differs from it in several important
ways. First, the knock-off is used to evaluate the conditional
dependence of each variable given all other covariates, while our
method can be used to compare models of different nature. For
example, our approach can easily compare linear regression and
random forest to confirm that there is no uncaptured signal be-
yond linear relationships. Also, our method can be more suitable
for a nested, sequential model exploration scenario. Second, the
type I error control is different. While knock-off aims to control
the false-positive rate in variable selection, our method provides

family-wise error control by comparing each pair of candidate
models. Third, our approach is more readily applicable to large-
scale and complex data due to its simplicity. At the same time,
knock-off requires the construction of exchangeable covariate
pairs, which can be tricky if the covariate distribution is unknown.

There are several potential aspects of this work left for future
research. For CITE-seq data, both the dimension and sample size
are huge, and the design matrix is extremely sparse. This type of
data presents unique challenges, and its analysis requires further
development of theoretical and computational statistical tools. In
spatial transcriptomic studies, the current literature on the test
of SVGs is all based on single tests applied to each gene in the
domain. The control of the false discovery rate is achieved by
simply applying either qvalue (28) or the Benjamini–Yekutieli
method (20). How to incorporate spatial information to achieve
better false discovery control performance is a very promising
future research topic. The idea proposed in this paper can also be
applied to independence testing (16) or conditional independence
testing (29) on multiomics data.
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used for this work (4, 22–24). No new data were generated for this manuscript.
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11. D. Edsgärd, P. Johnsson, R. Sandberg, Identification of spatial expression trends in single-cell gene
expression data. Nat. Methods 15, 339–342 (2018).

12. J. Hu et al., SpaGCN: Integrating gene expression, spatial location and histology to identify spatial
domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342–1351
(2021).

13. J. Zhu, S. Sun, X. Zhou, SPARK-X: Non-parametric modeling enables scalable and robust detection of
spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 22, 184 (2021).

14. Q. Li, J. S. Racine, Nonparametric Econometrics: Theory and Practice (Princeton University Press, 2007).
15. J. Lei, Cross-validation with confidence. J. Am. Stat. Assoc. 115, 1978–1997 (2020).
16. Z. Cai, J. Lei, K. Roeder, A distribution-free independence test for high dimension data. arXiv [Preprint]

(2021). https://arxiv.org/abs/2110.07652 (Accessed 20 December 2022).

17. Y. Liu, J. Xie, Cauchy combination test: A powerful test with analytic p-value calculation under arbitrary
dependency structures. J. Am. Stat. Assoc. 115, 393–402 (2020).

18. T. Chen, C. Guestrin, “Xgboost: A scalable tree boosting system” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (Association for
Computing Machinery, 2016), pp. 785–794.

19. X. Shao, J. Zhang, Martingale difference correlation and its use in high-dimensional variable
screening. J. Am. Stat. Assoc. 109, 1302–1318 (2014).

20. Y. Benjamini, D. Yekutieli, The control of the false discovery rate in multiple testing under dependency.
Ann. Stat. 29, 1165–1188 (2001).

21. S. Morabito et al., Single-nucleus chromatin accessibility and transcriptomic characterization of
Alzheimer’s disease. Nat. Genet. 53, 1143–1155 (2021).

22. J. R. Moffitt et al., Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic
region. Science 362, eaau5324 (2018).

23. S. Shah, E. Lubeck, W. Zhou, L. Cai, In situ transcription profiling of single cells reveals spatial
organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).
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