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Abstract: The intestinal microbiota plays an important role in the immune response against viral
infections, modulating both innate and adaptive immune responses. The cytokine storm is associated
with COVID-19 severity, and the patient’s immune status is influenced by the intestinal microbiota in
a gut-lung bidirectional interaction. In this study, we evaluate the intestinal microbiota of Brazilian
patients in different post-COVID-19 periods, and correlate this with clinical data and the antibiotic
therapy used during the acute phase. DNA extracted from stool samples was sequenced and total anti-
SARS-CoV-2 antibodies and C-reactive protein were quantified. Compared with controls, there were
significant differences in the microbiota diversity in post-COVID-19 patients, suggesting an intestinal
dysbiosis even several months after acute disease resolution. Additionally, we detected some genera
possibly associated with the post-COVID-19 dysbiosis, including Desulfovibrio, Haemophillus, Dialister,
and Prevotella, in addition to decreased beneficial microbes, associated with antibiotic-induced
dysbiosis, such as Bifidobacterium and Akkermansia. Therefore, our hypothesis is that dysbiosis and
the indiscriminate use of antibiotics during the pandemic may be associated with post-COVID-19
clinical manifestations. In our study, 39% (n = 58) of patients reported symptoms, including fatigue,
dyspnea, myalgia, alopecia, anxiety, memory loss, and depression. These data suggest that microbiota
modulation may represent a target for recovery from acute COVID-19 and a therapeutic approach for
post-COVID-19 sequelae.
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1. Introduction

Coronavirus Disease 2019 (COVID-19), an infectious disease caused by Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), spread rapidly worldwide and was
declared a Global Pandemic on 11 March 2020 [1,2]. According to the World Health
Organization, SARS-CoV-2 has already infected more than 587 million people worldwide,
with 6,428,661 deaths [3]. Brazil was one of the most affected countries by COVID-19, with
34,171,644 confirmed cases and 681,550 deaths [4].

The COVID-19 comprises a wide spectrum of clinical manifestations, ranging from
asymptomatic to critically ill patients characterized by respiratory and/or multi-system
organ failure [5–7]. Even though the respiratory tract is mainly affected, the gastrointestinal
tract can also be affected, with nausea, vomiting, abdominal pain, and diarrhea [8]. In
addition, several patients have been experiencing long-term sequelae and symptoms after
the resolution of the acute phase, including myalgic encephalomyelitis and chronic fatigue
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syndrome [9]. The influence of the immune system on both acute and long COVID-19,
has been demonstrated in several studies [6,8–10]. In the acute form, a massive cytokine
production, also known as a cytokine storm, has been associated with the progression
to severe cases, acute respiratory distress syndrome, multi-system organ failure, and
coagulation dysfunctions [11]. The cytokine storm in COVID-19 is characterized by an
overproduction of tumor necrosis factor-alpha (TNF), interleukin-1 (IL-1), IL-2, IL-6, and
interferons [12,13]. In chronic fatigue syndrome, the pathophysiology seems to be related
to immune dysfunctions as well, including changes in cytokine profile, immunoglobulin
levels, and in T and B-cell phenotypes [14].

The intestinal microbiota plays an important role in the immune response against
viral infections, modulating both innate and adaptive immune responses [15]. Growing
evidence suggests that short chain fatty acids (SCFAs) produced by balanced microbiota are
essential for the immune system’s development and maturation, besides being fundamental
in combatting against respiratory infections [15,16]. Infections and medications, mainly
antibiotics, promote modifications in the richness and diversity of the lung and intestinal
microbiota, leading to dysbiosis [16,17]. The bidirectional interaction, also known as the
gut–lung axis, has been associated with different outcomes in respiratory tract infections,
including influenza and respiratory syncytial virus, emphasizing the importance of the
communication between these mucosal compartments [16,18].

In COVID-19, increasing age and comorbidities are known risk factors for predicting
the severe form of the disease, and they have been associated with intestinal dysbiosis,
which might explain the development of such severe cases on those conditions [19–22].
The available data support that during the COVID-19 infection, the gut–lung axis, and its
influence on the immune response, plays an important role in a progression to a cytokine
storm, multi-system organ failure, and long-term COVID-19 syndromes [8,14,15]. To
date, some studies have shown that intestinal dysbiosis, detected in acute COVID-19, was
characterized by a predominance of opportunistic microorganisms and decreased beneficial
commensals, even after the respiratory symptoms’ resolution [23–25]. In addition, recent
studies suggest that dysbiosis could be involved in immune response magnitude and
disease severity, as well as in persistent symptoms after COVID-19 resolution [26,27]. In
this observational study, we evaluated the intestinal microbiota in Brazilian patients, in
different post-COVID-19 periods, and correlated the results with the clinical data and
antibiotic therapy used during the acute disease.

2. Materials and Methods
2.1. Post-COVID-19 Patients and Control Group

The Research Ethics Committee from the Institute of Biosciences, Humanities and
Exact Sciences from Sao Paulo State University approved this study (Process number
4,310,336/2020). It was performed in accordance with the Declaration of Helsinki, and all
participants signed the informed consent form.

One hundred and forty-nine post-COVID-19 patients, one to eight months after having
acute COVID-19, were enrolled, from October to December 2020, for this study. They pro-
vided the previous positive tests for SARS-CoV-2, detected by qPCR after nasopharyngeal
swab collection. Patients were enrolled at the Clinical Analysis Laboratory of the Institute of
Hematology in Sao Jose do Rio Preto/Brazil, including 98 females and 51 males, aged 18 to
82 years old (42.5 ± 14.5 years). In addition, patients were classified as follows, according to
the acute disease in: (1) Asymptomatic (n =10): Positive SARS-CoV-2 test and no symptoms;
(2) Mild (n = 117): symptoms such as fever, cough, anosmia, ageusia, diarrhea, without
dyspnea; (3) Moderate (n = 10): Clinical evidence of lower respiratory tract disease, non-
invasive oxygen support (oxygen saturation < 94%); and Severe (n = 12): invasive oxygen
support, admission to the intensive care unit, orotracheal intubation [28,29]. They were
also classified according to patients without antibiotic (ATB) therapy (COVID-19 group:
n = 35 patients) and with ATB therapy during the acute disease phase (COVID-19+ATB
group: n = 114 patients).



Int. J. Environ. Res. Public Health 2022, 19, 10189 3 of 15

Seventy-one subjects, 51 females and 20 males, aged 18 to 79 years old (46.1 ± 16.6 years),
selected for other projects prior to the COVID-19 pandemic, were included in this study as
the control group. Exclusion criteria for the control group included use of anti-inflammatories,
immunosuppressant drugs, antibiotics, laxatives, probiotics and vaccination in the 30 days
preceding the sample collection, as well as gastrointestinal surgeries, inflammatory bowel
diseases, and chronic diarrhea. The stool and DNA samples from the post-COVID-19 and
control subjects were stored at −80 ◦C until the analysis.

After the informed consent, 8 mL of peripheral blood was collected, and stool samples
were requested within 3–5 days. Serum total anti-SARS-CoV-2 antibodies and C-reactive
protein (CRP) concentrations were performed in post-COVID-19 patients by electrochemi-
luminescence and immunoturbidimetric assay, respectively, at the Clinical Analysis Labo-
ratory of the Institute of Hematology.

2.2. DNA Extraction and Microbiota 16S Sequencing

DNA was obtained from 200 mg of stool samples from post-COVID-19 and control
subjects by using QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany), according
to the manufacturer’s instructions. For DNA libraries, two amplification steps (PCR)
were used. The first PCR was performed using the specific primers 341F 5’-CCT ACG
GGR SGC AGC AG-3’ and 806R 5’-GGA CTA CHV GGG TWT CTA AT-3’ [30]. The
primers contained in their structure adapters based on those used for the TruSeq approach
(Illumina Inc., San Diego, CA, USA). The second PCR inserted index sequences into the
libraries, which enabled the identification of samples. The final PCR reaction was purified
using a protocol based on magnetic beads (AMPureXP, Beckman Coulter, Pasadena, CA,
USA), and the libraries were pooled for quantification. The quantification of libraries
was performed by qPCR with the KAPA Library Quantification Kit for Illumina platforms
(KAPA Biosystems, Wilmington, MA, USA). All 220 samples (149 patients/71 controls) were
sequenced at the same time/sequencing run. The sequences generated by 16S sequencing
were deposited at the National Center for Biotechnology Information (NCBI) repository
(BioProject ID: PRJNA758913).

2.3. Statistical Analysis

All statistical analyses were performed using the R software package (v. 4.0.3) (R
Core Team, Vienna, Austria, 2021). Microbiome data wrangling was carried out using
the tidyverse (v. 1.3.0) and phyloseq (v. 1.34.0) R packages [31,32]. Libraries with less
than 500 reads were removed. The beta diversity analysis included Principal Coordinate
Analysis using Bray-Curtis dissimilarity and taxa proportions as input. PERMANOVA
models were computed using the ATdonis function from the vegan (v. 2.5.7) R package [33].
The alpha diversity analysis included Shannon index assessment using non-parametric tests
(Kruskal-Wallis or Wilcoxon rank-sum) as appropriate. Differential abundance analysis was
performed using the corncob (v. 0.2.0) R package. Taxa present in less than 10% of samples
were filtered out prior to this analysis. Confidence intervals for the taxa prevalence were
computed using the exact method from the binom (v. 1.1.1) R package. The p values were
adjusted for the control of false-discovery rate (FDR) at 5%, using the Benjamini–Hochberg
step-up procedure [34].

3. Results
3.1. Characterization of the General Post-COVID-19 Population

First, we characterized our general post-COVID-19 population, without taking into
account the disease severity classification during the acute phase. The collected post-
COVID-19 time points ranged from one to eight months (four to 34 weeks) after the acute
disease (~30 days post-COVID-19 = 38 patients; ~60 days post-COVID-19 = 30 patients;
~90 days post-COVID-19 = 18 patients; ~120 days post-COVID-19 = 50 patients; ~150 days
post-COVID-19 = 10 patients; and ~240 days post-COVID-19 = 3 patients).
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The body mass index (BMI) of the patients ranged from 17 to 43 kg/m2

(28.6 ± 5.4 kg/m2), with 3 patients underweight (BMI < 18.5), 38 within ideal weight
(18.5–24.9 kg/m2), and 51 patients overweight (25–29.9 kg/m2), 57 obese (BMI > 30 kg/m2),
among these 39 were obesity grade I (30–34.9 kg/m2), 14 grade II (35–39.9 kg/m2), and
4 had morbid obesity (BMI > 40 kg/m2). In the obese group, 8 patients had the severe and
7 had the moderate form of the disease. In addition to obesity, other comorbidities were
reported for post-COVID-19 patients, including systemic arterial hypertension (21%), type
2 diabetes (7.4%), other heart diseases, such as arrhythmias, coronary artery disease and
cardiac dispositive (5.4%), chronic lung diseases, including asthma (4.7%), chronic renal
disease (2.7%), depression (3.3%) and autoimmune diseases (2%).

The serum quantification of total anti-SARS-CoV-2 antibodies ranged from 0.07 to
199.5 (69.5 ± 58.4), with 15 non-reactive patients (6 asymptomatic, 8 mild, 1 moderate). The
CRP ranged from 0.1 to 6.3 mg/dL (mean ± SD = 0.59 ± 0.94 mg/dL) with 17 patients with
results higher than 0.50 mg/dL, indicative of inflammatory/infectious process (1 severe,
2 moderate, 13 mild, 1 asymptomatic).

Table 1 summarizes the demographic, anthropometric, and clinical data from post-
COVID-19 patients based on the disease severity classification during the acute phase, and
demographic and anthropometric data from control subjects.

Table 1. Demographic, anthropometric, and clinical data from post-COVID-19 patients based on
disease severity classification during the acute phase, and demographic and anthropometric data
from control subjects.

Patients/
Controls

* Gender
(F/M)

** Age
(Mean ± SD)

*** BMI
(kg/m2)

§ Total
SARS-CoV-2
Antibodies

− CRP
(mg/dL)

+ Days
Post-COVID-19

Mean

Asymptomatic
N = 10
(6.7%)

8 F (80%)
2 M (20%) 36.5 ± 13.8 26.5 ± 4.7 29.2 ± 49.1 0.42 ± 0.27

72
(~10 weeks)

(~2.4 months)

Mild
N = 117
(78.5%)

78 F (66.7%)
39 M (33.3%) 40.4 ± 14.1 27.9 ± 5.0 68.6 ± 58.8

p = 0.047 0.56 ± 0.92
84

(~12 weeks)
(~2.8 months)

Moderate
N = 10
(6.7%)

7 F (70%)
3 M (30%) 49.6 ± 13.4 35.2 ± 5.3

p < 0.001
101.1 ± 57.5

p = 0.006 1.56 ± 1.68
81

(~11.5 weeks)
(~2.7 months)

Severe
N = 12
(8%)

5 F (41.7%)
7 M (58.3%) 43.7 ± 15.7 31.4 ± 4.7

p = 0.001
87.3 ± 43. 4

p = 0.032 3.22 ± 4.35
105

(~15 weeks)
(~3.5 months)

Controls
N = 71

51 F (71.8%)
20 M (28.2%) 46.1 ± 16.6 26 ± 4.7 ND ND NA

F: female; M: male; SD: standard deviation; BMI: body mass index; kg/m2: kilograms per square meters; CRP:
C-reactive protein; mg/dL: milligrams per deciliter; ND: not determined. NA: Not applicable. * p = 0.110;
** p = 0.986; *** p < 0.05 (Controls vs. Moderate/Severe); § p = 0.006 (Asymptomatic vs. Mild/Moderate/Severe);
− p = 0.282; + p = 0.505.

We also classified the general post-COVID-19 population in patients without ATB
therapy (COVID-19 group: 23.5%) and patients with ATB therapy during the acute phase
(COVID-19+ATB group: 76.5%). Thirty-five patients were included in the COVID-19 group,
including 6 asymptomatic, 28 mild, and 1 moderate. One hundred and fourteen patients
were included in the COVID-19+ATB group, among them 4 were asymptomatic, 89 mild,
9 moderate, and 12 severe.

Regarding clinical manifestations, Table 2 shows the distribution of the main symp-
toms reported by post-COVID-19 patients during the acute phase of the disease, the ATB
therapy, as well as the percentages of patients with sequelae. Approximately 39% (N = 58)
of patients reported clinical manifestations after resolution of the acute phase. The most
common symptoms among the mild post-COVID-19 patients included fatigue, anosmia,
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anxiety, depression, myalgia, alopecia, memory loss, and depression, followed by mus-
cle weakness, ageusia, tachycardia, sweating, parosmia, breathlessness, paresthesia, skin
rashes, arthralgia, headaches, and dizziness. The rarest symptoms included muscle spasms,
insomnia, nausea, polydipsia, inappetence, tremors, diarrhea, blurry vision, and changes
in bowel functions. For moderate and severe patients, the most common post-COVID-19
sequelae were fatigue, sarcopenia, dyspnea, myalgia, cough, paresthesia, post-traumatic
stress, memory loss, anosmia, ageusia, alopecia, and edema. The rarest sequelae included
plegia, dysphonia, hypothyroidism, hyperinsulinemia, dyslipidemia, systemic arterial hy-
pertension, and some patients still required oxygen support and pulmonary rehabilitation.

Table 2. Distribution of main symptoms and antibiotic therapy, based on disease severity classifica-
tion, during the acute phase, besides sequelae in post-COVID-19 patients.

Patients Diarrhea Fever Dyspnoea Anosmia Ageusia Antibiotics Sequelae

Asymptomatic
(N = 10) 0 0 0 0 0 4

(40%) 0

Mild
(N = 117) 37 (31.6%) 54 (46.1) 0 75 (64.1%) 59 (50.4%) 89

(76%)
41

(35%)

Moderate
(N = 10)

4
(40%)

7
(70%)

10
(100%)

4
(40%)

6
(60%)

9
(90%)

6
(60%)

Severe
(N = 12)

8
(66.7%)

10
(83.3%)

12
(100%)

5
(41.7%)

6
(50%)

12
(100%)

11
(91.6%)

3.2. Detection of Intestinal Dysbiosis in Brazilian Post-COVID-19 Patients

In order to evaluate the intestinal dysbiosis in patients after acute COVID-19, we
sequenced the V3/V4 regions from bacterial 16S and performed the diversity analysis
using the annotated operational taxonomic units (OTUs). According to the Shannon index,
we observed differences (p = 0.0251) in evenness when we evaluated stool samples from
post-COVID-19 patients and control subjects. Likewise, we also detected significant differ-
ences (p = 0.0015) in microbial diversity in post-COVID-19 patients (Figure 1a,b). When
grouping patients into asymptomatic, mild, moderate, and severe, we did not observe dif-
ferences (p = 0.0527) in microbiota evenness, However, we detected significant differences
in microbiota diversity (p = 0.0015) using Bray-Curtis dissimilarity and taxa proportions to
calculate beta diversity (Figure 1c,d). Figure 2 shows the heatmaps containing the top eight
phyla (a) and top 20 microbial families (b) detected in stool samples from post-COVID-19
patients and control subjects.
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Alpha and beta diversities were also calculated by allocating post-COVID-19 patients’
reads according to gender, age, and BMI; as a result, no significant differences were detected
in any of these analyses. When grouping patients according to COVID-19 without ATB
therapy and COVID-19+ATB during the acute disease, differences in beta diversity were
not detected. Furthermore, differences in post-COVID-19 time points and correlations
among microbiota, total anti-SARS-CoV-2 antibodies, and CRP were not observed.

3.3. Differential Genera Relative Abundance in Post-COVID-19 Patients

With the purpose of investigating the presence of specific genera in our general pop-
ulation of post-COVID-19 patients, we evaluated the differential relative abundance in
patients’ samples and compared it with the control group. The relative abundance per-
centages of the Parabacteroides, Bacteroides, Alistipes, Dynosmobacter, Butyricimonas, Bilophila,
Flavonifractor, Barnesiella, Anaerotignum, Parasutterella, and Acidaminococcus genera were
significantly increased (p < 0.05; logOR > 1) in the feces of post-COVID-19 patients, when
compared with the control subjects. On the other hand, the Dorea, Streptococcus, Bifidobac-
terium, and Akkermansia genera were significantly reduced in post-COVID-19 (p < 0.05;
logOR > −1) (Figure 3). Figure S1 shows the relative abundance of some overrepresented
genera in post-COVID-19 patients. Figure S2 shows some underrepresented genera in
post-COVID-19 patients.
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3.4. Specific Intestinal Microbiota Signature in the COVID-19 Group without Antibiotic Therapy

To identify a possible specific signature of the intestinal microbiota after acute COVID-
19 (disease-associated), we compared post-COVID-19 patients without ATB therapy with
the control group. We observed some genera possibly associated with intestinal dysbiosis
induced by the COVID-19. The relative abundance of the Bacteroides, Parabacteroides, Alis-
tipes, Bilophila, Desulfovibrio, Barnesiella, Haemophillus, Dialister, and Prevotella genera were
significantly increased (p < 0.05; logOR > 1) in the feces of those from the COVID-19 group.
Interestingly, the Streptococcus genus was significantly decreased (p = 0.004; logOR = −1.32)
(Figure 4). Figure S3 shows the relative abundance of specific overrepresented genera in
post-COVID-19 patients without antibiotic therapy.
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3.5. Antibiotic-Induced Alterations in Some Bacteria Genera in Post-COVID-19 Patients

Afterwards, in order to demonstrate the specific effect of the antibiotic therapy on the
post-COVID-19 patients (antibiotic-associated), we evaluated the differential relative abun-
dance between COVID-19+ATB versus control group, and COVID-19 group versus COVID-
19+ATB. We observed some genera possibly associated with antibiotic-induced alterations
in the microbiota from the post-COVID-19 patients. The relative abundance of the Parabac-
teroides, Alistipes, Bacteroides, Dysosmobacter, Butyricimonas, Flavonifractor, Anaerotignum,
Bilophila, Parasutterella, Barnesiella, and Acidaminococcus genera were significantly increased
(p < 0.05; logOR > 1) in the COVID-19+ATB group, when compared with the control
subjects. In addition, the Dorea, Bifidobacterium, Streptococcus, Akkermansia, and Clostrid-
ium genera were significantly decreased in COVID-19+ATB group (p < 0.05; logOR > −1)
(Figure 5). The Desulfovibrio and Bifidobacterium genera were reduced in COVID-19+ATB,
when compared with COVID-19 group (Figure 6). The Bacteroides, Parabacteroides, Alis-
tipes, Bilophila, and Barnesiella genera were overrepresented in both groups (COVID-19
and COVID-19+ATB) (Figure S4). Figure S5 shows the overrepresented genera in COVID-
19+ATB, and Figure S6 shows the underrepresented ones in COVID-19+ATB group.
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4. Discussion

The intestinal microbiota are important for several physiological processes, including
the modulation of both innate and adaptive immune responses that maintain a systemic
immune homeostasis [35–40]. The role of intestinal dysbiosis in several inflammatory
conditions have already been demonstrated, and for the past few decades an increasing
body of evidence has pointed toward the microbiota as a major player in infectious diseases,
including that of COVID-19 [41–47]. Here, we evaluated the intestinal microbiota in
Brazilian patients in different post-COVID-19 periods and correlated it with clinical data
and the antibiotic therapy used during the acute phase.

Although the first studies evaluating the intestinal microbiota in COVID-19 patients
had a small number of samples, the available data suggest that dysbiosis and its influence
on immune responses played an important role on the progression to a severe form of the
disease and dysfunction of immune responses [23–26]. A shotgun sequencing study, carried
out by Zuo et al. demonstrated significant changes in the microbiota of 15 hospitalized
patients (1 mild, 9 moderate, 3 severe, 2 critical), with enrichment of opportunistic mi-
croorganisms in the antibiotic therapy group (N = 7 vs. 15 controls), including Actinomyces
viscosus, Bacteroides nordii, and Clostridium hathewayi, and decrease of beneficial commensals,
such as Eubacterium rectale, Faecalibacterium prausnitzii, Dorea formicigenerans, and Ruminococ-
cus obeum. The intestinal dysbiosis persisted even after a negative SARS-CoV-2 test and
respiratory symptoms resolution [23]. The relative abundance of F. prausnitzii, which favors
an anti-inflammatory microenvironment [48], was inversely correlated with disease sever-
ity [23]. This was the first study showing dysbiosis in patients infected with SARS-CoV-2
during the acute phase. Another one, from the same group, identified Collinsella aerofaciens,
C. tanakaei, Morganella morganii, and Streptococcus infantis in the microbiota from COVID-19
patients with SARS-CoV-2 fecal positivity (N = 7), after six days of viral clearance from res-
piratory samples. Patients with negative infectivity (N = 8) had increased SCFA-producing
bacteria, including Alistipes onderdonkii, Bacteroides stercoris, and Parabacteroides merdae [24].

Similarly, a study conducted by Gu et al. evaluated the gut microbiota by 16S sequenc-
ing from 30 COVID-19 patients, 24 H1N1, and 30 controls. COVID-19 patients presented
decreased microbiota richness and diversity, when compared with the control group,
with a predominance of opportunistic genera, such as Actinomyces, Erysipelatoclostridium,
Rothia, Streptococcus, and Veillonella, which correlated with CRP and D-dimer levels. In
addition, COVID-19 samples had lower abundance of beneficial symbionts, Agathobacter,
Fusicatenibacter, and Roseburia. This study excluded patients under antibiotic therapy and
proposed 5 genera as a microbiota signature to differentiate COVID-19 from the control
group (Actinomyces, Erysipelatoclostridium, Fusicatenibacter, Intestinibacter, Romboutsia) [25].

Concerning post-COVID-19, a shotgun sequencing analysis of the gut microbiota in
COVID-19 (N = 100), control individuals (N = 78), and post-COVID-19 patients (N = 27),
30 days after viral clearance, showed dysbiosis in post-COVID-19 patients, independent
of antibiotic therapy (14 received). There were no significant differences in Shannon
index between acute COVID-19 and control groups, and researchers did not compare
these previous groups with post COVID-19 samples. In addition, they detected decreased
relative abundance of Bifidobacterium, Eubacterium rectale, and F. prausnitzii in stool samples
from acute COVID-19, and these alterations persisted in post-COVID-19 patients. Finally,
this study demonstrated correlations among dysbiosis, systemic inflammatory markers
and disease severity, and was the first one to hypothesize that the persistence of intestinal
dysbiosis in post-COVID-19 patients may be involved in the clinical manifestations months
after the disease resolution [26].

In a study from Liu et al., intestinal dysbiosis persisted for six months after COVID-19
resolution. Researchers evaluated the gut microbiota by shotgun sequencing in post-
COVID-19 patients (4 asymptomatic, 31 mild, 55 moderate, 10 severe) at one- (N = 64),
six- (N = 68) and nine-month (N = 11) follow-up, and in 68 control individuals. Dys-
biosis, with decreased microbiota diversity, in antibiotic-naïve COVID-19 patients were
detected, when compared with the control group. Decreased Shannon index was ob-
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served in acute COVID-19, compared with control subjects and post-COVID-19 (one- and
six-month follow-up). However, the Shannon index was increased in post-COVID-19,
at six-month follow-up, when compared with the control group, which was similar to
our study. The relative abundance of Bifidobacterium and Ruminococcus was significantly
reduced in antibiotic-naïve patients. Differences between antibiotic-naïve and antibiotic-
treated patients were not detected at the six-month follow-up [27]. Approximately 76% of
patients in this study presented sequelae after acute COVID-19 (fatigue, memory and hair
loss), and patients without eubiosis reestablishment were characterized by increased Bac-
teroides vulgatus and Ruminococcus gnavus, as well as decreased F. prausnitzii [27]. Similarly,
Chen et al. investigated the gut microbiota by 16S sequencing in 30 COVID-19 patients at
hospitalization and six months after discharge. Authors observed decreased microbiota
richness in the acute disease compared with the control group (N = 30), and higher CRP and
disease severity (in acute phase) in the same post-COVID-19 patients with lower microbiota
diversity [49].

In a more recent study, using shotgun sequencing and mass spectrometry analysis,
Zhang et al. evaluated the gut microbiota and metabolites in 66 hospitalized antibiotic-free
COVID-19 patients (31 mild, 16 moderate, 19 severe/critical), 35 post-COVID-19 (30 days
after discharge), and 70 controls. The microbiota composition in severe/critical COVID-19
patients was significantly different from that in the control group; Bifidobacterium adolescentis,
F. prausnitzii, and Ruminococcus bromii were underrepresented, and pathways related to
carbohydrate fermentation and SCFA production were impaired. The post-COVID-19
patients (15 mild, 17 moderate, 13 severe) also presented different microbiota function and
composition, when compared with the control individuals. B. adolescentis, F. prausnitzii,
and R. bromii were still reduced 30 days after discharge, as well as pathways associated
with SCFA production and L-isoleucine biosynthesis. Interestingly, the lower abundance
of B. adolescentis and F. prausnitzii in COVID-19 patients was associated with more severe
symptoms [50].

In our study, we evaluated the intestinal microbiota in 149 post-COVID-19 patients
(10 asymptomatic, 117 mild, 10 moderate, 12 severe), ranging from one- to eight- month
follow-up, and 71 control samples. We detected significant differences in beta diversity
in post-COVID-19 patients, when compared with the control group. To exclude the effect
of antibiotics on the intestinal microbiota of patients who used them during the acute
phase, we evaluated the groups separately (COVID-19 vs. COVID-19+ATB), and we iden-
tified differential relative abundance of some genera in the COVID-19 group, suggesting
a microbiota signature related to the disease effects, including Desulfovibrio, Haemophillus,
Dialister, and Prevotella. The Desulfovibrio genus comprises sulfate-reducing bacteria present
in the human mouth and gut, and, due to hydrogen sulphide release, it has been associated
with chronic periodontitis, inflammatory bowel diseases, and septic processes [51–55].
Haemophillus genus is predominantly found in the nasopharyngeal and lung microbiome
and is associated with co-infections or secondary infections in COVID-19 [56]. Some
Haemophillus species colonize the human intestines and are associated with conditions
that include irritable bowel syndrome, multiple sclerosis, and neuropsychiatric disorders,
through the gut–brain axis [57–60]. Dialister could be found in the human gut and the in-
creased abundance was associated with neurological conditions, such as multiple sclerosis,
depression, and attention-deficit and hyperactivity disorder [61–63]. Finally, Prevotella is
one of the most abundant genera found in the human gut, and such increased abundance
is associated with Th17-mediated mucosal inflammation, besides rheumatoid arthritis,
metabolic disorders and low-grade systemic inflammation [64–66].

In addition to these data, some beneficial microbes, associated with gut health (Bifi-
dobacterium and Akkermansia), were significantly decreased in patients that used antibiotics
during the acute phase (COVID-19+ATB), thus suggesting that antibiotics are associated
with long-term effects on the intestinal microbiota in post-COVID-19 patients. Antibiotics
have significant impacts on the composition and diversity of the intestinal microbiota,
with increased Enterobacteriaceae species, besides decreased Bifidobacterium and beneficial
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butyrate-producing species [67,68]. The use of antibiotics increased worldwide during the
COVID-19 pandemic, particularly to treat severe cases and secondary lung infections [69],
although patients also used it with the mild form of the disease, and even some asymp-
tomatic patients, as described in our study. Antibiotics are not only involved in dysbiosis
and antimicrobial resistance, but also in long-term consequences, such as gastrointestinal
infections, weight gain, obesity, inflammatory bowel diseases, and colorectal cancer [68–70].

Therefore, we hypothesized that intestinal dysbiosis detected in post-COVID-19 pa-
tients, and the indiscriminate use of antibiotics during the acute phase, may be associated
with post-COVID-19 syndromes. In our study, approximately 39% (N =58) of post-COVID-
19 patients reported clinical manifestations after resolution of the acute phase, including
fatigue, dyspnea, myalgia, alopecia, anxiety, memory loss, depression and persistent anos-
mia. The main strength of our study is the large sample size, which improves the statistical
power to assess the differential relative abundances between the evaluated groups. How-
ever, our study had some limitations, such as a lack of data on dietary habits from the
patients, and a lack of acute COVID-19 samples, which would allow us to conduct a tem-
poral analysis of the microbiota. Moreover, there were some differences between this and
other studies carried out with post-COVID-19 patients, such as study population (num-
ber of patients with different disease forms), control group, mean age, sex proportions,
sequencing techniques, and collection time points of the post-COVID-19 samples, and they
should be taken into account.

5. Conclusions

In this observational study, we detected some genera possibly associated with the
post-COVID-19 dysbiosis, including Desulfovibrio, Haemophillus, Dialister, and Prevotella, in
addition to decreased beneficial microbes associated with antibiotic-induced dysbiosis, in-
cluding Bifidobacterium and Akkermansia. Such disease- and antibiotic-associated alterations
may be related to the clinical manifestations of the post-COVID-19 (long COVID), and we
suggest that the microbiota modulation may represent a target for recovery from the acute
COVID-19 and a therapeutic approach for post-COVID-19 clinical manifestations.
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