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Abstract: Tumor budding (TB) histology has become a critical biomarker for several solid cancers.
Despite the accumulating evidence for the association of TB histology with poor prognosis, the
biological characteristics of TB are little known about in the context related to the tumor immune
microenvironment (TIME) in uterine cervical cancer (CC). Therefore, this study aimed to identify the
transcriptomic immune profiles related to TB status and further provide robust medical evidence
for clinical application. In our study, total RNA was extracted and sequenced from 21 CC tissue
specimens. As such, 1494 differentially expressed genes (DEGs) between the high- and low-TB
groups were identified by DESeq2. After intersecting the list of DEGs and public immune genes, we
selected 106 immune-related DEGs. Then, hub genes were obtained using Least Absolute Shrinkage
and Selection Operator regression. Finally, the correlation between the hub genes and immune cell
types was analyzed and four candidate genes were identified (one upregulated (FCGR3B) and three
downregulated (ROBO2, OPRL1, and NR4A2) genes). These gene expression levels were highly
accurate in predicting TB status (area under the curve >80%). Interestingly, FCGR3B is a hub gene of
several innate immune pathways; its expression significantly differed in the overall survival analysis
(p = 0.0016). In conclusion, FCGR3B, ROBO2, OPRL1, and NR4A2 expression can strongly interfere
with TB growth and replace TB to stratify CC patients.

Keywords: cervical cancer; gene expression; immune-related genes; tumor budding; tumor
immune microenvironment

1. Introduction

Uterine cervical cancer (CC) is one of the most common cancers in women [1]. Al-
though progress has been made in CC prevention and management, it still has a poor
outcome. According to Globocan 2020, 3218 new CC cases and 1014 CC deaths occur
annually in Korea [1]. Therefore, novel markers for CC diagnosis, prognosis, and treatment
have long been of great interest.

Recently, tumor budding (TB) histology has become a critical biomarker for several
solid cancers, including colorectal cancer, head and neck cancer, pancreatic cancer, etc. [2–6].
In addition, we previously showed that TB status is a potential independent prognostic
factor and can strongly interfere with CC treatment strategies [7]. However, the main
disadvantage of this histopathological marker is that it can only be established after surgery.
In this scenario, insights into the biological characteristics of TB can provide a helpful
direction to investigate potential tools for CC management.
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The tumor microenvironment (TME), referred to as a “house” of cancer cells, comprises
non-resident components (tumor-derived cells and infiltrating leukocytes) and resident
components (blood vessels, nerve fibers, mesenchyma, and structural components) [8–10].
Some researchers suggested six TME subgroups, including hypoxic niche, immune microen-
vironment, metabolism microenvironment, acidic niche, innervated niche, and mechanical
microenvironment [8]. The tumor immune microenvironment (TIME) is an important
aspect because the theory of TIME can provide a powerful account of how to develop effec-
tive anti-tumor therapies. It is revealed that the immune response in TME can sometimes
block cancer development [11]. Unfortunately, in many cases, tumor cells often activate
the immunosuppressive mechanisms and lead to tumor escape from the host immune
response [8–10].

Until now, TB has been little known in relation to the TIME. Nearchou (2019) and
Dawson (2020) found that CD8+/CD3+ T-cell location and density are correlated with TB
status in colorectal cancer [12,13]. However, there have not been any published studies
about the relationship between tumor buds and TIME in CC. Therefore, this study aimed
to identify the transcriptomic immune profiles related to TB status and further provide
robust medical evidence for clinical application, such as stratification, prognosis, and
immune-targeted therapeutic strategy.

2. Materials and Methods
2.1. Sample Collection

This study was conducted between 2011 and 2018. Twenty-one tissues from early stage
and locally advanced CC patients were obtained after radical hysterectomy. The exclusion
criteria included a history of preoperative chemotherapy, radiotherapy, and synchronous
malignancies. The 2009 International Federation of Gynecologic Obstetrics (FIGO) staging
for carcinoma of the cervix was used to stage the patients [14]. The flowchart in Figure 1
represents the overall process of this study.
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Figure 1. Flowchart of the study.

2.2. Pathological Process

Specimens were selected from the tumor area and stained with hematoxylin and
eosin. All tissue slices (ranging from 8 to 25 per patient) were carefully assessed for
histopathological features. TB is described as a single neoplastic cell or cell cluster of up
to four neoplastic cells at the invasive front of the tumor [15]. High TB was defined as
≥5 buds/high-power field (Supplementary Figure S1). Detailed examination methods and
high-TB criteria have been described previously [7,16].
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2.3. Clinical Parameters and Follow-Up

Clinicopathological parameters included age, tumor stage (early stage < IIb and late
stage ≥ IIb), histological subtype, TB status (high and low), overall survival (OS), and
relapse-free survival (RFS). All patients were followed-up every three months for the first
two years, every six months for the next five years, and then annually [7,16].

2.4. RNA Extraction and Sequencing

For each patient, total RNA was extracted from 2 to 4 sections (5 µm each) of a
block using the ReliaPrepTM FFPE RNA Miniprep System (Promega, Madison, WI, USA),
according to the manufacturer’s protocol. Next, we conducted library preparation using
the TruSeq RNA Exome Kit and RNA sequencing with NovaSeq 6000 (Illumina, San Diego,
CA, USA). The quantity and quality were checked using a Qubit 4 Fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA), and Bioanalyzer (Aligent Technologies, Santa Clara,
CA, USA).

2.5. Bioinformatic Analysis

Raw sequences in the FASTQ format from the sequencer were assessed for read quality
using FASTQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed
on 8 September 2021). All low-quality reads and sequencing adapters were removed using
Trimmomatic [17,18]. Kallisto was used to quantify RNA-seq data [19]. DESeq2 package
was used to compare gene expression between high- and low-TB groups [20]. The p value
and |log2-fold-change| thresholds were 0.05 and 1.0, respectively. A volcano plot of
differentially expressed genes (DEGs) was created using the “ggplot2” package [21].

2.6. Immune-Related Gene Dataset

A list of 2483 public immune genes was downloaded from the ImmPort database (https:
//www.immport.org/shared/home/, accessed on 20 January 2022) [22]. The overlapping
genes between DEGs and 2483 public immune-related genes were immune-related DEGs
(IR-DEGs).

2.7. Functional Analysis

The IR-DEGs were uploaded to the DAVID website (https://david.ncifcrf.gov/tools.
jsp, accessed on 19 April 2022) for analyzing the Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways [23]. Benjamini-and-Hochberg-adjusted
p < 0.05 was considered statistically significant.

2.8. Immune-Cell-Type Analysis

Gene-length-normalized expression was imported into the TIMER2.0 website (http:
//timer.cistrome.org/, accessed on 21 April 2022) to estimate the proportions of different
immune cell types using the TIMER (TIMER immune cells) and CIBERSORT (CIBERSORT
immune cells) algorithms [24–26]. The fraction of immune cells between the high- and
low-TB groups was compared using the Wilcoxon rank-sum test and a boxplot was drawn
with the “ggpubr” package [27]. Benjamini-and-Hochberg-adjusted p < 0.05 was considered
statistically significant.

2.9. Candidate Gene Analysis

We performed Least Absolute Shrinkage and Selection Operator (LASSO) regression,
a machine learning method in the “glmnet” package, to select hub genes from IR-DEGs [28].
Then, the correlation analysis (Spearman’s method in the “corrplot” package) between the
hub genes and immune cell types was used to select the significantly correlated genes [29].
The candidate genes were the overlapping genes between CIBERSORT and TIMER. The
p value threshold was 0.05.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.immport.org/shared/home/
https://www.immport.org/shared/home/
https://david.ncifcrf.gov/tools.jsp
https://david.ncifcrf.gov/tools.jsp
http://timer.cistrome.org/
http://timer.cistrome.org/
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2.10. Protein–Protein Interaction Network Analysis

To thoroughly examine the candidate gene functions, 106 IR-DEGs were uploaded
to the STRING website (version 11.5) to analyze the protein–protein interaction (PPI)
(https://string-db.org/, accessed on 6 May 2022) [30]. The network was visualized using
Cytoscape software v3.9.1 (Shannon, P et al., Institute for Systems Biology, Seattle, WA,
USA) [31].

2.11. Receiver Operating Characteristic (ROC) Curve and Survival Analysis

The “pROC” package was used to determine the diagnostic accuracy of the candidate
genes between the high- and low-TB groups in CC [32]. Next, the optimal cut-off point for
survival analysis was determined using maxstat (maximally selected rank statistics) in the
“survminer“ package [33]. The different expression levels of candidate genes in OS and
RFS were explored using the log-rank test in the “survival” package [34,35].

3. Results
3.1. Clinical Information

Twenty-one participants were enrolled. The clinicopathological information is shown
in Table 1. The median age was 48 years (32–71 years). The early stage was dominant (81%).
Fifteen and six patients (71.4% and 28.6%, respectively) belonged to the high- and low-TB
groups, respectively. In addition, the distribution of pathological diagnoses was as follows:
squamous cell carcinoma: 15 (71.4%); adenocarcinoma: 6 (23.8%); and adenosquamous cell
carcinoma: 1 (4.8%).

Table 1. Patients’ characteristics.

(ALL) N
N = 21

Age (range) 48 (32–71) 21
Clinical Stage: 21

Early stage 17 (81.0%)
Late stage 4 (19.0%)
Histology: 21

Squamous cell carcinoma 15 (71.4%)
Adenocarcinoma 5 (23.8%)

Adenosquamous cell carcinoma 1 (4.8%)
Tumor budding: 21
Low (<5 TBs 1) 6 (28.6%)
High (≥5 TBs) 15 (71.4%)

1. TBs, tumor buds.

3.2. Identification of IR-DEGs

The volcano plot indicates 1464 DEGs (929 upregulated and 535 downregulated
genes) between the high- and low-TB groups (Figure 2 and Supplementary Table S1).
Subsequently, 106 IR-DEGs that overlapped between the DEGs and immune-related gene
database (Figure 3A) were selected. A heatmap was then used to visualize the hierarchical
clustering of the identified IR-DEGs (Figure 3B and Supplementary Table S2).

3.3. Functional Enrichment Analysis

The functions of 106 IR-DEGs were investigated by GO enrichment and KEGG
pathway analyses. As shown in Figure 4A and Supplementary Tables S3 and S4, the
50 most significantly enriched genes were involved in immune response (GO:0006955,
p = 3.2 × 10−16), cytokine-mediated signaling pathway (GO:0019221, p = 9 × 10−13), Fc-γ
receptor signaling pathway involved in phagocytosis (GO:0038096, p = 5.3 × 10−7), ex-
ternal side of plasma membrane (GO:0009897, p = 8.2 × 10−13), and extracellular space
(GO:0005615, p = 9.2 × 10−11). Regarding the KEGG pathway, natural-killer-cell-mediated
cytotoxicity (hsa04650, p = 1.47 × 10−6), cytokine–cytokine receptor interaction (hsa04060,

https://string-db.org/
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p = 1.54 × 10−6), and antigen processing and presentation (hsa04612, p = 9.5 × 10−6) were
the main pathways (Figure 4B and Supplementary Tables S3 and S4).
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Figure 3. Immune-related differentially expressed genes (IR-DEGs). (A) Venn diagram of overlap
genes between DEGs and public immune-related genes. (B) The heatmap of 106 IR-DEGs between
high and low tumor budding (TB) in cervical cancer. Green, red, orange, and blue represent a low
expression level, high expression level, low-TB group, and high-TB group, respectively.
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Figure 4. Functional enrichment analysis of 106 immune-related differentially expressed genes
(IR-DEGs). (A) Gene Ontology (GO). The bar plot shows the top 50 enriched IR-DEGs from GO
analysis. Blue, green, and red represent biological process (BP), cellular component (CC), and
molecular function (MF) GO terms, respectively. (B) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway. Different colors and sizes of bubbles represent different p values and gene counts
of a pathway.

3.4. Identification of Candidate Immune-Related Genes
3.4.1. Selection of Hub Immune-Related Genes with LASSO Regression

LASSO regression was implemented for the 106 IR-DEGs. In total, 16 hub genes with
the best lambda value, including UNC93B1, ROBO2, RARB, PTH1R, PSMD14, OPRL1,
NR4A2, LTBP3, LILRB3, KLRC2, IGLV4-60, IGKV3-7, IGHV3-35, FCGR3B, CSRP1, and AKT3,
were selected (Figure 5).
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3.4.2. Correlation Analysis

We first investigated the proportion of immune cells using the CIBERSORT and
TIMER algorithms (Supplementary Table S5). Figure 6A (CIBERSORT) and 6B (TIMER)
indicate that each immune cell type was not significantly different between the low- and
high-TB groups.

Spearman’s method was used to identify the correlation between hub genes and
immune cell types generated by CIBERSORT and TIMER (Figure 7). Eleven (Figure 7A)
and five genes (Figure 7B) were significantly correlated with CIBERSORT and TIMER
immune cells, respectively. Finally, the Venn diagram (Figure 7C) identified four candidate
genes (overlapping genes), including one upregulated (FCGR3B) and three downregulated
(ROBO2, OPRL1, and NR4A2) genes.

3.5. PPI Network Analysis

A network of 106 IR-DEGs was constructed using STRING and displayed in Cytoscape
(Figure 8). The confidence score was 0.4 and the PPI enrichment p value was 1 × 10−16.
FCGR3B, ROBO2, OPRL1, and NR4A2 were significantly enriched in seven KEGG pathways
and 51 GO terms (Tables 2, 3, S6 and S7). Interestingly, FCGR3B was the hub gene for the
natural-killer-cell-mediated cytotoxicity and phagosome pathways.

Table 2. Kyoto Encyclopedia of Genes and Genomes pathways interacted with four candidate genes.

Term Name Description Genes FDR

hsa04650 Natural killer cell
mediated cytotoxicity 11 9.34 × 10−9

hsa04080
Neuroactive

ligand-receptor
interaction

12 4.44 × 10−6

hsa05152 Tuberculosis 8 5.28 × 10−5

hsa04380 Osteoclast
differentiation 7 6.87 × 10−5

hsa04360 Axon guidance 7 4.20 × 10−4

hsa04145 Phagosome 6 9.10 × 10−4

hsa05150 Staphylococcus
aureus infection 5 9.10 × 10−4
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1 

Figure 8. Protein–protein interaction network of 106 immune-related differentially expressed genes.
“Red” and “blue” represent the upregulated and downregulated genes, respectively. The gray lines
(edges) indicate interactions between connected nodes. Star highlights the candidate gene. The green,
purple, and orange circles represent the natural-killer-cell-mediated cytotoxicity, phagosome, and
axon guidance pathway, respectively.
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Table 3. Top 10 Gene Ontology (GO) terms interacted with four candidate genes.

Category Term Name Description Count FDR

GO–BP 1 GO:0007165 Signal transduction 73 1.60 × 10−23

GO–BP GO:0006955 Immune response 42 2.38 × 10−18

GO–MF 2 GO:0005102 Signaling receptor
binding 41 2.81 × 10−17

GO–MF GO:0038023 Signaling receptor
activity 36 3.54 × 10−14

GO–BP GO:0050776 Regulation of immune
response 27 4.30 × 10−12

GO–BP GO:0048584 Positive regulation of
response to stimulus 40 8.52 × 10−12

GO–CC 3 GO:0009986 Cell surface 26 1.49 × 10−11

GO–BP GO:0006935 Chemotaxis 20 5.35 × 10−10

GO–MF GO:0008528
G protein-coupled
peptide receptor

activity
12 6.22 × 10−09

GO–BP GO:0051239
Regulation of
multicellular

organismal process
42 2.67 × 10−08

1 GO–BP, Gene Ontology biological process; 2 GO-MF, Gene Ontology molecular function; 3 GO-CC, Gene
Ontology cellular component.

3.6. ROC Curve and Survival Analysis

ROC analysis was conducted to investigate the accuracy of the four candidate genes
as diagnostic biomarkers for low- and high-TB levels. The area under the curve (AUC)
of FCGR3B, ROBO2, OPRL1, and NR4A2 was 81.7%, 92.2%, 82.2%, and 94.4%, respec-
tively (Figure 9). However, only the FCGR3B expression level significantly differed in OS
(p = 0.0016; Figure 10).
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4. Discussion

Recent studies have noted the high correlation between TB status and cancer pro-
gression [5–7,16]. Because tumor progression results from the interaction between tumor
cells and the TME, insights into biological TB can provide potential tools for cancer man-
agement [5]. However, the relationship between tumor bud and TME, particularly TIME,
has been unclear. Therefore, this is one of the first studies identifying the transcriptomic
immune profiles of TB in CC.

In this study, 1464 DEGs were obtained by comparing the gene expression between
high- and low-TB groups. By intersecting these DEGs and 2483 public immune-related
genes, we selected 106 IR-DEGs. Functional analysis showed that these IR-DEGs mainly
involve innate immune pathways, such as the natural killer (NK)-cell-mediated cytotoxic-
ity, cytokine–cytokine receptor interaction, chemokine signaling, JAK-STAT, and Toll-like
receptor signaling pathways. Most current reports consider CD8+T cells, FOXP3+T cells,
and CD68+ macrophages to be the primary innate immune response in the tumor microen-
vironment [5,36]. Nevertheless, NK also plays a crucial role in the TIME. For example,
Garcia-Iglesias et al. reported that NK-activating receptors and the cytotoxic activity of NK
cells significantly decrease in high-grade squamous intraepithelial lesions and CC [37].

To investigate the candidate genes from the 106 IR-DEGs, multiple analyses were con-
ducted. Briefly, the LASSO regression algorithm was implemented and 16 hub genes were
identified. Then, the correlation between hub genes and immune cell types was analyzed
to select candidate genes. Finally, one upregulated (FCGR3B) and three downregulated
(ROBO2, OPRL1, and NR4A2) genes were identified. PPI network analysis revealed the
functional insights of the four candidate genes in TB status.

First, high FCGR3B expression induces TB progression by suppressing NK-cell-mediated
cytotoxicity and phagocytosis. FCGR3B encodes a low-affinity immunoglobulin γ Fc region
receptor III-B protein (FcγRIIIb), a member of the IgG Fc receptor family (FcγRs) [38]. FcγRs
play crucial roles in cancer immunotherapy via antibody-dependent cellular cytotoxicity
and phagocytosis [38].

Previous studies have reported six human FcγRs (FcγRI/CD64, FcγRIIa/CD32a,
FcγRIIb/CD32b, FcγRIIc/CD32c, FcγRIIIa/CD16a, and FcγRIIIb/
CD16b) [39,40]. FcγRIIIb/CD16b is mainly expressed by neutrophils and also negatively
regulates neutrophil activities in the TIME [39,41]. Even though the interaction between
neutrophils and NK cells in TIME is unclear, neutrophils can enhance NK-derived interferon
(IFN)γ to suppress tumor progression and angiogenesis [42–44]. In addition, this study
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found that the FCGR3B expression level accurately predicts the TB status (AUC = 81.7%)
and patient survival (high expression causes poor prognosis in OS, p = 0.0016). Therefore,
FCGR3B may be a novel biomarker for high TB in CC.

Second, low ROBO2 expression may lead to a high-TB status through the axon guid-
ance signaling pathway. The ROBO2 gene encodes roundabout guidance receptor two pro-
tein that functions as an axon guidance receptor by binding to secreted SLIT ligands [45–47].
The ROBO family is frequently downregulated in several cancers and considered an anti-
oncogene [48]. The SLIT/ROBO signaling can inhibit tumor progression through some
mechanisms, such as preventing cell migration and angiogenesis, enhancing cell–cell ad-
hesion, and blocking endothelial cell proliferation [49]. Interestingly, this signaling can
regulate macrophage immune responses by inducing cytoskeletal changes in macrophages,
preventing macrophage spreading and inhibiting macropinocytosis [50]. Although the
ROBO2 expression level in this study was not significantly related to patient survival
prognosis because of the small sample size, ROBO2 can still be a promising marker for
predicting TB status (AUC = 92.2%).

Lastly, NR4A2 (nuclear receptor subfamily 4 group A member 2) and OPRL1 (opioid-
related nociceptin receptor 1) were significantly enriched in several important biological
processes, such as signal transduction, signaling receptor binding, signaling receptor
activity, cell–cell signaling, and regulation of cell death. These findings suggest that OPRL1
and NR4A2 downregulation may enhance TB progression in CC. In other words, these
genes function as tumor suppressors. With substantial diagnostic accuracy from ROC
analysis, OPRL1 and NR4A2 are promising candidates for predicting TB status. Although
there are several conflicting data regarding the role of NR4A2 and OPRL1 in cancer, our
results are in accordance with current observations: NR4A2 can trans-activate Foxp3,
involved in the differentiation, maintenance, and function of regulatory T cells, and plays
a significant role in cancer cell development and survival [51–53]. Furthermore, Inamoto
et al. reported that NR4A2 is a tumor suppressor in human bladder cancer tissues [51].
Regarding OPRL1, it belongs to the Aγ family of G protein-coupled receptors, which are
involved in various diseases, including cancer [54,55]. Bedini et al. revealed that OPRL1
acts as a tumor inhibitor in U87 glioblastoma cells by blocking lipopolysaccharide [56].
In addition, OPRL1 can activate markers on the surface of T cells, enhance CD4+ T and
CD8+ T-cell proliferation, and alter cytokine secretion, which is closely involved in tumor
progression [57].

This study lacks experimental validation. Therefore, further studies should be con-
ducted to clarify the mechanisms of these candidate genes in TB progression.

5. Conclusions

Four immune-related genes (one upregulated (FCGR3B) and three downregulated
(ROBO2, OPRL1, and NR4A2) genes) that can impact TB formation and development were
detected through a multiple-step analysis. These genes may be potential biomarkers for
replacing TB status to stratify CC patients. Furthermore, they can provide novel ideas for
immune-targeted therapeutic strategies in the future.
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S4: Gene Ontology (GO) terms. Table S5: Proportion of immune cell types using the TIMER and
CIBERSORT algorithms. Table S6: GO-term of 106 IR-DEGs with STRING enrichment. Table S7:
GO-term of 106 IR-DEGs with STRING enrichment. Figure S1: Representative microscopic features
of high tumor budding (TB) histology.

https://www.mdpi.com/article/10.3390/genes13081405/s1
https://www.mdpi.com/article/10.3390/genes13081405/s1


Genes 2022, 13, 1405 13 of 15

Author Contributions: Conceptualization, T.M.L., N.J.-Y.P., H.S.H. and G.O.C.; Formal analysis,
T.M.L., H.D.T.N., E.L., D.L. and J.C.; Investigation, N.J.-Y.P., H.S.H. and G.O.C.; Methodology,
T.M.L., H.D.T.N., E.L., N.J.-Y.P., H.S.H. and G.O.C.; Project administration, N.J.-Y.P., H.S.H. and
G.O.C.; Writing—original draft, T.M.L.; Writing—review and editing, H.D.T.N., E.L., D.L., Y.S.C.,
J.C., N.J.-Y.P., H.S.H. and G.O.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Biomedical Research Institute grant from Kyungpook
National University Hospital (2020).

Institutional Review Board Statement: This study was approved by the Institutional Review Board
of Kyungpook National University Chilgok Hospital (KNUCH 2020–03-011).

Informed Consent Statement: Patient consent was waived due to the retrospective study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory:

Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020. Available online: https://gco.iarc.fr/today/
about#references (accessed on 28 March 2022).

2. Huang, B.; Cai, J.; Xu, X.; Guo, S.; Wang, Z. High-Grade Tumor Budding Stratifies Early-Stage Cervical Cancer with Recurrence
Risk. PLoS ONE 2016, 11, e0166311. [CrossRef] [PubMed]

3. Satabongkoch, N.; Khunamornpong, S.; Pongsuvareeyakul, T.; Settakorn, J.; Sukpan, K.; Soongkhaw, A.; Intaraphet, S.; Suprasert,
P.; Siriaunkgul, S. Prognostic Value of Tumor Budding in Early-Stage Cervical Adenocarcinomas. Asian Pac. J. Cancer Prev. 2017,
18, 1717. [CrossRef] [PubMed]

4. Chong, G.O.; Jee-Young Park, N.; Han, H.S.; Cho, J.; Kim, M.G.; Choi, Y.; Yeo, J.Y.; Lee, Y.H.; Hong, D.G.; Park, J.Y. Intratumoral
Budding: A Novel Prognostic Biomarker for Tumor Recurrence and a Potential Predictor of Nodal Metastasis in Uterine Cervical
Cancer. Eur. J. Surg. Oncol. 2021, 47, 3182–3187. [CrossRef]

5. Lugli, A.; Zlobec, I.; Berger, M.D.; Kirsch, R.; Nagtegaal, I.D. Tumour Budding in Solid Cancers. Nat. Rev. Clin. Oncol. 2021,
18, 101–115. [CrossRef] [PubMed]

6. Ailia, M.J.; Thakur, N.; Chong, Y.; Yim, K. Tumor Budding in Gynecologic Cancer as a Marker for Poor Survival: A Systematic
Review and Meta-Analysis of the Perspectives of Epithelial–Mesenchymal Transition. Cancers 2022, 14, 1431. [CrossRef] [PubMed]

7. Park, J.Y.; Chong, G.O.; Park, J.Y.; Chung, D.; Lee, Y.H.; Lee, H.J.; Hong, D.G.; Han, H.S.; Lee, Y.S. Tumor Budding in Cervical
Cancer as a Prognostic Factor and Its Possible Role as an Additional Intermediate-Risk Factor. Gynecol. Oncol. 2020, 159, 157–163.
[CrossRef]

8. Jin, M.Z.; Jin, W.L. The Updated Landscape of Tumor Microenvironment and Drug Repurposing. Signal Transduct. Target. Ther.
2020, 5, 166. [CrossRef]

9. Balkwill, F.R.; Capasso, M.; Hagemann, T. The Tumor Microenvironment at a Glance. J. Cell Sci. 2012, 125, 5591–5596. [CrossRef]
10. Schiavoni, G.; Gabriele, L.; Mattei, F. The Tumor Microenvironment: A Pitch for Multiple Players. Front. Oncol. 2013, 3, 90.

[CrossRef]
11. Vesely, M.D.; Kershaw, M.H.; Schreiber, R.D.; Smyth, M.J. Natural Innate and Adaptive Immunity to Cancer. Annu. Rev. Immunol.

2011, 29, 235–271. [CrossRef]
12. Nearchou, I.P.; Lillard, K.; Gavriel, C.G.; Ueno, H.; Harrison, D.J.; Caie, P.D. Automated Analysis of Lymphocytic Infiltration,

Tumor Budding, and Their Spatial Relationship Improves Prognostic Accuracy in Colorectal Cancer. Cancer Immunol. Res. 2019,
7, 609–620. [CrossRef] [PubMed]

13. Dawson, H.; Christe, L.; Eichmann, M.; Reinhard, S.; Zlobec, I.; Blank, A.; Lugli, A. Tumour Budding/T Cell Infiltrates in
Colorectal Cancer: Proposal of a Novel Combined Score. Histopathology 2020, 76, 572–580. [CrossRef]

14. Pecorelli, S.; Zigliani, L.; Odicino, F. Revised FIGO Staging for Carcinoma of the Cervix. Int. J. Gynecol. Obstet. 2009, 105, 107–108.
[CrossRef] [PubMed]

15. Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; El Zimaity, H.; Fléjou, J.F.; Hansen, T.P.; Hartmann,
A.; et al. Recommendations for Reporting Tumor Budding in Colorectal Cancer Based on the International Tumor Budding
Consensus Conference (ITBCC) 2016. Mod. Pathol. 2017, 30, 1299–1311. [CrossRef]

16. Park, J.Y.; Hong, D.G.; Chong, G.O.; Park, J.Y. Tumor Budding Is a Valuable Diagnostic Parameter in Prediction of Disease
Progression of Endometrial Endometrioid Carcinoma. Pathol. Oncol. Res. 2019, 25, 723–730. [CrossRef] [PubMed]

17. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014,
30, 2114–2120. [CrossRef]

18. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/ (accessed on 8 September 2021).

https://gco.iarc.fr/today/about#references
https://gco.iarc.fr/today/about#references
http://doi.org/10.1371/journal.pone.0166311
http://www.ncbi.nlm.nih.gov/pubmed/27861522
http://doi.org/10.22034/APJCP.2017.18.6.1717
http://www.ncbi.nlm.nih.gov/pubmed/28670894
http://doi.org/10.1016/j.ejso.2021.07.009
http://doi.org/10.1038/s41571-020-0422-y
http://www.ncbi.nlm.nih.gov/pubmed/32901132
http://doi.org/10.3390/cancers14061431
http://www.ncbi.nlm.nih.gov/pubmed/35326582
http://doi.org/10.1016/j.ygyno.2020.07.030
http://doi.org/10.1038/s41392-020-00280-x
http://doi.org/10.1242/jcs.116392
http://doi.org/10.3389/fonc.2013.00090
http://doi.org/10.1146/annurev-immunol-031210-101324
http://doi.org/10.1158/2326-6066.CIR-18-0377
http://www.ncbi.nlm.nih.gov/pubmed/30846441
http://doi.org/10.1111/his.14006
http://doi.org/10.1016/j.ijgo.2009.02.009
http://www.ncbi.nlm.nih.gov/pubmed/19342051
http://doi.org/10.1038/modpathol.2017.46
http://doi.org/10.1007/s12253-018-0554-x
http://www.ncbi.nlm.nih.gov/pubmed/30604272
http://doi.org/10.1093/bioinformatics/btu170
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Genes 2022, 13, 1405 14 of 15

19. Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-Optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 2016,
34, 525–527. [CrossRef]

20. Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome
Biol. 2014, 15, 1–21. [CrossRef]

21. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4.
22. Bhattacharya, S.; Dunn, P.; Thomas, C.G.; Smith, B.; Schaefer, H.; Chen, J.; Hu, Z.; Zalocusky, K.A.; Shankar, R.D.; Shen-Orr, S.S.;

et al. ImmPort, toward Repurposing of Open Access Immunological Assay Data for Translational and Clinical Research. Sci. Data
2018, 5, 180015. [CrossRef]

23. Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics
Resources. Nat. Protoc. 2009, 4, 44–57. [CrossRef]

24. Li, B.; Severson, E.; Pignon, J.C.; Zhao, H.; Li, T.; Novak, J.; Jiang, P.; Shen, H.; Aster, J.C.; Rodig, S.; et al. Comprehensive Analyses
of Tumor Immunity: Implications for Cancer Immunotherapy. Genome Biol. 2016, 17, 1–16. [CrossRef] [PubMed]

25. Sturm, G.; Finotello, F.; Petitprez, F.; Zhang, J.D.; Baumbach, J.; Fridman, W.H.; List, M.; Aneichyk, T. Comprehensive Evaluation
of Transcriptome-Based Cell-Type Quantification Methods for Immuno-Oncology. Bioinformatics 2019, 35, i436–i445. [CrossRef]

26. Newman, A.M.; Steen, C.B.; Liu, C.L.; Gentles, A.J.; Chaudhuri, A.A.; Scherer, F.; Khodadoust, M.S.; Esfahani, M.S.; Luca, B.A.;
Steiner, D.; et al. Determining Cell Type Abundance and Expression from Bulk Tissues with Digital Cytometry. Nat. Biotechnol.
2019, 37, 773–782. [CrossRef] [PubMed]

27. Kassambara, A. Ggpubr: “ggplot2” Based Publication Ready Plots. R Package Version 0.4.0. 2020. Available online: https:
//CRAN.R-project.org/package=ggpubr (accessed on 10 July 2022).

28. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw.
2010, 33, 1–22. [CrossRef] [PubMed]

29. Wei, T.; Simko, V. R Package “corrplot”: Visualization of a Correlation Matrix (Version 0.92). 2021. Available online: https:
//github.com/taiyun/corrplot (accessed on 10 July 2022).

30. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al.
The STRING Database in 2021: Customizable Protein–Protein Networks, and Functional Characterization of User-Uploaded
Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605. [CrossRef]

31. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

32. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. PROC: An Open-Source Package for R and S+
to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [CrossRef]

33. Kassambara, A.; Kosinski, M.; Biece, P. Survminer: Drawing Survival Curves Using “ggplot2”. R Package Version 0.4.9. 2021.
Available online: https://CRAN.R-project.org/package=survminer (accessed on 10 July 2022).

34. Therneau, T. A Package for Survival Analysis in R. R Package Version 3.3-1. 2022. Available online: https://CRAN.R-project.org/
package=survival (accessed on 10 July 2022).

35. Therneau, M.T.; Grambsch, M.P. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000;
ISBN 978-1-4757-3294-8.

36. Wartenberg, M.; Cibin, S.; Zlobec, I.; Vassella, E.; Eppenberger-Castori, S.; Terracciano, L.; Eichmann, M.D.; Worni, M.; Gloor, B.;
Perren, A.; et al. Integrated Genomic and Immunophenotypic Classification of Pancreatic Cancer Reveals Three Distinct Subtypes
with Prognostic/ Predictive Significance. Clin. Cancer Res. 2018, 24, 4444–4454. [CrossRef]

37. Garcia-Iglesias, T.; del Toro-Arreola, A.; Albarran-Somoza, B.; del Toro-Arreola, S.; Sanchez-Hernandez, P.E.; Ramirez-Dueñas, M.;
Balderas-Peña, L.M.A.; Bravo-Cuellar, A.; Ortiz-Lazareno, P.C.; Daneri-Navarro, A. Low NKp30, NKp46 and NKG2D Expression
and Reduced Cytotoxic Activity on NK Cells in Cervical Cancer and Precursor Lesions. BMC Cancer 2009, 9, 186. [CrossRef]

38. Junker, F.; Gordon, J.; Qureshi, O. Fc Gamma Receptors and Their Role in Antigen Uptake, Presentation, and T Cell Activation.
Front. Immunol. 2020, 11, 1393. [CrossRef]

39. Patel, K.R.; Roberts, J.T.; Barb, A.W. Multiple Variables at the Leukocyte Cell Surface Impact Fc γ Receptor-Dependent Mechanisms.
Front. Immunol. 2019, 10, 223. [CrossRef]

40. Barb, A.W. Fc γ Receptor Compositional Heterogeneity: Considerations for Immunotherapy Development. J. Biol. Chem 2021,
296, 100057. [CrossRef]

41. Treffers, L.W.; van Houdt, M.; Bruggeman, C.W.; Heineke, M.H.; Zhao, X.W.; van der Heijden, J.; Nagelkerke, S.Q.; Verkuijlen,
P.J.J.H.; Geissler, J.; Lissenberg-Thunnissen, S.; et al. FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by
Human Neutrophils. Front. Immunol. 2019, 10, 1–13. [CrossRef]

42. Palano, M.T.; Gallazzi, M.; Cucchiara, M.; de Lerma Barbaro, A.; Gallo, D.; Bassani, B.; Bruno, A.; Mortara, L. Neutrophil and
Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis. Vaccines 2021,
9, 1488. [CrossRef]

43. Shimasaki, N.; Jain, A.; Campana, D. NK Cells for Cancer Immunotherapy. Nat. Rev. Drug Discov. 2020, 19, 200–218. [CrossRef]
44. Bassani, B.; Baci, D.; Gallazzi, M.; Poggi, A.; Bruno, A.; Mortara, L. Natural Killer Cells as Key Players of Tumor Progression and

Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers 2019, 11, 461.
[CrossRef] [PubMed]

http://doi.org/10.1038/nbt.3519
http://doi.org/10.1186/s13059-014-0550-8
http://doi.org/10.1038/sdata.2018.15
http://doi.org/10.1038/nprot.2008.211
http://doi.org/10.1186/s13059-016-1028-7
http://www.ncbi.nlm.nih.gov/pubmed/27549193
http://doi.org/10.1093/bioinformatics/btz363
http://doi.org/10.1038/s41587-019-0114-2
http://www.ncbi.nlm.nih.gov/pubmed/31061481
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggpubr
http://doi.org/10.18637/jss.v033.i01
http://www.ncbi.nlm.nih.gov/pubmed/20808728
https://github.com/taiyun/corrplot
https://github.com/taiyun/corrplot
http://doi.org/10.1093/nar/gkaa1074
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1186/1471-2105-12-77
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
http://doi.org/10.1158/1078-0432.CCR-17-3401
http://doi.org/10.1186/1471-2407-9-186
http://doi.org/10.3389/fimmu.2020.01393
http://doi.org/10.3389/fimmu.2019.00223
http://doi.org/10.1074/jbc.REV120.013168
http://doi.org/10.3389/fimmu.2018.03124
http://doi.org/10.3390/vaccines9121488
http://doi.org/10.1038/s41573-019-0052-1
http://doi.org/10.3390/cancers11040461
http://www.ncbi.nlm.nih.gov/pubmed/30939820


Genes 2022, 13, 1405 15 of 15

45. Mehlen, P.; Delloye-Bourgeois, C.; Chédotal, A. Novel Roles for Slits and Netrins: Axon Guidance Cues as Anticancer Targets?
Nat. Rev. Cancer 2011, 11, 188–197. [CrossRef]

46. Tessier-Lavigne, M.; Goodman, C.S. The Molecular Biology of Axon Guidance. J. S. Nye R. Kopan Curro Bioi 1995, 210, 27.
[CrossRef]

47. Kidd, T.; Bland, K.S.; Goodman, C.S. Slit Is the Midline Repellent for the Robo Receptor in Drosophila. Cell 1999, 96, 785–794.
[CrossRef]

48. Mitra, S.; Mazumder-Indra, D.; Mondal, R.K.; Basu, P.S.; Roy, A.; Roychoudhury, S.; Panda, C.K. Inactivation of SLIT2-ROBO1/2
Pathway in Premalignant Lesions of Uterine Cervix: Clinical and Prognostic Significances. PLoS ONE 2012, 7, e38342. [CrossRef]
[PubMed]

49. Ballard, M.S.; Hinck, L. A Roundabout Way to Cancer. Adv. Cancer Res. 2012, 114, 187. [CrossRef] [PubMed]
50. Bhosle, V.K.; Mukherjee, T.; Huang, Y.W.; Patel, S.; Pang, B.W.F.; Liu, G.Y.; Glogauer, M.; Wu, J.Y.; Philpott, D.J.; Grinstein, S.; et al.

SLIT2/ROBO1-Signaling Inhibits Macropinocytosis by Opposing Cortical Cytoskeletal Remodeling. Nat. Commun. 2020, 11, 1–17.
[CrossRef] [PubMed]

51. Inamoto, T.; Czerniak, B.A.; Dinney, C.P.; Kamat, A.M. Cytoplasmic Mislocalization of the Orphan Nuclear Receptor Nurr1 Is a
Prognostic Factor in Bladder Cancer. Cancer 2010, 116, 340–346. [CrossRef] [PubMed]

52. Han, Y.F.; Cao, G.W. Role of Nuclear Receptor NR4A2 in Gastrointestinal Inflammation and Cancers. World J. Gastroenterol. 2012,
18, 6865. [CrossRef] [PubMed]

53. Ke, N.; Claassen, G.; Yu, D.H.; Albers, A.; Fan, W.; Tan, P.; Grifman, M.; Hu, X.; DeFife, K.; Nguy, V.; et al. Nuclear Hormone
Receptor NR4A2 Is Involved in Cell Transformation and Apoptosis. Cancer Res. 2004, 64, 8208–8212. [CrossRef] [PubMed]

54. Ishikawa, R.; Imai, A.; Mima, M.; Yamada, S.; Takeuchi, K.; Mochizuki, D.; Shinmura, D.; Kita, J.Y.; Nakagawa, T.; Kurokawa, T.;
et al. Novel Prognostic Value and Potential Utility of Opioid Receptor Gene Methylation in Liquid Biopsy for Oral Cavity Cancer.
Curr. Probl. Cancer 2022, 46, 100834. [CrossRef]

55. Lappano, R.; Maggiolini, M. G Protein-Coupled Receptors: Novel Targets for Drug Discovery in Cancer. Nat. Rev. Drug Discov.
2011, 10, 47–60. [CrossRef]

56. Bedini, A.; Baiula, M.; Vincelli, G.; Formaggio, F.; Lombardi, S.; Caprini, M.; Spampinato, S. Nociceptin/Orphanin FQ Antagonizes
Lipopolysaccharide-Stimulated Proliferation, Migration and Inflammatory Signaling in Human Glioblastoma U87 Cells. Biochem.
Pharmacol. 2017, 140, 89–104. [CrossRef]

57. Waits, P.S.; Purcell, W.M.; Fulford, A.J.; McLeod, J.D. Nociceptin/Orphanin FQ Modulates Human T Cell Function in Vitro.
J. Neuroimmunol. 2004, 149, 110–120. [CrossRef]

http://doi.org/10.1038/nrc3005
http://doi.org/10.1126/science.274.5290.1123
http://doi.org/10.1016/S0092-8674(00)80589-9
http://doi.org/10.1371/journal.pone.0038342
http://www.ncbi.nlm.nih.gov/pubmed/22719878
http://doi.org/10.1016/B978-0-12-386503-8.00005-3
http://www.ncbi.nlm.nih.gov/pubmed/22588058
http://doi.org/10.1038/s41467-020-17651-1
http://www.ncbi.nlm.nih.gov/pubmed/32807784
http://doi.org/10.1002/cncr.24737
http://www.ncbi.nlm.nih.gov/pubmed/19908257
http://doi.org/10.3748/wjg.v18.i47.6865
http://www.ncbi.nlm.nih.gov/pubmed/23322982
http://doi.org/10.1158/0008-5472.CAN-04-2134
http://www.ncbi.nlm.nih.gov/pubmed/15548686
http://doi.org/10.1016/j.currproblcancer.2021.100834
http://doi.org/10.1038/nrd3320
http://doi.org/10.1016/j.bcp.2017.05.021
http://doi.org/10.1016/j.jneuroim.2003.12.018

	Introduction 
	Materials and Methods 
	Sample Collection 
	Pathological Process 
	Clinical Parameters and Follow-Up 
	RNA Extraction and Sequencing 
	Bioinformatic Analysis 
	Immune-Related Gene Dataset 
	Functional Analysis 
	Immune-Cell-Type Analysis 
	Candidate Gene Analysis 
	Protein–Protein Interaction Network Analysis 
	Receiver Operating Characteristic (ROC) Curve and Survival Analysis 

	Results 
	Clinical Information 
	Identification of IR-DEGs 
	Functional Enrichment Analysis 
	Identification of Candidate Immune-Related Genes 
	Selection of Hub Immune-Related Genes with LASSO Regression 
	Correlation Analysis 

	PPI Network Analysis 
	ROC Curve and Survival Analysis 

	Discussion 
	Conclusions 
	References

