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Abstract

The skeletal system is generated and maintained by its progenitors, skeletal stem cells (SSCs), 

across the duration of life. Gradual changes associated with aging result in significant differences 

in functionality of SSCs. Declines in bone and cartilage production, increase of bone marrow 

adipose tissue, compositional changes of cellular microenvironments, and subsequent deterioration 

of external and internal structures culminate in the aged and weakened skeleton. The features 

and mechanisms of skeletal aging, and of its stem and progenitor cells in particular, are topics 

of recent investigation. The discovery of functionally homogeneous SSC populations with a 

defined cell surface phenotype has allowed for closer inspection of aging in terms of its effects 

on transcriptional regulation, cell function, and identity. Here, we review the aspects of SSC 

aging on both micro- and macroscopic levels. Up-to-date knowledge of SSC biology and aging is 

presented, and directions for future research and potential therapies are discussed. The realm of 

SSC-mediated bone aging remains an important component of global health and a necessary facet 

in our understanding of human aging.
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INTRODUCTION

A remarkable proportion of healthcare costs are attributed to skeletal disease [1]. In 1990, 

the estimated annual global costs of osteoporosis-related fractures alone was $34 billion and 

is projected to rise to $131 billion by 2050 as the worldwide elderly population increases 

[2]. Limits to understanding the mechanics of skeletal diseases have prevented significant 

progress in developing reliable treatments, thus a better understanding of the molecular and 
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genetic components of aging in skeletal progenitors can provide insight into the key targets 

for therapeutics in age-related skeletal disease.

Fundamentally, the vertebrate skeleton is a remarkably dynamic and complicated organ. 

Throughout life, nearly every bone in the body continually deconstructs and regenerates 

itself in order to maintain structural and mechanical integrity [3]. This highly regulated 

process allows each bone to acquire and maintain a unique size, density, and shape, 

constantly repairing and reorganizing its mineral and cellular contents throughout 

development. In humans, the rate of bone formation exceeds resorption between birth 

and adulthood; bone mineral density peaks between 20 to 30 years of age, followed by 

a gradual and terminal decline in mineral density, as well as a decline in the volume of 

articular cartilage, which does not regenerate [3]. This dynamic generation and resorption of 

bone is carried out by osteoblasts and osteoclasts respectively, each deriving from separate 

progenitor populations. The relative population and activity of these cells changes across 

life according to the needs of the individual and are largely subject to influences such 

as nutrition, hormones, growth factors, trauma, as well as heritable mutations in genes 

regulating bone mineral density [4]. Where the lifespan of an individual osteoblast or 

osteoclast averages between 2 weeks to 3 months, the necessity to replenish these cell 

populations throughout life is evident [5]. Moreover, the role of healthy bone marrow 

in housing the progenitors of the skeletal, hematopoietic and immune systems is well 

understood and further demonstrates the importance of a stable and tightly regulated bone 

microenvironment [6–8].

SKELETAL STEM CELLS

Throughout life, adult stem cells are responsible for replenishing and restoring tissues of 

the body. Evidently the natural process of aging diminishes the capability of adult stem 

cells to maintain these systems in a youthful and resilient state. In the skeletal system, 

aging corresponds to a decline in the regenerative and restorative potential of its progenitor 

cell population, and through replicative exhaustion, chromatin remodeling, and changes to 

the intra- and extracellular transcriptional landscape, the skeleton becomes less capable of 

maintaining its dynamic stability [9].

The foundation for skeletal integrity lies in the cellular progenitors of the skeletal system 

supplying bone tissue with its building blocks of mature cell types. Significant effort 

has been made in identifying the bona fide progenitors of bone- and cartilage-forming 

cells, and indeed much debate remains over the precise cellular identity and definition 

of such progenitors [9,10]. A long-held conclusion that mesenchymal stromal/stem cells 

(MSCs) give rise to all compartments of the skeletal system has recently been put into 

question with evidence suggesting MSCs have non-skeletogenic, tissue-specific properties, 

and consist of highly heterogeneous cell subtypes, including committed lineage progenitors 

among multipotent progenitors [9,11]. Current protocols for obtaining purified MSCs rely 

primarily on plastic adherence from treated tissues such as flushed or crushed bone marrow, 

followed by fluorescent cell sorting sometimes gated by only a single surface marker, 

however these methods likely select for a population of cells which appear homogeneous 

in epitope expression but are functional diverse and potentially exclude quiescent stem cells 
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that otherwise do not readily adhere. For example, Nestin was identified as a marker for 

progenitor populations in bone marrow, however lineage tracing studies have shown that 

Nestin-expressing MSCs in the marrow and perivascular niches contain lineage-committed 

osteoblastic and endothelial cells [12,13]. More recently Leptin receptor-expressing MSCs 

have been described as putative progenitors of the skeletal system, but subsequent functional 

analyses have shown that very few cells within this population are multipotent or give rise 

in-vitro to fibroblast colonies [14]. Other markers such as Gremlin1, parathyroid hormone-

related protein, and Glioma-associated oncogene 1 have also been used to isolate suspected 

multipotent skeletal progenitors, although such populations similarly contain a variety of 

cell types that include lineage-committed cells rather than a homogeneous population of 

multipotent progenitors [15,16,17].

Only within the past decade have advances in lineage tracing and cell sorting using multiple 

surface markers revealed more functionally homogeneous populations of self-renewing, 

lineage-restricted progenitors of bone, cartilage, and stromal cells that have the unique 

capacity to effectively reconstitute the skeletal niche in-vivo [18–21]. These skeletal stem 

cells (SSCs), unlike MSCs, are defined by their position at the top of the lineage hierarchy 

representing functionally homogeneous cell populations that exhibit the necessary properties 

of a self-renewing and multipotent stem cell [9]. In particular, SSCs demonstrate high clonal 

capacity and give rise to the cell types involved in maintaining skeletal tissues including 

bone, cartilage, and stroma, further providing them with the unique ability of generating de 

novo bone marrow niches at ectopic sites [19,20]. Identification of these highly enriched 

populations of SSCs rely largely on selecting combinations of cell surface markers that are 

unique to each population and exclude markers indicative of hematopoietic and endothelial 

origin. Using comprehensive functional and single-cell transcriptomic analyses of cells 

from various bone compartments, several bona fide SSC populations have been proposed 

in regions such as bone marrow, growth plate, periosteum, and perivasculature space, 

with the potential for each SSC population to possess varying differentiation capacity 

towards bone, cartilage, stroma, and bone marrow adipose tissue (BMAT) depending 

on the microenvironment they reside in [19,20,22–25]. This is additionally reflected in 

the bone forming mechanism by which SSC populations generate skeletal tissues, i.e. 

intramembranous versus endochondral ossification. Altogether, this indicates unique cellular 

characteristics between SSCs from separate anatomical subregions and bone compartments 

[26–28]. Given the recent and dynamic nature of these studies however, the potential 

for additional refinement to more transcriptionally and functionally homogeneous SSC 

populations may yet be achieved.

FEATURES OF AGED SKELETAL STEM CELLS

In search of the transcriptomic identity of SSCs, the apparent features of aging in the 

skeletal system reveal itself (Figure 1). In aged SSCs, downregulation of skeletogenic 

and cellular senescence-suppressing pathways are associated with diminished capacity for 

bone formation and ultimately fracture healing [29]. Similarly, the ability for SSCs to 

differentiate toward articular cartilage decreases with age [29,30]. The lineage potential 

of aged SSCs is skewed towards stroma, and in aged stromal tissues higher amounts of 

pro-inflammatory cytokines disrupt maintenance of hematopoietic progenitors in the niche 
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[31]. In the hematopoietic stem cell system, lineage-skewing of myeloid progenitors to the 

bone-resorptive osteoclasts increases with age, exacerbating the gradual decrease in bone 

mineral density [31]. A perivascular SSC subtype drives the widely observed increases 

in BMAT during aging, leading to impairments in regenerative processes of the skeletal 

system [25,32,33]. Not surprisingly, several studies show bone mineral density is negatively 

correlated with BMAT, suggesting that aging leads to limitations in the differentiation 

capacity of SSCs responsible for generating osteochondrogenic cells, ultimately resulting in 

BMAT accumulation [34,35]. Interestingly, BMAT is higher in men between the ages of 20 

to 60 compared to women of the same age group, however this difference is reversed beyond 

the age of 60 with women having approximately 10% greater fat content than men [36,37]. 

Postmenopausal women also have greater prevalence of osteoporosis, although the risk for 

developing osteoporosis increases generally between men and women with age [38,39]. In 

consequence, the aged skeleton contains both a weakened internal and external structure, 

resulting in a more substantial likelihood for debilitating bone injury and disease.

MECHANISMS OF SKELETAL STEM CELL AGING

In many regards, biological aging itself is a process that is poorly understood. Theories 

on the causes of aging point towards genomic instability and progressively deleterious 

epigenetic modifications that produces an aged, unstable cellular phenotype [40]. Evidence 

suggests that telomere attrition strongly correlates with age-related decline in cellular 

functionality, but can be rescued by artificial lengthening of telomeres through reactivation 

of telomerase [41,42]. Other sources suggest stem cell exhaustion, cellular senescence, and 

loss of proteostasis are major contributors to the overall decline in functionality associated 

with aging, and likely aging involves many of these features in concert [43,44].

The mechanisms of aging in SSCs remain less clear but are under current investigation, 

with focus on relating the functional differences between young and aged cells. A summary 

of gene pathways altered in aged cells and their effect on SSCs and skeletal tissues is 

provided in Table 1. In aged SSCs, skeletogenic WNT signal pathways and negative 

regulators of cellular senescence are downregulated, while stromal extracellular matrix 

signaling pathways are upregulated [29]. In this context, aging may increase the number 

of senescent SSCs in the niche, potentially promoting osteoclastogenesis as demonstrated 

by in-vitro studies and further weakening the bone architecture [45]. Curiously, aged 

SSCs show no changes in telomerase activity suggesting that senescence is not necessarily 

the main driver of bone stem cell aging [31]. In long bones, SSCs lose transcriptomic 

diversity, fail to activate, and display reduced bone-forming potential during aging [25]. 

Following microfracture injury, cartilage-derived SSCs at the distal femur of adult mice 

demonstrate diminished capacity to produce type II collagen indicative of articular cartilage, 

instead producing MMP13 and types I and X collagen indicative of fibrocartilage and 

hypertrophic chondrocytes [30]. This may be due in part to diminished signaling from 

bone morphogenic protein 2 (BMP2) and increased signaling from vascular endothelial 

growth factor (VEGF), which are known factors in chondrogenic differentiation and induce 

in-vivo production of articular/hyaline cartilage [19,20,30]. Defects in the production of 

MMP13 and pro-osteochondrogenic factor TGF-β are known to disrupt cartilage and bone 

homeostasis, thus aged SSCs themselves give rise to downstream lineages that enhance 
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age-related degeneration of skeletal structures [46,47]. In cells of tissue systems such as 

vascular endothelial cells, aging may affect the secretion of osteochondrogenic factors in 

the BMP and WNT pathways and prevent necessary endocrine signaling that orchestrate 

systemic bone and cartilage remodeling [48,49].

Within the skeletal niche, hematopoietic stem cells (HSCs) reside alongside skeletal cell 

types and share an age-related decline in lineage diversity potential [53]. A hallmark feature 

of HSC aging is the decline in the generation of lymphoid progenitors with reciprocal 

skewing towards myeloid progenitors [53]. The aged skeletal lineage generates elevated 

levels of pro-inflammatory and pro-osteoclastogenic factors, which contributes to myeloid 

skewing [31]. For example, increased Colony-stimulating factor-1 (CSF1), a key signaling 

cue for osteoclastogenesis from SSC-derived cell populations, and its cognate receptor 

on granulocyte-monocyte progenitors correspond with higher bone-resorbing osteoclast 

activity during aging, while a decrease in TGF-β results in less osteoblast activity [31]. 

Furthermore, the greater levels of pro-inflammatory factors in aged cells within the skeletal 

niche potentially disrupt SSC migration and deplete the healthy niche of HSCs [31,54]. 

Chronic inflammation, a process that inhibits tissue regeneration in other tissues in the 

elderly, decreases osteogenic potential of SSCs through age-related activation of NF-κB 

[50]. In this regard, differences in humoral factors such as increases to pro-inflammatory 

cytokines, many of which originate in the bone marrow, likely play a critical role in aging 

of the skeletal system and beyond on the systemic level. Experiments with heterochronic 

parabiotic mice have demonstrated that circulating systemic cell-extrinsic factors from 

young blood restore a youthful phenotype to brain, vascular, and muscle cells, however 

somewhat unexpectedly fails to restore functionality to hematopoietic stem cells [53,55]. 

Investigation of heterochronic parabiosis in the skeletal system has similarly revealed a 

failure of young blood to restore osteochondrogenic activity of aged SSCs and bone loss 

more generally [31]. Thus, the role of systemic humoral factors in the skeletal niche remains 

to be more clearly elucidated.

Lastly, evidence of age-related differences of SSCs in the histone deacetylation protein 

Sirtuin1 suggests a mechanism for epigenetic control of SSC differentiation [29]. In this 

study, selective inhibition of Sirtuin1, resembling the decrease in expression in aged 

SSCs, decreases osteogenic differentiation, while its activation produced improvement of 

osteogenesis. In other stem cell systems, Sirtuins regulate proliferation, differentiation, and 

mitochondrial metabolism, demonstrating epigenetic regulation as a major factor in stem 

cell function [44,55]. A more in-depth evaluation of the epigenetic and transcriptomic 

landscape, including the role of alternative splicing and post-translation modification of 

key pathways in SSC identity, is essential in gaining a clearer understanding of age-related 

cellular changes in the skeletal system.

CURRENT AND FUTURE TREATMENTS

Current approaches to treating age-related decline in bone and cartilage health rely 

almost exclusively on maintaining the balance of bone resorption and production by 

targeting osteoclast and osteoblast activity [56]. Treatments such as bisphosphonates, NF-κB 

inhibitors, calcitonin, and selective estrogen receptor modulators decrease bone resorption 
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by inhibiting osteoclastogenesis or mediating osteoclast apoptosis [51,52]. The variety of 

contraindications and frequency of off-target effects by these treatments, however, reduces 

the pool of candidate patients and remains a major drawback to treatment of skeletal disease. 

Similarly, sclerostin inhibitors and parathyroid hormone are used to increase osteoblast 

activity to promote bone production, but remain limited in efficacy and availability [57,58].

Directed application of stem cell therapies in humans remains largely under investigation, 

but provides an enticing avenue for minimally disruptive, highly regenerative treatment 

[59]. Studies in SSCs thus far have demonstrated multiple potential targets for bone and 

cartilage regeneration; thus, SSC-directed treatment would likely circumvent the limitations 

to efficacy seen in many clinical trials relying on unspecific MSC-based approaches [9]. 

Recovery of lost articular cartilage by stimulated SSC differentiation through BMP2 and 

soluble VEGFR1 has already been demonstrated in mice, and could improve already 

established surgical models used to treat cartilage loss [30]. Results of another study 

point towards the prospect of piezoelectrical stimulation to direct SSC migration towards 

sites of injury with the potential to regenerate hyaline cartilage [60]. Improvement of 

bone regeneration in aged or injured bone could be achieved through local combinatorial 

treatment of BMP2 and CSF1 agonist, targeting both SSC and HSC compartments [31]. In 

one study, upregulation of osteogenic markers RUNX2 and COL1A1 was achieved through 

mechanical vibrational of in-vitro cultures at 10 MHz frequency over the course of five days, 

although this remains to be shown in an in-vivo model [61].

Accumulation of senescent SSCs may play a role in age-related skeletal regeneration 

deficiencies, and indeed in-vivo studies in mice have demonstrated a reversal of age-related 

bone loss by eliminating senescent cells [45]. Remodeling of stem cell chromatin and 

transient expression of nuclear reprogramming factors could potentially restore SSCs 

to a more youthful epigenetic state, increasing the potential for differentiation into 

osteochondrogenic lineages [62,63]. Less conventional methods, such as growing bone 

scaffolds from autologous bone marrow within human tissues for transplantation, have 

also been explored and suggest autologous SSC therapy may be effective in treating both 

common and rare diseases of the skeletal system [64].

CONCLUSIONS

In general, our understanding of aging among organisms remains elusive. While the role 

of aging in nature is not clearly delineated, evidence of unusually long lifespans in the 

animal kingdom, the longest of potentially 300 or more years belonging to the Greenland 

shark, suggests the potential for expansion of the human lifespan, and the potential to 

reverse or elongate youthful features of human tissues through targeting of stem cells 

[65,66]. Much inspiration for reversal of aging in stem cells is being drawn from examples 

of developmental reversal in nature, such as in Cnidarians which are known to avoid the 

deteriorating effects of aging through reverse development and reverting to early tissue 

progenitor stages [67]. Growing interest in the presence of aging in single celled organisms 

such as bacteria have revealed ancient mechanisms by which aging may be a fundamental 

part of cell biology [68]. These studies may propose novel pathways and features of the 

aging landscape in human stem cells that may otherwise have remained unsuspected.
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Indeed, the loom of aging evades no known animal. Regardless, the prospect of delaying or 

reversing the effects of aging serves as motivation to understand the systems that generate 

our bodies. Much progress has been made in recent years to reveal the process by which 

the skeleton is generated and maintained. The discovery of functionally homogeneous SSC 

populations identified by a combination of surface markers has therefore unveiled the 

potential for directed and reliable studies into the nature of the progenitor cells of the 

skeletal system. Moreover, the complexities of skeletal aging can more readily be elucidated 

by studying the changes in cellular function and expression profile across age groups. 

Several studies have already identified key features of SSC aging and its components, but 

more work is needed to better clarify cellular mechanisms that, in aggregate, generate an 

aged and dysfunctional skeletal niche, and subsequently an aged and dysfunctional skeletal 

system.
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Figure 1. The effects of aging on SSCs.
From the bone marrow-derived mouse osteochondral SSCs, the lineage-committed bone, 

cartilage, and stromal precursor (BCSP) cell gives rise to osteoblasts, chondrocytes, and 

stromal cells, but not bone marrow adipose. Human perivascular SSCs give rise to bone 

marrow adipose and under specific circumstances, e.g., fracture—bone, cartilage, and 

stroma. Aging skews lineage output (indicated by arrows). Surface markers identify skeletal 

cell types in mice [19,25]. *Chondrocyte generation persists throughout life, however 

clonal diversity of chondral tissues and generation of articular chondrocytes significantly 

diminishes with age, while injury-activated SSCs give rise to hypertrophic chondrocytes that 

generate mostly fibrocartilage [30].
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Table 1.

Regulation of skeletal-related gene pathways and their effects on SSCs and skeletal maintenance.

Gene/
Pathway

Regulation in aged 
cells

Effects on SSCs and the skeletal system

Sirtuin1 Downregulated Histone deacetylation protein implicated in aging and a target for rejuvenation therapeutics, 
reactivation of Sirt1 improves osteogenic differentiation in aged SSCs [29].

CSF1 Upregulated A key signaling cue for osteoclastogenesis from SSC-derived cell populations, increased CSF1 
signaling corresponds with higher osteoclast activity, while inhibition promotes osteogenesis of SSCs 
[5,9,31].

BMP2 Downregulated Diminished signaling of BMP2 with SSCs may be related to poor formation of bone and articular 
cartilage; differentiation can be induced through combinatorial treatment with BMP2 and sVEGFR 
(chondrogenesis) or CSF1 (osteogenesis) [19,20,30,48,49].

VEGF Upregulated Increased VEGF signaling contributes to formation of fibrocartilage; combinatorial treatment with 
BMP2 induces formation of articular cartilage by activated SSCs [19,20,30].

MMP13 Upregulated Increased production of MMP13 is associated with formation of hypertrophic chondrocytes and 
fibrocartilage, disrupting homeostasis of articular cartilage and bone [30,46,47].

TGF-β Downregulated Diminished TGF-β signaling results in impaired osteoblast activity and decreased bone formation 
[31,33,46,47].

WNT Downregulated Diminished WNT signaling in aged SSCs may contribute to stem cell senescence and promote 
osteoclast activity [29,48,49].

NF-κB Upregulated Increased humoral circulation of NF-κB corresponds with chronic age-related inflammation and 
diminished osteogenic activity; inhibition of NF-κB in aged cells restores youthful phenotype [50–
52].
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