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Abstract: High-temperature stress (HT) over crop productivity is an important environmental factor
demanding more attention as recent global warming trends are alarming and pose a potential threat
to crop production. According to the Sixth IPCC report, future years will have longer warm seasons
and frequent heat waves. Thus, the need arises to develop HT-tolerant genotypes that can be used
to breed high-yielding crops. Several physiological, biochemical, and molecular alterations are
orchestrated in providing HT tolerance to a genotype. One mechanism to counter HT is overcoming
high-temperature-induced membrane superfluidity and structural disorganizations. Several HT
lipidomic studies on different genotypes have indicated the potential involvement of membrane
lipid remodelling in providing HT tolerance. Advances in high-throughput analytical techniques
such as tandem mass spectrometry have paved the way for large-scale identification and quantifica-
tion of the enormously diverse lipid molecules in a single run. Physiological trait-based breeding
has been employed so far to identify and select HT tolerant genotypes but has several disadvan-
tages, such as the genotype-phenotype gap affecting the efficiency of identifying the underlying
genetic association. Tolerant genotypes maintain a high photosynthetic rate, stable membranes,
and membrane-associated mechanisms. In this context, studying the HT-induced membrane lipid
remodelling, resultant of several up-/down-regulations of genes and post-translational modifications,
will aid in identifying potential lipid biomarkers for HT tolerance/susceptibility. The identified
lipid biomarkers (LIPIDOTYPE) can thus be considered an intermediate phenotype, bridging the
gap between genotype–phenotype (genotype–LIPIDOTYPE–phenotype). Recent works integrating
metabolomics with quantitative genetic studies such as GWAS (mGWAS) have provided close associ-
ations between genotype, metabolites, and stress-tolerant phenotypes. This review has been sculpted
to provide a potential workflow that combines MS-based lipidomics and the robust GWAS (lipidomics
assisted GWAS-lGWAS) to identify membrane lipid remodelling related genes and associations which
can be used to develop HS tolerant genotypes with enhanced membrane thermostability (MTS) and
heat stable photosynthesis (HP).

Keywords: high temperature; tolerance mechanisms; membrane lipids; lipidomics; photosynthesis;
genotype; phenotype; GWAS; breeding

1. Introduction

Across the globe, crop yield is affected by various abiotic stresses like high tempera-
tures (HT), freezing, drought, salinity, heavy-metal toxicity, etc. HT is the foremost among
the abiotic stresses because of increasing greenhouse gas emissions. The sixth IPCC Assess-
ment report has highlighted that all regions of the world will be warmer, and a 1.5 ◦C rise
in global temperature will create increasing high-temperature waves, longer warm seasons,
and shorter cold seasons—which could be more severe when the rise is 2 ◦C [1].
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Plants are continuously exposed to stressful environments because of their sessile
nature. To some extent, the plants can withstand HT stress through physiological changes
and frequently altering their metabolisms. In particular, the plants respond by produc-
ing compatible solutes that can organise proteins and cellular structures involved in os-
motic adjustment and redox homeostasis [2,3]. The membrane lipid metabolism is also
altered in response to HT stress. An increase in membrane fluidity is one of the imme-
diate consequences of HT stress. Plants coordinate the lipid metabolism to maintain
the structure and integrity of membranes [4]. High-temperature tolerant genotypes of
wheat (Triticum aestivum L.) and soybean (Glycine max L.) increased the saturated lipid
content to avoid the temperature-induced hyper fluidity of membranes. In this context,
lipidomics, a branch of metabolomics, would be a valuable tool in evaluating the effect
of high-temperature stress on plants. Lipidomics is the comprehensive study of all lipid
species in a biological system, and assessing alterations in the lipid contents and com-
positions in response to environmental conditions will be a valuable tool in developing
stress-tolerant lines [5].

Lipid compositional variation in response to HT stress has been recorded in several
plants such as Arabidopsis thaliana [6], wheat [7,8], soybean [9], and Ethiopian mustard
(Brassica carinata) [10]. Djanaguiraman et al. [7] have reported that in wheat, the decrease
in photosynthetic rate under HT stress is due to thylakoid membrane damage, lipid com-
position alterations, and oxidative damage of organelles. The membrane lipid alterations
responsible for membrane stability under HT stress are orchestrated by the coordinated
activities of lipid desaturating, oxidising, glycosylating, and acylating enzymes [7,11]. The
study also indicated that certain oxidized lipid species could be biomarkers for screening
HT stress-tolerant genotypes.

The HT stress damage is attributed to hyper-fluidity of membrane lipids. Membrane
organization is disrupted, and the lipid composition is altered. The thylakoid membrane
is highly susceptible to HT stress. High-temperature stress damages the photosynthetic
light reactions of the thylakoid membrane and decreases the quantum yield of PSII [8].
The frequency of non-bilayer forming lipids in membranes is increased. Lipid–protein
interaction is disrupted due to the denaturation of lipids and proteins. High-temperature
stress also increases the production of reactive oxygen species (ROS), which causes mem-
brane lipid peroxidation and accumulation of cytotoxic carbonyl groups in leaves. Thus,
maintaining the integrity and fluidity of the membrane and preventing lipid peroxidation
are of fundamental importance for plants to survive under HT [12–14].

Mutation studies have reported that several gene mutations related to membrane lipid
synthesis, transport, and desaturation are associated with HT stress tolerance or suscep-
tibility [15–17]. Hence, uncovering the molecular mechanisms responsible for tolerance
resulting from the membrane lipid alterations becomes essential. An integrated approach
utilising metabolic and transcriptome data has been used to discover genes related to that
metabolism. However, the genetic determinants underlying the quantitative variation in the
metabolites or lipids responsible for the desired trait can be determined better with a robust
integrated multi-omics approach such as a metabolome-assisted genome-wide association
study (mGWAS). This review will focus on the idea of utilising a forward genetic analysis
integrating the lipidome and quantitative genetics to perform lGWAS (Lipidomics-assisted
Genome-Wide Association Study) (Figure 5) which could reveal the genetic associations
for the intermediate phenotype–LIPIDOTYPE of plants responsible for membrane ther-
mostability (MTS) and high-temperature stable photosynthesis (HP) under HT, which can
be further characterised and utilised in breeding for HT stress- tolerant genotypes.

2. Diversity of Plant Lipids and Study of Lipids

Lipids are not generally derived directly from the central dogma flow, i.e., they are
not genetically encoded like proteins [18]. Instead, they are produced and metabolised
by multiple enzymes, which are influenced by various factors. A steady state of the cel-
lular lipidome cannot be maintained, i.e., enzymes and environmental cues constantly
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modify the lipids. Lipids have several primary cellular functions, such as being the ma-
jor components of biological membranes responsible for maintaining the structure and
integrity of membranes and the cell ultrastructures [19], acting as an energy source [20],
signalling molecules [21], and as substrates for post-translational protein–lipid modifica-
tions. In plants, lipids play significant roles in photosynthesis, signal transduction under
stress conditions, vesicle trafficking and secretion, and cytoskeletal rearrangements [22,23].
Lipids exhibit extreme combinational and structural diversity. It is estimated that the
total number of lipids in a cell or tissue varies in the thousands, with various unique
lipid species in variable abundance [24]. The diversity of lipids can be defined in two
ways: (1) chemical diversity—chemically diverse structures such as stereo-isomers, and
various head groups, and (2) compositional diversity—ratio of different lipids present
in different species, tissues/cells in an organism, in different organelles, and in different
membrane leaflets and even sub-domains. In other words, lipids are unevenly distributed
between the different membranes of the cell [25]. Further, lipids become more diverse
due to multiple combinations of a variety of head groups and tail fatty acids, with fatty
acids further varying in chain length and saturation levels (number of double bonds) [24].
Several lipid modifications can also contribute to the diversity of membrane lipids, such
as acylation, glycosylation, fatty acid desaturation and oxidation, which happens under
specific conditions [8].

Plant membrane lipids fall into three broad classes: glycerolipids (phospholipids,
galactolipids, sulfolipids, triacylglycerols), sphingolipids, and sterols, with each lipid class
varying greatly in their properties [26]. Lipids are characterised by their varying backbone
structure, variable hydrophilic head groups, and the attached variable-length hydrophobic
fatty acid chains [27]. Phospholipids containing phosphorous in head groups are the major
constituents of cell membranes except for chloroplast, where galactolipids dominate. The
simplest phospholipid is phosphatidic acid (PA), a precursor for various other lipids [28].
Different head groups of phospholipids include glycerol, choline, ethanolamine, serine,
and inositol, which are referred as phosphatidylglycerol (PG), phosphatidylcholine (PC),
phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI),
respectively [25]. The photosynthetic thylakoid membranes of the chloroplast are dom-
inantly made of non-phosphorous galactolipids (monogalactosyldiacylglycerol; MGDG
and digalactosyldiacylglycerol; DGDG) and sulfolipids (sulfoquinovosyldiacylglycerol;
SQDG), and one phosphorous-containing lipid phosphatidyl glycerol (PG) to some ex-
tent, but proven to be highly indispensable for PSII functioning [29,30]. The significance
of the galactolipid predominance of nearly 80% in chloroplast membranes is a possible
evolutionary strategy of plants to maintain photosynthesis even under phosphate-limiting
conditions [31]. Plant sphingolipids reach up to 10% of the total lipids in plants, depending
on the species and tissues, and it is made of a ceramide backbone with a long chain base
and a long-chain fatty acid esterified to it. They are grouped into four classes: glucosyl-
ceramides (GCer), glycosylinositol phosphoceramides (GIPC), ceramides (Cer), and free
long-chain bases (LCB) [32,33]. Sterols are ubiquitous components of the eukaryotic cells
reaching up to 10% in membranes [34], with plant sterols or phytosterols differing from one
another in the 24th carbon atom of the side chain by either methyl or an ethyl group [35].
About 250 phytosterols have been identified in plants, such as campesterol (24-methyl
sterols), stigmasterol and β-sitosterol (24-ethyl sterols) present in various forms such as free
sterols, sterol esters, steryl glycosides (SG) and acylated steryl glycosides (AcSG) [35,36].
Phytosterols also act similarly to cholesterol in mammalian cells, regulating membrane
fluidity and permeability [37].

Lipidomics, a branch of metabolomics studying lipids, is more than just the complete
characterization of all lipids in a system. It is the comprehensive understanding of the
influence of all lipids on a biological system concerning signalling, membrane architecture,
transcriptional and translational modulation, cell–cell and cell–protein interactions, and
response to environmental changes [38]. The vast diversity of lipids necessitates analytical
techniques with high separation power. Advances in mass spectrometry-based lipidomics
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platforms with greater resolution power enable high-throughput lipid analysis at a rela-
tively quick scale [39]. Two analytical lipidomics approaches are available to profile the
lipids: targeted and untargeted lipidomics. As the name suggests, the targeted approach
focuses on a detailed list of lipid species, mainly of the same lipid class, subclass, or several
classes. An untargeted method is employed to screen the entire lipidome of an organism
for which no previous information is available [24,40].

3. Membrane Lipid Biosynthesis

The biosynthesis of lipids can be conceptualized into three phases: (a) assembly of
phosphatidic acid (PA), (b) formation of free/activated DAG backbone, and (c) formation
and assembly of head groups to make the whole lipid molecule. After completion of step
(c), acyl groups attached to the backbone are desaturated by various fatty acid desaturases
(FADs) to make the actual lipid molecular species [27]. Two distinct and discrete pathways
exist for the membrane lipid synthesis and assembly utilizing the fatty acyl pool: eukary-
otic (cooperative between endoplasmic reticulum ER and chloroplast) and prokaryotic
(chloroplast) pathways located in the ER and chloroplast, respectively (Figure 1) [41–44].
Both pathways are compartmentalized by membrane barriers but are closely coordinated
to meet the overall demand for cellular membrane biogenesis and maintenance [42]. The
relative contribution of the pathways to overall glycerolipid production is flexible and
varies depending on several factors [45]. The prokaryotic pathway synthesizes several
glycerolipid classes: three galactolipid classes, MGDG, DGDG, and TGDG, and a sulfolipid
class, SQDG [46]. The eukaryotic pathway (in ER) synthesizes phospholipid classes such as
PC, PE, PI, and PS [27].

Almost 95% of the fatty acids in plant cells are synthesized by type I fatty acid syn-
thases (FAS) in the chloroplasts. The major products of de novo fatty acid synthesis are
16:0-ACP and 18:1-ACP [46]. Fatty acids are formed in the chloroplasts and used in the
prokaryotic pathway for lipid synthesis or transported to ER for eukaryotic pathway uti-
lization. The first product of the prokaryotic course is 18:1, 16:0-PA and the eukaryotic
pathway is 18:1/16:0, 18:1-PA (sn1, sn2) (Figure 1) [47,48]. PAs produced by both routes
can be dephosphorylated into DAGs by phosphatases [49], which are later made available
for the synthesis of plastidic as well as extra-plastidic glycerolipids [50]. DAGs made by
eukaryotic pathway in ER are actively transported into chloroplasts via physical contact
sites between ER and outer chloroplast envelope to increase the DAG pool for plastidic
lipid synthesis [51,52]. The contribution of DAGs by both pathways varies depending on
the plant species. The galactolipid MGDG is made by adding galactose to DAG by MGDG
synthases, and DGDG is made by adding galactose to MGDG by DGDG synthases [43,53].
Sulfolipid SQDG is created by transferring sulfoquinovose from UDP-sulfoquinovose to
DAG by glycosyltransferase [54]. Fatty acids of these galactolipids are then desaturated by
several fatty acid desaturases (FADs) [55].

Phosphatidyl glycerol (PG) is synthesised in chloroplasts via the prokaryotic pathway,
ER, and mitochondria. PG is made by the CDP-DAG pathway in which DAG is trans-
ferred from CDP-DAG to glycerol-3-phosphate, followed by dephosphorylation [46,56].
Phosphatidyl ethanolamine (PE) is synthesised by converting serine to ethanolamine, and
its further attachment to the DAG backbone or ethanolamine headgroup transferred to
DAG from CDP-ethanolamine (Figure 1). Phosphatidylcholine (PC) is formed by the head
group activation pathway utilising either choline or PE [57,58]. Phosphatidylserine (PS)
is assembled by the base-exchange reaction between the serine and ethanolamine head
group of PE [59]. Phosphatidyl inositol (PI), a minor class of phospholipid and an essential
precursor for the synthesis of signalling PIPs, is made by the attachment of the inositol
headgroup to the DAG backbone [27]. Triacylglycerols (TAG) can be synthesised in either
cytosol or chloroplasts. Cytosolic TAGs are assembled in ER through the Kennedy pathway,
which transfers the fatty acyl chains from the cytosolic acyl-CoA pool to the glycerol-3-
phosphate [60]. An acyl-CoA independent pathway also contributes to the TAG synthesis
utilising PC as an acyl donor, transferring fatty acid chain onto a DAG molecule [61].
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The level of desaturation of fatty acids in PC determines the desaturation level of DAG
precursors for seed TAG and plastidic lipid synthesis. The actual pathway of TAG synthesis
in chloroplast has not yet been elucidated [46]. Phytosterols are synthesised in the ER via
the first mevalonate pathway to produce squalene and the second squalene cyclization.
Steryl glycosides (SG) are made by glucosylation of the sterols by UDP-glucose: sterol
glucosyltransferase [62]. Extensive details about membrane lipid biosynthesis have been
reviewed by Nakamura [27] and Holzl and Dormann [46].
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Figure 1. Overview of the fatty acid de novo and lipid biosynthetic pathways (prokaryotic and eu-
karyotic) in chloroplast and endoplasmic reticulum with major lipid remodelling changes occurring
in the pathways under high-temperature conditions. Prokaryotic pathway lipids are represented in
yellow and eukaryotic lipids are represented in red. Lipids highlighted in blue are decreased, and
those highlighted in black increase under high temperatures. The figure showing the steps of fatty
acid and lipid biosynthesis is modified from Holzl and Dormann [46] and Higashi and Saito [63].
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Collectively, the light and dark reactions of photosynthesis yield pyruvate. The pyruvate dehydro-
genase in chloroplast links the pyruvate metabolism and de novo fatty acid biosynthesis yielding
the acetyl-CoA. Several condensation steps occur to provide 16:0-ACP, 18:0-ACP, and 18:1-ACP for
prokaryotic lipid synthesis pathway or exported into ER for utilisation in eukaryotic lipid synthesis
pathway. The fatty acids exported to ER are then made into DAGs and exported back to chloroplast
for plastidic lipid synthesis. Under high temperatures, overall contribution of prokaryotic pathway
for galactolipid synthesis is reduced, and eukaryotic pathway is increased. Abbreviations: FFA,
free fatty acid;16:0, palmitic acid; 16:3, hexadecatrienoic acid; 18:0, stearic acid; 18:1, oleic acid; 18:2,
linoleic acid; 18:3, linolenic acid; ACP, acyl carrier protein; Gro-3-P, glyceraldehyde-3-phosphate; CDP,
cytidine diphosphate; CTP, cytidine triphosphate; UDP, uridine diphosphate; DAG, diacyl glycerol;
LPA, lysophosphatidic acid, PA, phosphatidic acid; PG, phosphatidyl glycerol; PC, phosphatidyl
choline; PE, phosphatidyl ethanolamine; PS, phosphatidyl serine; PI, phosphatidyl inositol; PI(4,5)-bP,
phosphatidyl inositol-4,5-bisphosphate; MGDG, monogalactosyl diacylglycerol; DGDG, digalactosyl
diacylglycerol; SQDG, sulfoquinovosyl diacylglycerol; MDA, malondialdehyde.

4. Mass Spectrometry-Based Lipid Profiling

The cellular lipidome is so diverse that a simple analytical technique will not suffi-
ciently profile all the lipids in a cell or tissue [24,40,64]. Numerous methods have been
developed for the same, and lipidomics is now gaining momentum to emerge as an addi-
tional dimension of omics. Available technologies for lipid analysis are mass spectrometry
(MS), fluorescence spectroscopy, nuclear magnetic resonance (NMR), Fourier-transform
infrared spectroscopy (FT-IR), and UV-Vis spectroscopy [18,65]. Traditional methods for
analysing lipids lack sensitivity and resolution, are time-consuming and can study only a
selected class or set of cellular lipids [23]. Recent advances in soft ionization techniques,
such as Electrospray Ionisation-Mass Spectrometry (ESI-MS), have revolutionized lipidome
analysis [66]. Mass-spectrometry-based techniques are of prime focus in this review. A
typical MS system has three components: (1) an ion source to generate gaseous ions of the
substance of interest, (2) an analyser to resolve the generated ions into their characterised
mass components based on their m/z ratio, and (3) the detector, to detect the ions and record
the relative abundance of each resolved ion species. Several ion sources can be coupled with
mass analysers [67]. Ion sources such as electrospray ionisation (ESI), atmospheric pressure
chemical ionisation (APCI), matrix-assisted laser desorption ionisation (MALDI), desorp-
tion ionisation (DESI), and direct analysis in real-time (DART) are available. ESI [68,69] and
APCI [70] are commonly used ionisation method for lipid studies. Mass analysers used in
MS include triple quadrupole (QqQ), ion trap, time of flight (TOF), orbitrap, and Fourier
transform (FT) or Fourier transform ion cyclotron resonance (FT-ICR) [38,71]. Various
plant lipidomics studies utilising different separation, and ionisation methods, and mass
analysers are listed in Table 1.

MS-based systems can be classified into two major analytical platforms: direct infusion
MS (ESI-MS) and liquid chromatography coupled MS (LC-ESI-MS) [72,73]. The direct
infusion of MS, also called shotgun lipidomics, is performed at a constant concentration
of lipid solution without any previous separation of lipids before entering the ionization
step of MS. In contrast, the LC-MS involves the separation of lipid classes/species, before
ionisation, in an LC column, with the concentrations of lipid species varying with specific
elution time [66]. The separation systems include the reverse phase (RP) or hydrophilic
interaction chromatography (HILIC). The separation of lipids in an LC column depends on
their specific physicochemical properties such as polar head group, acyl chain length, and
number of double bonds. Therefore, the LC-MS provides better separation efficiency, high
sensitivity, and specificity. Despite its relatively lower sensitivity than LC-MS, shotgun
lipidomics has gained popularity in recent times due to its ability to quantify numerous
lipid species accurately in a relatively short runtime and its suitability for large-scale
analysis [23,73–75]. For direct infusion, the sample is loaded into a syringe pump from
which the sample is continuously infused into an ion source. An ESI-QqQ MS system in
MRM (multiple-reaction monitoring) mode is a well-adapted setup for targeted detection
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and quantification of lipids [5,76]. Summarised representation of lipidomics workflow is
shown in Figure 2.

Table 1. List of comparative lipidomics studies referred along with the method of analysis.

Plant Species Method Used Stress Condition Reference

Creeping bentgrass (Agrostis stolonifera) GC-MS/MS High temperature [77]

Brassica carrinata ESI-MS/MS High temperature [10]

Peanut (Arachis hypogea) ESI-MS/MS High temperature [78]

Soybean (Glycine max) ESI-MS/MS High temperature [9]

Wheat (Triticum aestivum L.) ESI-MS/MS High temperature
[7]
[8]

[79]

Arabidopsis thaliana

LC-ESI-MS/MS
TLC, GC, ESI-QTOF

LC-ESI-MS/MS
ESI-MS/MS
ESI-MS/MS
ESI-MS/MS

High temperature
-

High temperature
High temperature

Freezing stress
Low temperature

[4]
[80]
[17]
[6]
[5]

[81]

Arabidopsis thaliana LC-ESI-MS - [82,83]

Tall Fescue (Festuca arundinacea) ESIMS/MS Drought priming and high
temperature [84]

Paspalum vaginatum GC-MS/MS Low temperature [85]

Sorghum (Sorghum bicolor) ESI-MS/MS Low temperature [86]

Rice (Oryza sativa) ESI-MS/MS Low temperature
Hydric and high temperature

[81]
[39]

Craterostigma plantagineum
Lindernia brevidens

Lindernia subracemosa
Arabidopsis thaliana

QTOF-MS Desiccation tolerance [87]

Tomato (Solanum lycopersicum) UHPLC-APCI-QTOF-MS High and low temperatures [88]

Maize (Zea mays) TLC, GC-FID Drought [89]

Saussurea medusa
Crucihimalaya himalaica

Arabidopsis thaliana
ESI-MS/MS Fluctuating temperatures [13]

Plant lipidomics mainly utilises ESI-MS/MS (triple quadrupole tandem MS) to analyse
and collect considerable mass spectral data. Each spectrum is specific for a particular lipid
molecular species; having a joint head group as lipids in a class will produce common
head-group fragments in the MS. A lipid profile consists of a series of head-group-specific
scans. Scanning the spectrum in different MS modes allows using the fragments originating
from the head group as the criteria for detection [90–92]. Lipid molecular species will be
identified as a head group and mass, which can be correlated with acyl carbon numbers of
one or more acyl chains and several double bonds [5,23,74].

The well-characterised response of plants to cope with high-temperature stress is by
changing the membrane lipid composition [63]. Data about such complex lipid alterations
can be recorded with high-throughput mass-spectrometry-based analytical platforms.
Several studies have employed MS-based lipidomics to profile changes in plant membrane
lipids [4,5,7–10]. The ultimate goal of lipidomics is to determine the relative or absolute
abundance of one, several, or all lipid species present in the sample [66,67]. Relative
quantification measures the pattern change of lipids between treatments. This approach is
helpful for biomarker discovery and for characterizing the response of treatments. Absolute
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quantification determines the mass levels of individual lipid species and derives the total
amounts of lipid classes and subclasses in a sample [66]. For absolute quantification, either
an external or internal standard must be used to quantify the analyte of interest in MS
analysis [93]. A stable isotope labelled internal standard per lipid species is preferred for
quantification, but obtaining such a labelled standard for each lipid species is not practical.
Therefore, commercially available non-native (non-physiological) lipid internal standards
are commonly used, i.e., the internal standard should be absent from the sample or present
at extremely low abundance, such as those with odd- or short-chain fatty acids [94]. The
basic principle behind quantification of a lipid species with the internal standard is based
on ratiometric comparison:

Iu/Is = (Au/As) × (Cu/Cs) (1)

where Iu and Is are the respectively measured ion intensities of the analyte and internal
standard from a baseline-corrected MS spectrum; Cu and Cs are the unknown concentration
of the analyte and the known concentration of the internal standard, respectively; Au and
As are the response factors of the analyte and internal standard(s), respectively, under
identical experimental conditions [95,96].
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5. Plant Membranes and Lipid Remodelling under High Temperatures

Plants, as sessile organisms, are exposed to many stresses. The plasma membrane acts
as the cell insides and external environment interface. Plant cell membranes are made up
of complex assemblies of lipids and proteins that together are destined to perform diverse
functions in the cell, such as compartmentalisation of cell organelles, defining permeabil-
ity barriers that separate cells from their surrounding environments, and preventing the
diffusion of organelle contents [97,98]. Being the interface, membranes ought to maintain
stability, structure, and integrity for proper cellular homeostasis [99]. Plant membranes
are subjected to alterations and reprogramming in response to environmental conditions.
Membranes are the significant targets of most stresses, and stress-induced membrane
damage leads to electrolyte leakage, indicating characteristic disruption of cellular home-
ostasis [100,101]. Hence, maintaining membrane stability is a crucial factor for any kind of
stress tolerance in plant [3], and cell membrane thermostability can be considered a criterion
to screen tolerant plants [102]. Biological membranes are primarily fluidic bilayers with few
patches/regions that can transit from fluidic to gel or bilayer to non-bilayer phases under
certain circumstances [103,104]. In bilayer phases (fluid and gel), the polar head groups of
lipids are arranged facing the aqueous outer environment on both sides of the membranes,
and the non-polar fatty acid chains are packed within the bilayer facing opposite to each
other (head group facing outside and tails facing inside) [105]. The cis-double bonds in the
tail fatty acids introduce kinks into the lipids and are therefore responsible for maintaining
optimal fluidity of the membranes and preventing dense packing of lipids [7,77]. In the
gel phase, lipids are closely packed, and the fatty acid chains are extended and ordered
for dense packing. In contrast to fluidic and gel phases, hexagonal phases are inverted,
with polar head groups facing inside and fatty acid tails facing outside [106–108]. The gel
and hexagonal phases are only minor components in normally functioning membranes
under normal conditions. Under stresses such as high temperatures, the number of these
minor phase components increases in amount, causing the membranes to lose stability
and function. High temperatures cause phase transitions from gel to fluid and fluid to
hexagonal phase, leading to ion leakage and consequent cell death [14,109]. HT stress
also shoots up the levels of reactive oxidants in the cell. Reactive oxygen species (ROS)
then induce peroxidation of membrane polyunsaturated fatty acids, leading to membrane
damage, electrolyte leakage, and cell death [110–112]. Membrane glycerolipids are oxidised
to oxylipin-containing glycerolipids, and trienoic fatty acids are peroxidised, yielding other
cytotoxic molecules [113], having deleterious effects on photosynthetic proteins through
cleavage, oxidative modifications and irreversible aggregation [111,114].

Aside from plasma membrane damage and electrolyte leakage, photosynthesis is
severely affected because the thylakoid membrane is extremely susceptible to high tem-
peratures [115]. Primary light reactions of photosynthesis take place in thylakoid mem-
branes where complexes containing proteins, photosynthetic pigments, and cofactors
required for capturing photons, electron transfer, and energy exchange are embedded
within the bilayer formed by a peculiar combo of glycerolipids [116–118]. Thus, high-
temperature-induced thylakoid damage affects the light reactions required to make NADPH
and ATP, which are further necessary for reducing CO2 to carbohydrates via photo-
synthetic dark reactions [119,120]. The effect of high-temperature stress on photosyn-
thesis has been studied in various crops such as wheat (Triticum aestivum L.) [121,122],
rice (Oryza sativa L.) [123], sorghum (Sorghum bicolor L. Moench) [124], soybean (Glycine
max L.) [125], maize (Zea mays L.) [126], cotton (Gossypium hirsutum L.) [127], etc. High-
temperature stress studies presented a reduction in chlorophyll pigments, net photosynthe-
sis (Pn), Fv/Fm ratio, electron transport rate (ETR), photochemical quenching (qP), stomatal
conductance, and yield. A contrasting increase in non-photochemical quenching (NPQ)
represents a disrupted electron flow in the thylakoid membrane [79], sparing more electrons
for the generation of ROS. A decrease in photosynthetic rate and subsequent yield loss in
wheat under high-temperature stress is found to be due to lipid desaturation, oxidation,
acylation, and damage to organelles [8].
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Plants have evolved various biochemical and physiological strategies to respond to
and adapt to changing environmental conditions. As already mentioned, galactolipids such
as MGDG and DGDG (80%) predominate in the thylakoid membrane, the composition and
state of the lipid profile of the membranes are essential to maintaining appropriate fluidity
and flexibility of the membrane [63,128], which explains its relevance to the intriguing
study of lipids in maintaining complex cellular functions such as photosynthesis. To
optimise photosynthesis and other cellular processes, plants often adjust the properties
of their cellular membranes, such as membrane fluidity, lipid composition, and fatty acid
saturation levels, in response to temperature stress [7,8,74,77,129]. Alterations in membrane
lipids to adapt to adverse conditions can be referred to as remodelling. Lipid remodelling
refers to decreasing or increasing specific lipids [7,13]. Such remodelling responses help
prevent the increasing degree of phase transition of membranes (bilayer to non-bilayer)
and avoid their damage at high temperatures [130].

Thus, specific membrane lipid profile changes or alterations can be associated with
high-temperature tolerance and susceptibility [14,55]. Lipid composition and fatty acid
saturation are the significant factors responsible for a membrane’s performance under
temperature stress [44]. Readjustment of various glycerolipid biosynthetic pathways under
stress conditions might be helpful for the plants to effectively remodel the membrane
property to tolerate high-temperature stress [45,81]. Several of such membrane lipid
alterations under stress conditions have been summarised in Figures 1 and 3.
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Figure 3. Overview of the trienoic fatty acid containing plastidic lipid remodelling strategies under
high temperatures. Levels of non-bilayer forming MGDG are reduced and directed towards acyl-
MGDG, DGDG, PC, TAG, TGDG, and oxylipins. Trienoic fatty acids from plastidic lipids are removed
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and transiently stored in TAG as lipid droplets. The figure showing the remodelling steps in reducing
the unsaturated fatty acids from chloroplast lipids is modified from Higashi and Saito [63]. Abbrevia-
tions: FFA, free fatty acid; CoA—coenzyme A; 16:3, hexadecatrienoic acid; Gl-3-P, glyceraldehyde-
3-phosphate; MGDG, monogalactosyl diacylglycerol; DGDG, digalactosyl diacylglycerol; SQDG,
sulfoquinovosyl diacylglycerol; TGDG, trigalactosyl diacylglycerol; PG, phosphatidyl glycerol; PC,
phosphatidyl choline; TAG, triacyl glycerol; MDA, malondialdehyde.

• Double bonds in plant membrane lipids exist in cis configuration, which creates a
bend in the fatty acid structure and avoids dense packing of lipids [7]. During high-
temperature stress, this bend/kink in fatty acids makes the membranes hyper-fluidic
and destabilises the membrane structure. A decrease in degree of unsaturation of
membrane glycerolipids is a well-known response to encounter high-temperature
stress. Polyunsaturated (18:3/16:3) fatty acids content is decreased, whereas the
content of less unsaturated (18:2/18:1/16:1) and saturated (16:0) fatty acids increase.
Levels of 18:2 containing glycolipids such as 34:2-DGDG, 36:4-MGDG/DGDG/SQDG,
36:5-MGDG/DGDG/SQDG are increased (lipids highlighted in black in Figure 1, in
prokaryotic pathway), whereas levels of trienoic fatty acid lipids such as 34:6-MGDG,
34:3-SQDG, 36:6-MGDG/SQDG, 34:4-PG are decreased (lipids highlighted in blue in
Figure 1, in prokaryotic pathway). Increasing the levels of saturated and monoun-
saturated fatty acids provide tolerance to high-temperature stress by reducing the
membrane fluidity, which is increased as impact of high temperatures [7,8,39].

• The decrease in unsaturation of lipids is predicted to be a coordinated mechanism of
lipid turnover and intracellular lipid trafficking [4]. The trienoic fatty acids responsible
for the fluidity of membranes are released from the membrane and stored as transient
TAGs (lipid droplets) within chloroplast or cytoplasm [6,131,132]. The expression of
several fatty acid desaturases responsible for inserting double bonds in fatty acids
is decreased, and the saturated lipid species such as 16:0/18:1/18:2 are synthesised
without further desaturation and inserted into the membranes [4,9,10]. In other words,
unsaturation levels of membrane lipid species decreased, whereas that of synthesised
TAGs increased (TAGs 52:9 and 54:9 increase; Figure 3).

• High-temperature stress decreased the levels of 16:3-containing plastidic lipids by
producing triacylglycerols and stored them as transient oil bodies within the cell.
Unsaturated fatty acids are released from the membrane lipids and are transferred
to DAGs by an acyltransferase (PDAT1) to form TAG [133] as a transient mechanism
to store free fatty acids prior to lipid recycling or degradation pathway as the β-
oxidation pathway for fatty acid turnover is reported to be slow [4,132,134]. Highly
unsaturated pool of PC and DAG (34:6, 36:5) (direct precursors for TAG) is formed as
by-product of membrane lipid remodelling and is later converted to TAGs [135,136]
(Figure 3). pdat1 mutant Arabidopsis is highly sensitive to high temperatures as it
cannot accumulate TAGs.

• Saturation and desaturation of fatty acids occurs in a course of several enzymatic
reactions involving oxidation-reduction reactions that require more energy to do so
and would become a poor trade for plants encountering stress. Zheng et al. [12] hy-
pothesised and confirmed an alternative lipid remodelling strategy that plants employ
to cope with the frequent temperature fluctuations. Snow lotus (Saussurea medusa)
in Alpine scree preserved its membrane functions by maintaining the same degree
of membrane lipid unsaturation, but instead varies the membrane lipid composition
through some less energy-demanding mechanisms such as head group turnover or
glycerolipid pathway balancing [44]. The head group exchange reactions are rapid,
and the energy required is less than that required for saturation–desaturation reactions
and these exchange reactions are important processes in lipid metabolisms [13,137].

• Rather than reducing the double bonds of already-made membrane fatty acids, plants
alter the lipid biosynthetic pathways to sequester less-saturated lipids into mem-
branes, i.e., high-temperature stress increases the eukaryotic pathway contribution
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for galactolipids synthesis [63]. The proportion of DAGs derived from eukaryotic
and prokaryotic pathways for further synthesis of other glycerolipids is altered under
high-temperature stress. Eukaryotic-pathway-derived DAGs are less unsaturated
(containing 18:2 fatty acid) than those derived from the prokaryotic pathway [138].
High-temperature-stressed wheat plants were found to channel more saturated eukary-
otic DAG species from ER to chloroplasts than more unsaturated prokaryotic DAGs to
maintain the fluidity and stability of thylakoid membranes [44]. Similar results were
marked by Zoong Lwe et al. [10] with high-temperature-stressed Brassica carrinata.

• The proportion of bilayer-forming (DGDG, SQDG, PC, PG) and non-bilayer-forming
lipids (MGDG, PE) is also a major factor determining the stability of membranes [139].
Since MGDG is the only non-bilayer-forming lipid in thylakoid, it is considered to be
crucial for the formation and proper stacking of grana, and also is an integral compo-
nent of reaction centres [52,140]. Plants increase the DGDG to MGDG ratio to improve
thylakoid stability and thermotolerance [141]. High-temperature stress tolerance is
attributed to the increased level of a bilayer-forming lipid, in this case, DGDG, facili-
tating the stability of the membrane. Drought-primed tall fescue plants maintained
a higher ratio of DGDG/MGDG and maintained optimum fluidity and stability of
thylakoids under subsequent high-temperature exposure [84]. DGDG/MGDG ratio
is a factor for drought tolerance in maize, where a tolerant cultivar has a high ratio
compared to susceptible cultivars [89]. DGDG synthase activity is increased, which
converts MGDG to DGDG. The level of MGDGs is also decreased by the action of
specific lipases [17,63] (Figure 3).

• Several catabolic processes can also contribute to galactolipid remodelling under high-
temperature stress. Lipases such as HIGH-TEMPERATURE INDUCIBLE LIPASE
1 (HIL1) are found to be involved in chloroplast glycerolipid remodelling under
high-temperature stress by cleaving 18:3 fatty acids from glycerolipids, especially
MGDG [17].

• High-temperature stress increases the levels of oxidised lipids (ox-lipids) such as ox-
PCs, ox-Pes, and ox-MGDGs in wheat leaves [7,8]. Membranes serve as both the source
of ROS and reservoir to dump ROS [142–144]. Unsaturated fatty acids in membranes
are oxidised enzymatically by chloroplast lipoxygenases (LOXs) or non-enzymatically
by direct action of ROS (Figure 3). Thus, membrane lipids take up the ROS and prevent
their damaging effects elsewhere in the cell [145]. The non-enzymatic oxidation of
trienoic fatty acids such as 18:3, acts as an immediate mechanism in consuming the
ROS produced during stress without activating the antioxidant molecular responses.
The ox-lipids, such as OPDA (oxo-phyto dienoic acid), thus produced will then be
subjected to β-oxidation to produce jasmonic acid [146], which can provide tolerance to
various stress [147]. The high-temperature-tolerant wheat genotype retained relatively
lower levels of oxylipins and MDA (end product of lipid peroxidation) than the
susceptible genotype. Thus, the level of ox-lipids can be considered as a biomarker for
high-temperature tolerance or susceptibility of plants [7,11,14].

• Extra-plastidial lipids such as PC, PE, PS, and PI are also remodelled. Unsaturated
phospholipid contents are decreased (34:2-PC/PE/PI, 36:4-PC/PE, 36:5-PC, 36:6-PC)
(lipids highlighted with blue in Figure 1, eukaryotic pathway), while the levels of
saturated and monounsaturated fatty acid containing phospholipids are increased
(lipids highlighted with black in Figure 1, eukaryotic pathway) [4,7,148]. Under high-
temperature extremes, levels of lyso-phospholipids increase sharply, indicating the
removal of fatty acid from membrane lipids. Thus, lyso-phospholipid content can be
considered a sensitive indicator for plant stress response [5].

• Sterol lipid or sterol glycoside contents were also found to be increased under high-
temperature stress [7]. Phytosterols stabilise membranes and promote ordering of
structural membrane components. SGs help to eliminate membrane phase transitions
from bilayer to non-bilayer phases at high temperatures [149].
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• High-temperature stress induces acylation of the galactose moiety of MGDG, yielding
acyl-MGDG such as 52:9/54:9-acyl-MGDG and lyso-MGDG [136,150]. Increased acyl-
MGDG indicates damaged chloroplasts [45]. Lyso-lipids can be again reacylated to
MGDGs or can be hydrolysed to yield fatty acids for TAG synthesis. (Figure 3).

• Acylated and oxidised lipid levels rise concomitantly during stress and can be used
for screening genotypes for stress tolerance [45].

• Arabidopsis leaves accumulated higher levels of 34:6/36:6-TGDG under high-temperature
stress. The level of TGDG is high in high-temperature-stressed pdat1 Arabidopsis mutant,
in which TAG synthesis to trap free trienoic fatty acids is impaired. This provides that
the consumption of MGDG to make TGDG via galactosylation (Figure 3) contributes to
lipid remodelling under high-temperature stress [63,136].

6. LIPIDOTYPE: Lipids and Lipid Remodelling as Potential Biomarkers for
High-Temperature Tolerance

High-temperature stress affects most physiological processes of plants, of which all
mechanisms of photosynthesis are highly susceptible to high temperatures as the pho-
tosystem II, ATP-generating system, and carbon fixation by Rubisco are adversely dam-
aged [151,152]. A reduction in chlorophyll content, swelling, and damage of the thylakoid
membrane leads to malfunctioning PSII and associated electron transport chain, producing
ATP and NADPH required for CO2 fixation [153]. Disrupted electron transport eventually
reduces photosynthetic efficiency and spares more electrons for the generation of ROS,
which later has its own range of aftermaths [154]. Chlorophyll fluorescence measurements
can be used to probe the status of PSII and linear electron transport rate towards various
stresses [155–157]. Fluorescence induction parameters such as maximum quantum yield
of PSII (Fv/Fm), effective quantum yield of PSII (φPSII), maximum variable fluorescence
(Fm/Fo), the efficiency of water splitting complex on donor side of PSII (Fv/Fo) and quench-
ing parameters can detect different levels of stress-induced photosynthetic damage [158].
Low values of Fv/Fm, φPSII, photochemical quenching (qP), and electron transport rate
(ETR) indicate low photosynthetic efficiency [159,160]. The altered chlorophyll fluorescence
kinetics and decreased photosynthetic rate under high-temperature stress can be attributed
to the reduced concentration of photosynthetic pigments, membrane lipid alterations, and
organelle damages [7,8,161]. It was found that the decrease in photosynthetic rate in wheat
was found to be due to an interplay between thylakoid membrane damage, membrane
lipid changes, and damage to cell organelles. The lipid alterations under high-temperature
stress indicate an increase in activities of oxidising, glycosylating, and acylating enzymes
and decreased activity of desaturating enzymes [7,8,79].

Lipids and their metabolic products and derivates can act as a physical barrier
or as a signalling molecule that directs plants to adapt to various biotic and abiotic
stressors [21,162,163]. As discussed earlier in Section 5, the physical and physiological
properties of membranes are affected by various environmental factors, and plants alter
several metabolisms to adapt to adverse conditions. Membrane lipid remodelling is one
of the strategies plants employ to combat abiotic stresses, including temperature stress.
This lipid remodelling, which is responsible for maintaining the integrity of membranes
under stress conditions, is genotype-specific, i.e., remodelling strategies and the extent or
efficiency of remodelling vary with genotypes (as shown in Figure 4) [4,7,9,10,14,55,78,86].
One such well-characterised adaptive remodelling in plants is the decrease in double bond
numbers of membrane lipids at high temperatures. Other alterations besides those dis-
cussed in Section 5 may also contribute to tolerance, warranting further lipidomic studies
across different crops and genotypes.
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Figure 4. Representation of the hypothesis of considering high-temperature stress tolerance as a
function of membrane lipid remodelling. Several lipids and lipid alterations can be considered
intermediate phenotype for HT stress tolerance/susceptibility to select tolerant genotypes. Ab-
breviations: HT—high-temperature; TFs—transcription factors; MTS—membrane thermostability;
HP—high-temperature stable photosynthesis.

Narayanan et al. [6] showed the differential lipid remodelling responses of two wheat
varieties, with Ventnor (high-temperature-tolerant) showing more efficient remodelling
under high temperatures than Karl 92 (high-temperature-susceptible). Both genotypes
underwent lipid remodelling to preserve the membrane architecture and functions. The
genotypes differed in their ability to accumulate sterol derivatives such as sterol glyco-
sides (SGs) and saturated acylsterol glycosides (ASGs), with Ventnor accumulating higher
amounts of SGs and saturated ASGs compared to Karl 92. The high-temperature stress
study by Narayanan et al. [9] on two soybean genotypes showed that the tolerant DS25-1
genotype maintained less relative membrane injury compared to the susceptible genotype
DT97-4290. The high-temperature tolerance of DS25-1, attributed to the stable cell mem-
brane, is the result of efficient membrane lipid remodelling, as the trait (cell membrane
thermostability) is closely related to membrane lipid composition. High-temperature stress
studies on wheat by Narayanan et al. [7] and Djanaguiraman et al. [8] showed the for-
mation of ox-lipids by either direct oxidation or mediated by lipoxygenases. The level of
ox-lipids may indicate the chemical status of the plant and the plant’s innate tolerance level
to high-temperature stress, since the membrane unsaturated fatty acids may serve as a
dump for the reactive oxidants. Xu et al. [129] examined the membrane lipid remodelling
of two wheat genotypes with contrasting response to hypoxia stress. The tolerant genotype
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CIGM90.863 showed efficient lipid remodelling mechanisms to maintain the membrane
bilayer structure when compared to the susceptible genotype Seri M82.

Various lipid biosynthetic pathways undergo changes, and the relative contribution
of the two lipid biosynthetic pathways is also changed. Several enzymes or genes in-
volved in the pathways are subjected to differential expression under high-temperature
stress. Higashi et al. [3] published the lipid changes during high-temperature stress and
the associated differential expression of genes involved in the fatty acid synthesis, lipid
biosynthesis, and β-oxidation cycle. Such lipid metabolism gene expressions also vary
between genotypes, which show differential response to high temperatures. Expression
pattern of the genes FAD3A and FAD3B, responsible for fatty acid desaturation, varied
between the two soybean genotypes [9]. The varied gene expression also correlates with
the varying lipid data, suggesting the role of reduced FAD3 expression to be a part of
the membrane lipid remodelling strategy in maintaining the membrane stability under
high-temperature stress and of a potential target for breeding [9,10,55].

Thus, such lipid alterations can be considered a phenotype for high-temperature-stress
tolerance or susceptibility and can act as a potential biomarker for selecting HT-tolerant
genotypes (Figure 4) [9,55]. Although such remodelling mechanisms have already been
studied in plant species such as Arabidopsis [6,8], wheat [7,8,11,79], soybean [9], Brassica
(Brassica juncea L.) [10], and peanut (Arachis hypogaea L.) [78], limitations still exist regarding
the lipid remodelling responses of crops under various stress conditions. Therefore, further
studies are required to determine the relationship between lipid remodelling and high-
temperature stress tolerance in different crops. Determination of such a particular lipid
alteration or a specific lipid biomarker responsible for high-temperature stress tolerance
would aid in the screening of genotypes for the same and in determining the genetic
variation responsible for the biomarker trait. The specific LIPIDOTYPE (lipid metabolite or
the lipid alteration(s)) contributing to stress tolerance may be controlled by one or a few
genes. Further research utilising multiple integrated omics strategies on various species and
genotypes with differential response to high-temperature stress to pinpoint the lipidotype
variability could and will help in identifying the genes and genetic factor responsible for
the variation in the trait and could potentially be used in breeding programs.

7. Bridging the Gap: Genotype–LIPDOTYPE–Phenotype: Lipidomics-Assisted
Breeding (lGWAS) for High-Temperature Tolerance

Plant species differ widely in their high-temperature stress response from being tol-
erant to susceptible. High-temperature stress tolerance is a polygenic trait; genotypic
variability of HS response was found to be controlled by many genes, generally with a mi-
nor cumulative effect over the phenotype [164,165]. In other words, the high-temperature
stress response of genotypes is quantitative in nature; it is governed by several small effects
or epistatic QTLs, and this is expected to be so as the effect of high-temperature spans
over a wide range of cellular processes [166–168]. Hence, breeding for high-yielding, high-
temperature-tolerant crops is challenging as the genetic inheritance of high-temperature
tolerance is still poorly understood, and validated QTLs/cloned genes for high-temperature
tolerance are scarce [169]. Furthermore, the influence of the trait through genotype–
environment interactions exacerbate the process. Therefore, the need arises for the iden-
tification of large-effect QTLs and to develop associated markers that can be used for
marker-assisted breeding [55].

Employing traditional breeding strategies such as direct selection for yield under stress
conditions to develop HS-tolerant crops may have some limitations due to the low heritabil-
ity and control of the trait by a complex network of major and minor QTLs [168,170,171].
The complexity of the high-temperature tolerance trait, the lack of high-throughput pheno-
typing for the selection of tolerant genotypes, and the critical effect of genotype–environment
(GxE) interactions over the trait stand as major bottlenecks for breeding HT crops [167,172].
Numerous studies have been conducted on different crops to identify associations for HS
tolerance. However, the effect of genetic associations on such complex traits is often small,
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and information about the biological processes underlying such traits is lacking in most
crops [173,174]. Therefore, targeting intermediate traits that are closely related to the physi-
ological and biochemical status of the stressed plants could reduce the complexity of HT
trait [175,176]. Physiological trait-based breeding has been proven to be an ideal strategy for
transferring QTLs/gene(s) conferring high-temperature tolerance [169,177,178]. Physiologi-
cal traits such as photosynthetic efficiency, lower respiration rates, membrane thermostabil-
ity [9,179,180], canopy structure, delayed senescence, reproductive traits, and harvest index
can be considered. Desirable characters for a high-temperature-tolerant variety include
higher photosynthetic rates, enhanced thermostability of membranes [9,181,182], low ROS
level or increased antioxidant potential [115,183], and stable seed set/grain production
under high temperatures [166,184].

The metabolome is defined as the last receiver of genetic information flow to attain the
desired phenotype; in other words, metabolites are considered to be the bridge between
genotypes and phenotypes [175,185–187]. A metabolic trait can be either a functional inter-
mediate or a correlated biomarker for the physiological status of a plant [174,176,188]. Plant
metabolic networks are very complicated and consist of many interconnected biochemical
pathways that are affected by different environments and stress conditions. The expression
of genes is changed by various stress conditions, such as high temperatures, that can alter
the qualitative and quantitative status of metabolites, making the study of metabolites
arduous [189,190]. High-temperature stress suppresses plant growth, development, and
reproduction by disrupting major cellular processes such as photosynthesis, primary and
secondary metabolisms, lipid and hormonal signalling and source–sink relations, and
ultimately leads to yield penalties [189–191]. The predominant effect of HS is on the cellular
membranes, particularly thylakoid membranes, where HS causes grana destacking and con-
comitant impaired photosynthetic light reactions [115,192]. The importance of membrane
properties and the membrane lipid remodelling strategies to combat high-temperature
stress was discussed in Section 5, and so HS tolerance can be considered as a function of
membrane lipid remodelling [14,55,193]. An example of one potential method to improve
high-temperature tolerance is demonstrated by a tobacco mutant whose chloroplast FAD
gene has been silenced, which exhibits excessive high-temperature tolerance by maintain-
ing relatively low fatty acid unsaturation levels [15]. Characterizing lipid remodelling
mechanisms is quite challenging because of the large number of intermediates, interactions
between subcellular compartmentalised distinct lipid pathways, and by the structural
and combinatorial diversity of the lipids itself [194,195]. The study of plant lipids and
plant membrane lipidomics is gaining importance as the high-temperature stress alters the
membrane properties, and plants respond to high-temperature stress by lipid remodelling
to maintain membrane stability. The degree of such lipid alterations varies according to the
genotypes. Genotype-specific lipid remodelling under various stress conditions has been
studied in some crops such as wheat, rice, soybean, grapevine (Vitis vinifera L.) [7,89,130].
Irrespective of complex phenotypes under field conditions, one can easily profile relative
contents of the metabolome, which may be directly or indirectly related to the interested
phenotype [196] and could possibly bridge the gap between genotype and phenotype [185].
Therefore, the identification of functional candidate genes or the association underlying
the quantitative variation in high-temperature stress-induced lipid remodelling may be the
potential target that can be manoeuvred for breeding high-temperature-tolerant crops.

Homologous-sequence-alignment-based reverse genetic strategy would be a straight-
forward method for identification of metabolite/lipid candidate genes [175]. One such
example is that of wheat benzoxazinoid genes cloned against their maize orthologues via
this strategy [197]. Similarly, Shavit et al. [198] identified the dioxygenase gene BX6 in
tetraploid and diploid wheat by homologous sequence comparisons and phylogenetic anal-
ysis. However, this procedure may not work in all instances when the metabolic genes have
less sequence homology to the identified orthologs. In such a case, a sequence-alignment-
based procedure might cause extensive labour. In polyploid crops such as wheat, the
chance of identifying the targeted metabolite genes becomes lower and the work becomes



Int. J. Mol. Sci. 2022, 23, 9389 17 of 27

tedious and laborious [175,199]. Co-expression-analysis-based gene identification has been
used to identify lipid metabolism genes and genes involved in oil biosynthesis [200–202].
Co-expression analysis can enhance the predictive power of detecting functional gene
homologs [203–206]. However, this strategy depends on existing knowledge of gene func-
tions and requires gold-standard experimentally validated predicted function of genes,
and this even remains partial for the model plant Arabidopsis [194,206]. Therefore, need
arises for considering additional omics datasets, such as metabolomics and lipidomics, to
identify candidate genes [188,194,207–209]. Another way to identify a metabolic gene is to
employ an integrated omics approach combining metabolomics with forward and reverse
genetics [175,189,210]. This approach has been proved to be efficient by recent publications
unearthing numerous metabolic quantitative trait loci (mQTLs) hotspots for metabolite
classes within species [211–216]. The technique utilises quantitative genetic strategies such
as quantitative trait loci (QTL) mapping or genome-wide association studies (GWAS),
along with large-scale targeted or untargeted metabolomics, and integrates both to obtain
valuable insights into the genetic and biochemical basis of the metabolites. The output
of these methods, named mQTL and mGWAS, respectively, are the linkages/associations
between metabolite quantities and chromosomal locations in the mapping population
or the diversity panel utilised [217–220]. The resulting associations should be further
evaluated for the potential candidate genes underlying the metabolic variation. As such,
markers can also be developed for the identified linkages and can directly be utilised in
maker-assisted breeding for developing desired crops [175,176]. The mGWAS approach
has advantages over mQTL, as the GWAS mapping utilises the vast number of diverse ac-
cessions/populations and relies on natural linkage disequilibrium progressively generated
by countless ancestral recombination events [211,221], whereas QTL mapping populations
derived from two or fewer parental genotypes are not scalable to investigate the qualitative
and quantitative diversity of the metabolites as it is limited to the few recombination
events [222,223]. Several mGWAS studies has been executed in major crops such as tomato
(Lycopersicon esculatum L.) [216,224], rice [212], maize [211], wheat [225], barley [215], and
foxtail millet (Setaria italica L.) [220].

As this approach is still young, only few reports have been registered on the identifica-
tion of abiotic-stress-tolerance-correlated mQTLs [176,215,226] but demonstrate potential
utilisation in physiological trait-based breeding for developing stress-resilient crops. As
discussed, high-temperature tolerance is a complex trait, and the thermostability of mem-
branes such as thylakoid (measured by electrolyte leakage or relative cell membrane injury)
and photosynthetic responses (chlorophyll fluorescence measurements) can be considered
physiological traits for selecting high-temperature-tolerant crops [9,167,168,227]. Given
that membrane thermostability (MTS) and high-temperature stable photosynthesis (HP) are
also complex traits, and the genetic basis of such traits remain unclear, a promising strategy
would be to investigate the genetic basis of a less complex intermediate phenotype and then
link back with the complex phenotype of interest (MTS-HP) (Figure 4) [176,211,228]. Since
the above-stated traits are related to the lipid composition of membranes [8,9,14,55], LIPI-
DOTYPE (lipid molecules or specific lipid remodelling response) can be used as biomarker
for high-temperature-tolerance-associated MTS/HP via. the route genotype–MTS/HP-
LIPIDOTYPE (L)–phenotype (HT). In brief, the proposed strategy would be achieved by (as
shown in Figure 5) (1) using a diverse population to capture the maximum variability in al-
leles (GWAS), (2) genotyping with dense markers such as SNP (Single-Nucleotide Polymor-
phism), or usually genotyping-by-sequencing or by resequencing, (3) electrolyte-leakage-
based assay of membrane thermostability (MTS)/high-throughput phenotyping-assisted
measurement of photosynthetic parameters such as thylakoid damage (F0/Fm), φPSII, qP,
NPQ, Pn (HP) under high-temperature conditions, (4) LC-MS-based high-throughput untar-
geted lipidomics approach to obtain data about the membrane lipids and their alterations,
(5) identifying and characterising the particular lipidotype (L) biomarker for targeting
and mining of genetic determinants underlying the natural variation of lipidotype (L) and
MTS-HP through big data mining and genotype–phenotype predictions, (6) identifying the
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lipidotype QTLs (lQTLs) associated with high-temperature-tolerance phenotypes MTS-HP,
(7) identification of genes and its functional validation, and (8) development or markers to
be used in marker-assisted breeding for selection of high-temperature-tolerant crops.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 18 of 28 
 

 

and genotype–phenotype predictions, (6) identifying the lipidotype QTLs (lQTLs) associ-
ated with high-temperature-tolerance phenotypes MTS-HP, (7) identification of genes and 
its functional validation, and (8) development or markers to be used in marker-assisted 
breeding for selection of high-temperature-tolerant crops. 

 
Figure 5. Bridging the gap: Lipidomics-assisted GWAS (lGWAS). Experimental strategy of the pro-
posed lGWAS workflow, providing a novel route for identifying lipids and lipid remodelling-re-
lated QTLs/genes providing high-temperature (HT) tolerance and may have agronomic importance. 
Abbreviations: GBS—Genotyping-by-sequencing; SNP—Single-Nucleotide Polymorphism. 

8. Conclusions 
With developments and advances in genome sequencing, large-scale metabolomics, 

bioinformatics, and machine learning pipelines, candidate gene identification for any me-
tabolite/lipid is now possible. However, knowledge about the HT stress-induced quanti-
tative variation in any lipidotype is still lacking and needs further extensive investigation 
of the lipid remodelling responses of plants. Utilising a genome-wide association panel 
for the work can overcome the inherent drawbacks of segregating populations, and when 
the experiment is designed more comprehensively with powerful statistical methods, it 
will result in accurate deciphering of the genetic association.  

Another dimension of omics, transcriptomics, can also be clubbed together with 
GWAS, which would identify statistical association (eQTL) between genomic regions 
(markers) and the expression level of a particular gene. Possible multi-omics design in-
cluding genomics, phenomics, lipidomics and transcriptomics can further improve the 

Figure 5. Bridging the gap: Lipidomics-assisted GWAS (lGWAS). Experimental strategy of the
proposed lGWAS workflow, providing a novel route for identifying lipids and lipid remodelling-
related QTLs/genes providing high-temperature (HT) tolerance and may have agronomic importance.
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8. Conclusions

With developments and advances in genome sequencing, large-scale metabolomics,
bioinformatics, and machine learning pipelines, candidate gene identification for any
metabolite/lipid is now possible. However, knowledge about the HT stress-induced quan-
titative variation in any lipidotype is still lacking and needs further extensive investigation
of the lipid remodelling responses of plants. Utilising a genome-wide association panel for
the work can overcome the inherent drawbacks of segregating populations, and when the
experiment is designed more comprehensively with powerful statistical methods, it will
result in accurate deciphering of the genetic association.

Another dimension of omics, transcriptomics, can also be clubbed together with GWAS,
which would identify statistical association (eQTL) between genomic regions (markers) and
the expression level of a particular gene. Possible multi-omics design including genomics,
phenomics, lipidomics and transcriptomics can further improve the targeting potential of
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the experimental procedure, which would ultimately lead to the development of efficient
markers for breeding stress-resilient crops.
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