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Abstract: Inmunocompromised individuals are at high risk of developing severe fungal infections
with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor
therapeutic outcomes and growing antifungal resistance pose further challenges for treatments.
Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for
our understanding of fungal diseases and development of new therapies. A gap currently exists
between the large body of literature concerning the innate immune response to fungal infections
and the potential manipulation of host immune responses to aid clearance of infection. This review
considers the innate immune mechanisms the host deploys to prevent fungal infection and how these
mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida
albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine
potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.

Keywords: fungal infections; antifungal immunity; host-pathogen interaction; immune dysregulation;
host-directed therapy

1. Introduction

Fungal infections are responsible for over 1.7 million deaths per year globally, roughly
200,000 more deaths than the bacterial disease tuberculosis [1], yet the immune responses
to fungal infections are much less well studied and understood than those to bacterial
infections. Because the burden of fungal diseases is greatest in tropical countries, fungal
infections are frequently underfunded [2]. For example, it is estimated that for every
individual that dies of bacterial meningococcal meningitis, USD 2458 is spent on research,
while only USD 31 is spent per individual that dies of fungal cryptococcal meningitis,
despite being responsible for 20 times the number of deaths [3]. Awareness within the
general public is low, with less than a third of surveyed Americans being aware of fungal
diseases [4].

The severity of fungal disease can range from minor, superficial infections (approxi-
mately 1 billion cases worldwide) to severe or life threatening conditions, such as chronic
pulmonary aspergillosis (3 million cases worldwide) and severe invasive candidiasis
(750,000 cases worldwide) [2]. Severe disease is most common in immunocompromised
individuals [5,6]. Major risk factors include comorbidities with HIV /AIDS or tuberculosis,
treatments for disease that requires immunomodulation, such as stem cell transplantation,
or specific genetic defects resulting in primary immunodeficiency [2,7,8]. Inflammatory
conditions such as chronic obstructive pulmonary disease and asthma also predispose
patients to fungal infection, but with lower relative risk.

Fungal infections are most commonly treated with antifungal drugs, of which there are
three main classes: polyenes, azoles and echinocandins [9]. Because fungi are eukaryotes,
identification of specific antifungal targets that do not harm host cells is challenging.
Development of new antifungals has been slow, with only 1 antifungal being approved in
the last 10 years (isavuconazole, approved in 2015) [10] and so there is a shortage of new
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antifungal drugs [11,12]. Increasing antifungal resistance is a compounding issue. In one
study of 54 patients across 3 continents, 93% of Candida auris patient isolates were resistant
to fluconazole, with 41% resistant to 2 antifungal classes and 4% resistant to 3 classes [13].
Antifungal resistant infections are not only emergent, but are deadly. Azole-resistant
Aspergillus fumigatus prevalence among patients in the Netherlands was 5.3%, but had an
88.0% fatality rate [14]. There is, therefore, a pressing need to develop new treatments for
fungal infections.

Fungal spores are ubiquitous in the environment and are encountered on a daily
basis [15]. Fungi that enter the body are usually controlled by our innate immune sys-
tem, preventing disease from developing. Detection of fungal surface ligands by Pattern
Recognition Receptors (PRRs) triggers a pro-inflammatory response, resulting in innate
immune activation and elimination of fungi when the immune response is effective, or
ineffective clearance and development of disease when immunity fails [16-18]. Focussing
on 3 clinically relevant fungal pathogens (Candida albicans, Cryptococcus neoformans and
Aspergillus fumigatus), this review aims to address the gap between our understanding of
innate immunity to fungal infections and the development of novel host-directed strategies
to combat infections in patients. The review will consider the role of the innate immune
system in responding to fungal infections, how failures of innate immunity can result in
severe fungal disease and how the innate immune system could be targeted therapeutically
in novel treatments for fungal infections.

2. Innate Immune Control of Fungal Infections
2.1. Barriers to Fungal Entry

The first components of our protection against invading fungi are the physical and
anatomical barriers that prevent entry of pathogens, primarily skin and mucosal mem-
branes [17]. The skin is colonised by a range of commensal microorganisms, the main
fungal species being members of the Malassezia genus [19,20]. Tight junctions in the epithe-
lia form a physical barrier to fungal entry, while C. albicans colonisation on the skin has
been shown to be controlled by skin-resident dendritic cells [17,21].

The primary mechanism of pulmonary exposure to fungi is inhalation of fungal spores,
most commonly Aspergillus spp. [22]. Once in the respiratory tract, tight junctions between
epithelial cells prevent fungal invasion into the host. A layer of mucus helps trap fungal
spores, allowing cilia to move trapped fungi out of the respiratory tract to be coughed up
or swallowed into the digestive tract to be destroyed by stomach acid [23].

2.2. Host Recognition of Fungi

Fungal pathogens can circumvent physical barriers and gain entry to the host in the
case of a barrier break, e.g., injury. PRRs are able to detect a range of conserved structures
on pathogens, known as pathogen associated molecular patterns (PAMPs), as well as de-
tecting the damage caused by pathogens, known as damage associated molecular patterns
(DAMPs) [24]. This triggers an intracellular signalling cascade, leading to production of
effector proteins and recruitment of innate immune cells (Table 1). There has been a large
effort to increase our understanding of PRRs involved in antifungal immunity. C-type
lectin receptors (CLRs), such as Dectin-1 and Mincle, are PRRs that have been demonstrated
to detect fungi. Dectin-1 specifically detects 3-1,3-glucan, a fungal cell wall carbohydrate,
stimulating NF-«B signalling, inflammasome activation, phagocytosis and production of
reactive oxygen species (ROS) [25]. Double stranded RNA (a PAMP usually associated
with viral infections) in A. fumigatus infection is detected by RIG-I-like receptors, which
stimulates MDA5/MAVS signalling. Type III interferon expression is entirely reliant on
MDAS5/MAVS, whereas Type I interferon expression was also triggered through alterna-
tive mechanisms [26]. Type III interferon appears to be a critical regulator in neutrophil
activation and antifungal immunity [27], suggesting MDA5/MAVS signalling is critical in
the antifungal immune response.
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Table 1. Pattern recognition receptors in fungal infection.

Pattern Adaptor Pathogen-/Damage-
Recognition Localisation Cell Expression P ap: Effectors Associated Molecular Fungal Species References
Receptor roteins Patterns Recognised
P! 8
Monocytes, C. albicans,
TLR2 Plasma membrane mac 1'rophages, MyD88, Mal NE-«B, TNE TGE@, Phospholipomannan, A. 1 i ﬂtu;, [28-31]
denderitic cells, mast IL-10, IL-12, IFNy -glucans P. brasiliensis
cells, neutrophils ’
Monocytes,
macrophages, 1i
TLR4 Plasma membrane, dendritic cells, MyD88, Mal, NF-«B, TNE, IL-8, O lﬁked magliu)syl, C. albicans, [28-31]
endosome membrane mast cells, TRIF, TRAM Type ITFN anr\aln, - A. fumigatus ©
neutrophils, B cells, curonoxylomannan
intestinal epithelium
Monocytes,
TLR7 Endosome membrane macrophages, MyD88 IFN-3, Type I IFN ssRNA C. albicans [28,30-32]
dendritic cells, B cells
M ) Candida spp.,
onocytes, N N C. neoformans,
TLR9 Endosome membrane macrophages, MyD88 NF-EEFIJZ_IZ’ Unmg}:}glactgd D.I;IA A. fumigatus, [28,30,31,33,34]
dendritic cells, B cells with CpG moti P. brasiliensis,
M. furfur
Monocytes, Candida spp.,
) macrophages, IL-2, IL6, % ;}Z%”:funf'
Dectin-1 Plasma membrane dendritic cells, hemITAM 1L-10, IL-23 3-1,3-glucans H e su’%atu;r’l [28,30,31]
neutrophils, mast cells, g S, cz’arevisiue ’
some T cells P. brasiliensis
Monocytes € i
Dectin-2 Plasma membrane macrqghages, ITAM-FcRy TNFx Mannose C. rlwofnrmm;s, [28,30,31]
dendritic cells, A. fumigatus,
neutrophils H. capsulatum
Monocytes, .
maceopige, pmanse g,
Mincle Plasma membrane dendritic cells, ITAM-FcRy Rﬁg?ﬁ%&%{%@ gy{\ g‘yl £ pid, C. albicans, P. carinii, [30,31,35]
R - -12, IL- annosyl fatty ot
neutrophils, mast cells, . Malassezia spp.
‘ acids, MSG/gpA
some B cells
Macrophages, Mannose, N-linked CCh : lfb:ff;;i’,s
DC-SIGN Plasma membrane dendritic cells, LSP1 IL-10 mannans, A fu(rr;igultus 4 [28,30,31]
activated B cells galactomannans S. cerevisine
C. albicans,
M " Kunff Associated with C. neoformans,
Mannose acrophages, Kupffer FcRy and GBR2, ~ Mannose, A. fumigatus, w
Receptor Plasma membrane cells, endothelial cells exact mecha- TNE IL-16 a-glucans, chitin H. capsulatum, [28,30,36,37]
nism unknown S. cerevisiae,
P. brasiliensis
Monocytes,
macrophages, NE-kB, T
" -kB, Type I IFN, .
MDA5 Cytoplasm dendritic cells, Beells, ¢ ARps, MAVs Type I IFN, dsRNA C. albicans, [26,30]
epithelial cells, TNFo, 1L-12 A. fumigatus
endothelial cells, . !
fibroblasts

2.3. Macrophages

Macrophages are a key innate immune cell type in fungal infection control. Recruit-
ment of macrophages to sites of fungal infection is a highly dynamic process. Macrophages
cluster around A. fumigatus infection in zebrafish and play a role in preventing the yeast-to-
hyphae transition, which is associated with increased pathogenicity [38]. The number of
macrophages in clusters was highly dynamic, though whether decreases in macrophage
density was caused by reverse migration, apoptosis/pyroptosis or cell death was not
revealed. In silico analysis of Mucor circinelloides infection, supported by observations in
zebrafish models of infection, revealed the number of phagocytes present at the site of infec-
tion is critical to infection control [39]. The size of macrophage clusters may play a crucial
role in control of fungal infections. Resident tissue macrophages have been demonstrated
to congregate and “cloak” tissue microlesions with pseudopods in an in vivo mouse sterile
injury model, which concealed pro-inflammatory debris, prevented neutrophil swarming
and reduced collateral tissue damage caused by neutrophil-mediated inflammation [40].
Though not yet shown in a model of fungal infection, macrophage clustering may similarly
facilitate cloaking of damage caused by fungi, limiting the pro-inflammatory neutrophil
response and preventing excess tissue damage. Conversely, damage caused by fungi could
be too large to effectively cloak, permitting the hyperinflammatory response and collateral
tissue damage observed in alternative models of fungal infection [41].

Following recruitment, the primary mechanism of pathogen clearance by macrophages
is phagocytosis. Macrophage PRRs or Fc receptors bind to fungal PAMPs or opsonising
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antibodies, respectively, triggering engulfment of the fungus [42]. Two mechanisms of
fungal engulfment have been described: zipper phagocytosis and coiling phagocytosis
(Figure 1) [43,44]. Phagocytosis of C. neoformans is typically facilitated by crosslinking of
Fcy receptors and C. neoformans bound IgG antibodies. Inability to form lipid rafts with
closely localised Fcy receptors prevents IgG mediated phagocytosis, though complement
mediated phagocytosis is unaffected [45]. Following investigation in mouse knockout mod-
els, Anion Exchanger 2 has been suggested as a critical regulator of engulfment, through
regulation of Dectin-1 expression, and fungal killing, by affecting intracellular pH home-
ostasis in macrophages [46]. Engulfed fungi are held in the phagosome, which fuses with
the lysosome to form a phagolysosome. Acidification of the phagolysosome allows fungal
degradation by acid-dependent proteases (such as Cathepsin D), combined with fungal
killing by ROS and reactive nitrogen species (RNS) [42,47,48]. Hatinguais et al., demon-
strated mitochondrial ROS, produced via reverse electron transport, not only contribute to
the destruction of phagocytosed A. fumigatus conidia, but also trigger production of TNF-
o and IL-1p in vitro, stimulating further antifungal responses [49]. Although inhibition
of mitochondrial H,O, impaired phagocytosis of A. fumigatus by alveolar macrophages
in a mouse model, neutrophil activity was not impaired and survival and fungal bur-
den were not affected [50]. Hence, while mitochondrial ROS are important in for the
antifungal activity of alveolar macrophages, NADPH oxidase activity is able to compen-
sate effectively, displaying redundancy in the host antifungal response. While lysosomal
degradation is the typical outcome of phagocytosis, macrophage-to-macrophage transfer
(termed “Dragotcytosis”) of C. neoformans has also been observed in vitro [51]. Shah et al.,
observed a similar phenomenon in A. fumigatus infection. Hyphal growth of phagocytosed
A. fumigatus caused macrophage necrosis, triggering macrophage-to-macrophage transfer
of germinating A. fumigatus, preventing fungal escape [52]. Unlike dragotcytosis, transfer
of A. fumigatus was macrophage necrosis-dependent. However, the biological significance
of these phenomena is unknown. Vomocytosis (also referred to as nonlytic exocytosis) is the
expulsion of phagocytosed particles without degradation into the extracellular environment
and occurs in macrophages in vitro during C. albicans and C. neoformans infection [53,54].
In mammalian in vitro and zebrafish in vivo models of cryptococcosis, vomocytosis is
regulated by the MAP kinase ERKS. Viral infection and type I interferon signalling have
been associated with enhanced rates of vomocytosis in vitro [55,56]. It is possible that the
expulsion phase of dragotcytosis operates by a similar mechanism.

Phagocytosis of fungi is not always possible: C. albicans and A. fumigatus hyphae may
become too long to phagocytose and Cryptococcus neoformans titan cells are too large to
phagocytose [57-59]. Inability to phagocytose a pathogen typically leads to frustrated
phagocytosis, a process in which there is downregulation of phagocytosis mechanisms and
a strong inflammatory response mediated by IL-1f3 [60,61].

Phagocytosis of C. albicans can trigger a yeast-to-hyphae transition, leading to
macrophage killing through mechanical piercing by hyphae or induction of pyroptosis,
allowing escape of C. albicans [62]. To counteract this, macrophages are able to fold phagocy-
tosed fungal hyphae at septal junctions (Figure 1), resulting in significantly reduced hyphal
growth and disruption to the cell wall [63]. Exactly how much hyphal folding contributes
to fungal clearance is unknown, however, this represents a previously uncharacterised
macrophage function, which may be relevant to other hyphal pathogens.

Macrophages are a highly heterogenous population, existing on a spectrum of be-
haviours between M1, pro-inflammatory phenotypes and M2, wound healing pheno-
types [64]. Proteomic analysis revealed a pro-inflammatory to wound healing phenotypic
switch in C. albicans infection, whereas C. neoformans infection drives macrophages into
a naive M0 phenotype [65,66]. Stimulating an M1 phenotype led to decreased fungal
burden and increased survival of mouse models in C. albicans and C. neoformans infec-
tion [67,68]. Promotion of an M2 phenotype in A. fumigatus infection reduces control of
infection, corresponding with the other fungal pathogens [69]. This reveals a mechanism
to avert pro-inflammatory macrophage polarisation to the detriment of the host, driven
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by immunosuppressive drugs (e.g., steroids) or interactions with fungal pathogens. It
could be possible to improve outcomes of fungal infection by therapeutically promoting
M1 macrophage polarisation, though this must be done with caution to prevent excess,
harmful inflammation.

MACROPHAGES NEUTROPHILS
ey W W - \
Zipper Mechanism Phagocytosis Coiling Mechanism Phagocytosis Phagocytosus ROS Producnon Degranulat'lon

j‘;n‘fﬁﬁﬁaﬁmgk n3

Neutrophil Swarming NET Formation 1 candidalysin — *Neutrophil recruitment

: Hyphal folding
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i, . 1 ROS Production 1 Neutrophil phagocytosis .3
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Figure 1. Cellular Innate Immune Control of Fungal Infections. Various mechanisms exist for the

control of fungal infections by the innate immune system. Macrophages phagocytose fungi, undergo
macrophage clustering or fold phagocytosed hyphae. Recognition of fungal ligands, such as candi-
dalysin, stimulates production of IL-1, triggering neutrophil recruitment [70]. Increased expression
of IL-33 in C. albicans infection triggers neutrophil recruitment and phagocytosis [71]. Neutrophils
may also release reactive oxygen species (ROS) or neutrophil extracellular traps, degranulate, phago-
cytose fungi or undergo swarming. Eosinophils have antifungal effects through degranulation [72]
and production of IL-17, which stimulates pro-inflammatory signalling, production of antimicrobial
peptides and Th17 cell differentiation [73,74].

2.4. Neutrophils

Neutrophil recruitment to fungi, like macrophages, is driven by detection of PAMP/
DAMPs by PRRs (Table 1). Mincle binds «-mannose and other fungal cell wall components,
resulting in pro-inflammatory signalling and recruitment of neutrophils [30,75]. RIG-I-
like receptor detection of double stranded RNA stimulates a strong neutrophil-mediated
antifungal response via MDA5/MAVS signalling [26,27]. Candidalysin, produced by
hyphal C. albicans, appears to be a potent stimulator of innate immune responses in mucosal,
central nervous system and systemic infections [70,76,77]. Candidalysin stimulates IL-13
production via a CARD9-dependent mechanism, which in turn leads to CXCL1-mediated
recruitment of neutrophils [70]. TRAF1 (induced by the pro-inflammatory cytokine TNF)
inhibits CXCL1 in C. albicans infection [78,79], suggesting a regulatory role for TRAF1 to
prevent excess neutrophil recruitment and activation. Epidermal growth factor receptor
(EGFR) may also be key for immune responses to candidalysin. Inhibition of EGFR in
mouse models of oral candidiasis reduces IL-13 and CXCL1 [80,81], suggesting EGFR may
be the initial receptor responsible for CXCL1-mediated neutrophil recruitment. Neutrophil
recruitment and survival are also reduced by EGFR inhibition, providing strong evidence
of the link between candidalysin, EGFR and CXCL1-mediated neutrophil recruitment.
IL-33 is another key mediator of neutrophil recruitment [82] and IL-33 knockout mice
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have increased mortality in C. albicans infection. Based on in vitro primary cell models,
IL-33 operates via IL-23 and GM-CSF to promote phagocytosis by neutrophils [71]. IL-33
also suppresses IL-10 expression, resulting in superior fungicidal activity by neutrophils
in vitro. IL-10 expression has been associated with persistent C. albicans infection in other
in vitro data [83], which may be due to reduced neutrophil activity. IL-23 has additional
mechanisms of aiding antifungal immunity. IL-23 deficient mice have increased myeloid cell
apoptosis, resulting in reduced survival in systemic C. albicans infection [84]. Interestingly,
this occurred independent of IL-17 and was unique to fungal infections.

Neutrophils have been shown to coordinate their migration to sites of infection
through a process called neutrophil swarming [85]. Swarming inhibits the growth of
several fungal pathogens in vitro: C. albicans, C. auris, Candida glabrata, C. neoformans
and A. fumigatus [86-88]. Swarms were smaller for yeast-locked C. albicans, C. auris and
C. glabrata (which are unable to hyphate) compared to wild type C. albicans [87]. Further-
more, using an in vitro model of A. fumigatus infection, swarms appeared to preferentially
form around hyphae [88]. This implies a potential correlation between hyphae formation
and neutrophil swarming, which requires further investigation. Swarming in fungal infec-
tions is dependent on LTB4, meaning it operates by the same mechanism as swarming in
other infections or injury [86,89,90].

Following migration to sites of infection, neutrophils have several mechanisms to
eliminate fungal pathogens, including phagocytosis and degradation in the phagolyso-
some, degranulation, production of ROS and neutrophil extracellular trap (NET) release
(Figure 1). Neutrophils produce granules containing a range of bactericidal and fungici-
dal effectors, including myeloperoxidase, cathepsins, defensins and lactoferrin [91]. The
secretion of effectors in degranulation leads to fungal killing and is preferentially used in
Candida infections with pseudo-hyphae [92]. Degranulation was dependent on CXCR1 in
C. albicans infection in a mouse model, demonstrating a novel function of murine CXCR1
which correlates with evidence that human CXCR1 promotes oxidative and non-oxidative
bactericidal activity by neutrophils [93,94]. Neutrophils also produce ROS, such as su-
peroxide or hydrogen peroxide, which can be used intracellularly to kill phagocytosed
fungi, or extracellularly to target hyphae [95,96]. Neutrophils are capable of expelling
chromatin covered in antimicrobial proteins, leading to entrapment and killing of extra-
cellular pathogens [97]. These neutrophil extracellular traps (NETs; Figure 1) are host
protective against C. albicans, Cryptococcus neoformans and Aspergillus nidulans in in vitro
human neutrophil models [87,97-99] and may be involved in swarm initiation [87,100].
NETs have also been demonstrated to directly stimulate Th17 cell differentiation, via TLR2
and RORyt, corresponding with increasing IL-17 and GM-CSF production [101]. IL-17 and
GM-CSF both stimulate neutrophil activity in fungal infection [71,102], creating a feedback
loop, in which NETs promote an adaptive immune response and additional neutrophil
activity. A subpopulation of neutrophils also produce IL-17, which may further feed into
this positive feedback loop [103]. Recent evidence suggests NETosis induced by C. albicans
can occur independent of Peptidylarginine deiminase 4 (PAD4), contradicting established
literature that NETosis is PAD4-dependent [104-107]. Alternative studies demonstrated
PAD4 is not necessary for NET formation or neutrophil-mediated control of A. fumigatus
infection [108,109]. Further research is needed to clarify whether PAD4-independent NE-
Tosis is a non-canonical mechanism of NETosis for all stimuli or is a phenomenon unique
to fungal infections. Despite their fungicidal role, NETs may have an overall detrimental
effect on the host. NET proteins intended to eliminate fungi have been observed bound
to, but not killing, C. albicans and inducing apoptosis of host cells [110]. Furthermore,
inhibition of NETosis reduced A. fumigatus burden in mouse models of invasive pulmonary
aspergillosis [111]. However, these experiments inhibited NETosis by generating PAD4
knockout mice, which does not account for the possibility of PAD4-independent NETosis.
Alternative methods of NETosis inhibition may be required to provide greater support to
these conclusions.
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Transfer of phagocytosed A. fumigatus conidia from neutrophils to macrophages by
a f3-glucan dependent mechanism has been observed in zebrafish [112]. The function
of shuttling, and significance in fungal clearance, remains unclear, with conflicting argu-
ments stating shuttling is a fungal strategy to avoid degradation by neutrophils or that
shuttling is a host strategy to facilitate antigen presentation and initiate adaptive immune
responses [38,112].

2.5. Other Innate Immune Components of Fungal Protection

Though typically associated with allergic disease, eosinophils can detect and respond
to fungal infection, primarily through degranulation [72,113]. In a mouse model of acute
A. fumigatus infection, eosinophils expressed RORyt, IL-23R and IL-17, which all have
pro-inflammatory functions [73]. Increased IL-17 expression also occurred independent
of IL-23 signalling, suggesting A. fumigatus promotes IL-17 production by eosinophils
by an unknown mechanism. The pro-inflammatory IL-17 phenotype helps to protects
against A. fumigatus infection (Figure 1), but is also responsible for tissue damage and lung
pathology [73,74]. Eosinophils play a dichotomous role in fungal infection, whereby they
both protect and damage the host.

Innate lymphoid cells (ILCs) are a rapidly emerging area of research. In a mouse
model of oropharyngeal candidiasis, ILCs in the oral mucosa were the primary source of
pro-inflammatory IL-17 during C. albicans infection, acting as the first line of defence in the
antifungal response. Depletion of ILCs increased susceptibility to C. albicans infection, with
increased fungal burden and greater reduction in body weight [114]. 3 distinct ILC subpop-
ulations have been identified. Type 3 ILCs (ILC3s) in acute A. fumigatus lung infection in
mice produce IL-22, a critical cytokine for clearance of A. fumigatus [115]. Stimulation of
ILC3s by cytokines in vitro or Citrobacter rodentium infection in vivo resulted in stabilisation
of HIF-1«, inducing glycolysis and RORyt production. Activation of ILC3s, characterised
by secretion of IL-17 and IL-22, is also dependent on production of mitochondrial ROS,
which aids HIF-1x and RORyt stabilisation [116]. Validation of this mechanism following
stimulation with fungal pathogens is required.

Complement has previously been demonstrated to be crucial in responses to fungal
infection, with complement-deficient mouse and guinea pig models being more vulnerable
to Candida infections [117,118]. CD11b (also called CR3) is a common 3 subunit of 32
integrin complement receptors. While survival is not affected, CD11b knockout mice
have reduced pro-inflammatory cytokines and reduced phagocytic activity by neutrophils
during A. fumigatus infection but enhanced neutrophil infiltration [119]. Hence, complement
activation of CD11b may be vital for triggering phagocytosis but plays no role in neutrophil
recruitment. CR3 can also bind to 3-glucan, triggering phagocytosis of 3-glucan-bearing
particles [120,121]. Binding of CR3 to 3-glucan in C. albicans infection initiates a complex,
temporally regulated pathway that can differentially upregulate neutrophil swarming and
NETosis [122]. Inhibition of CR3 during in vitro A. fumigatus infection reduced production
of IL-8 and MCP-1 and reduced activation of NF-kB, demonstrating CR3 has a role in
mediating release of pro-inflammatory cytokines in A. fumigatus infection [123]. Together
these studies reveal CR3 to be a complex, multifaceted protein, with important antifungal
roles beyond the complement cascade.

3. Failures of Innate Immunity in Disease
3.1. Candida albicans

While usually a commensal fungus, commonly colonising the gastrointestinal and
genitourinary tracts of most humans, C. albicans is also an opportunistic pathogen [124,125].
Immunocompromised patients are most at risk of candidiasis, whether their immune
defects are caused by HIV/AIDS, immunosuppressive drugs, old age or genetic disor-
ders [126]. Chronic mucocutaneous candidiasis (CMC) is recurrent or persistent infections
of mucosal membranes caused by Candida species, primarily by C. albicans [127]. Severity
of CMC is highly variable and dependent on the anatomical location of C. albicans infection:
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from soreness around the mouth and ulceration in oral cavity infections to abdominal pain
and severe diarrhoea in digestive tract infections [128]. Although progression of CMC
to systemic candidiasis is relatively rare, acquisition of invasive candidiasis in intensive
care units is fairly common (7.07 episodes per 1000 admissions) and has a 42% 30-day
mortality [129].

Susceptibility to recurrent Candida infection in CMC is caused by various host ge-
netic mutations, the most common being STAT1 gain of function mutations [130]. These
mutations increase STAT1 responses to IFN«, IFN3, IFNy and IL-27, causing repressed
development of IL-17 T cells and susceptibility to mucosal Candida infection [131]. An alter-
native genetic mutation underlying CMC is autosomal recessive CARD9 deficiency [132].
CARD?9 is an adaptor protein utilised by a variety of CLRs, such as Dectin-1, to stimulate
NF-«B signalling. CARD9 deficiency has been demonstrated to cause reduced cytokine
production by human patient peripheral blood mononuclear cells and impaired neutrophil
recruitment in in vivo mouse models, leading to increased susceptibility to systemic can-
didiasis [133,134]. While several mutant CARD? alleles associated with CARD9 deficiency
have been revealed [132], less established is the effect other gene mutations may have
on CARD?9 expression. Ovarian tumour deubiquitinase family member 1 (OTUD1) has
recently been identified as a positive regulator of CARD9. OTUD1 deubiquitinates ubiqui-
tinated CARD?Y, leading to CARD?9 activation. Infection of OTUD1 homozygous knockout
mice with C. albicans led to reduced mouse survival and increased fungal burden in kidney,
lung and spleen slices compared to wild type mice [135]. OTUD1 mutations may cause
susceptibility to C. albicans infection through CARD?9 deficiency (Figure 2), highlighting
a novel cause of CMC and introducing a potential therapeutic target for treatment of
CARD?9 deficiency.

Given its key role in NF-«B signalling, MyD88 defects have been associated with
susceptibility to a range of infectious diseases [136]. MyD88 knockout mice are highly
susceptible to C. albicans infection, with increased mortality and fungal burden [137]. In a
zebrafish wound model, MyD88 deficiency caused reduced recruitment of both local and
distant neutrophils, which was maintained over 6 hours [138]. MyD88 deficiency, however,
did not impair neutrophil activation, which was dependent on MAVS signalling. Although
only studied in a wound model, if this mechanism is maintained in fungal infection, it
would suggest patients with MyD88 deficiency have impaired neutrophil recruitment (but
no defects in neutrophil activation), which causes increased susceptibility to C. albicans
infection (Figure 2).

IL-17 is a key regulator of antifungal immunity. IL-17 knockout mice have high
susceptibility to C. albicans infection and reduced levels of neutrophil-recruiting chemo
kines [139,140]. A strong association has been demonstrated between candidiasis and use
of IL-17 inhibitors (used in treatment of several inflammatory diseases), with significant
downregulation of 9 pro-inflammatory cytokines or neutrophil-recruiting chemokines [141].
A recent clinical study demonstrated 16 CMC patients had lower serum IL-17 levels
than healthy controls [142], supporting previous evidence that IL-17 is impaired in CMC
patients [143]. IL-17 defects have been attributed to STAT1 gain of function mutations,
IL-17 mutations and anti-IL-17 autoantibodies [143-146].
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Figure 2. Failures of innate immunity in fungal infection. Examples of specific failures of innate
immunity which lead to susceptibility to fungal infection. STAT1 gain of function mutations increase
sensitivity to IFNs, leading to increased susceptibility to fungal infections [131]. OTUD1 or MyD88
deficiencies result in reduced transcription of NF-«B, resulting in reduced inflammatory response
and increased C. albicans burden [135,138]. CARD?Y deficiency causes reduced NF-kB transcription,
resulting in reduced inflammatory response and increased A. fumigatus burden [147]. NADPH oxidase
deficiency in CGD patients reduced production of ROS, reducing the ability to kill A. fumigatus
and removing ROS-mediated inhibition of NF-kB, resulting in excess TNF production and host
injury [41,131]. Anti-GM-CSF antibodies prevent macrophage differentiation and activation, resulting
in inability to control C. neoformans infection [148].

3.2. Cryptococcus spp.

Cryptococcosis, caused by Cryptococcus spp., is a global issue, causing roughly
181,000 deaths annually worldwide and being responsible for 15% of all AIDS-related
deaths [149,150]. Risk factors, other than HIV infection, include diabetes mellitus, cirrhosis,
blood disorders or prolonged immunosuppression [131]. Cryptococcal infections typically
begin in the lungs then disseminate to cause infections in the central nervous system, either
as free yeasts or inside ‘trojan horse’ phagocytic cells [151]. Cryptococcus neoformans is the
primary cause of cryptococcosis but Cryptococcus gattii is a rapidly emerging species, capa-
ble of causing infection in immunocompetent individuals, with a serious outbreak in the
2000s in Vancouver Island, Canada [152,153]. Unlike other pathogenic fungi, Cryptococcus
spp. are yeast-locked and do not form hyphae during infection [154].

A number of patients with cryptococcosis have presented with anti-GM-CSF autoan-
tibodies [155-157]. GM-CSF autoantibodies have previously been linked to pulmonary
alveolar proteinosis, a rare condition affecting the ability of alveolar macrophages to re-
move excess surfactant, demonstrating an association between GM-CSF deficiency and
macrophage function [147,158]. More recent investigations show impaired activation of
macrophages in GM-CSF knockout mice with cryptococcal lung infection. Furthermore,
GM-CSF deficiency in these mice reduced the differentiation and maturation of Ly-6C mono-
cytes (macrophage precursor cells) into mature alveolar macrophages [148]. Therefore,
cryptococcosis in patients with anti-GM-CSF autoantibodies may be caused by reduced
levels of mature alveolar macrophages and an inability to activate these macrophages
(Figure 2).
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3.3. Aspergillus spp.

Infections caused by Aspergillus spp. most commonly occur in the lower respiratory
tract or lungs [159]. A. fumigatus is the second most common cause of fungal infections in
hospitalised patients, behind C. albicans [160]. Aspergillus infection is responsible for a range
of severe pulmonary diseases, including: invasive pulmonary aspergillosis, chronic pul-
monary aspergillosis and allergic bronchopulmonary aspergillosis [160]. Besides causing
irreversible lung damage, these conditions can also lead to systemic aspergillosis.

Stem cell transplants (SCTs; used in treatment of some cancers and blood disorders) are
a major risk factor for Aspergillus infection. 9.3% of SCT recipients develop invasive fungal
disease, most frequently caused by Aspergillus spp., resulting in 70.8% mortality 1 year post
diagnosis of fungal infection [161]. Following a SCT, patients are profoundly cytopenic
while the immune system recovers and often receive additional immune suppression to
prevent graft vs. host disease [162]. This cytopenia leads to the extreme vulnerability to
fungal infection.

Aspergillus infection is particularly common in patients with chronic granulomatous
disease (CGD). CGD results from defective NADPH oxidase complexes in phagocytes,
leading to an inability to produce ROS [131]. Consequently, CGD patients are less able to
kill pathogens so are highly susceptible to Aspergillus infection. Cagnina et al., recently
showed excess TNF production in a CGD mouse model challenged with Aspergillus triggers
additional neutrophil recruitment, driving a pro-inflammatory spiral which is responsible
for host lung damage [41]. This supports other research demonstrating exaggerated TNF
responses are responsible for host injury [163,164]. ROS are believed to inhibit NF-«B
signalling to prevent hyper-inflammation [165,166]. Inability to produce ROS in CGD
patients eliminates ROS-mediated NF-kB inhibition, resulting in a hyperinflammatory
environment and host injury (Figure 2).

Although mainly associated with candidiasis, CARD9 deficiency is increasingly being
linked to susceptibility to a wider range of fungal infections, including Aspergillus [132,167].
CARD9 deficiency caused far greater increases in mortality in mice during C. albicans
infection compared to A. fumigatus infection [134,168], suggesting CARD?9 exhibits some
redundancy in control of Aspergillus.

4. Host-Directed Therapies

There are many issues concerning current antifungal treatment: toxicity of antifun-
gals, low effectiveness, slow development of new antifungals and the rise of antifungal
resistance [169]. A potential alternative strategy to treating infectious disease is therapeutic
targeting of the immune system, an approach that should be more resilient against emerg-
ing drug resistance. Host-directed therapies (HDTs) stimulate host cellular pathways and
activate immune responses to aid clearance of pathogens [170]. HDTs have been proposed
as an adjunctive therapy alongside current antifungals [171].

Some HDTs function by promoting increased immune cell production or recruitment,
to bolster the innate immune response. G-CSF is an endogenous signalling molecule that
induces formation of granulocyte precursor cells, which will later differentiate into mature
neutrophils. GM-CSF has a similar role in immune cell development, but with a wider
spectrum of activity [172,173]. G-CSF/GM-CSF treatment aids clearance of C. albicans and
A. fumigatus in in vitro models and in vivo rabbit and mouse models [174-176]. In two
separate cases of relapsing C. albicans meningoencephalitis in CARD9-deficient patients,
treatment with either G-CSF or GM-CSF resulted in complete clinical remission [177,178].
In another case, a paediatric patient with a history of CMC and CARD9 deficiency was
successfully treated for invasive C. albicans infection by a combination of G-CSF and anti-
fungals [179]. The primary mechanism believed to underly G-CSF/GM-CSF treatment is
increased production, maturation, proliferation and activation of neutrophils, macrophages,
monocytes and eosinophils [180]. However, G-CSF/GM-CSF have also been suggested to
modulate immune activity by stimulating pro-inflammatory cytokine production, phago-
cytosis and ROS production, though this is based on in vitro evidence and may not be
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observed in human fungal infections [181-184]. Therefore, G-CSF/GM-CSF shows po-
tential for treating C. albicans and A. fumigatus infections in immunodeficient patients.
Targeting spleen tyrosine kinase (syk) was suggested as a potential HDT after syk was
shown to be critical for protection against C. albicans infection in mice models, through
regulation of neutrophil responses [185,186]. Syk is a downstream signalling molecule
of several fungal PRRs, such as Dectin-1 [185,187], meaning syk is critical for the initial
recognition of fungal infection, as well as neutrophil swarming, phagocytosis, NETosis and
ROS production. However, while syk inhibitors have been developed and approved for
clinical use [188], to the best of our knowledge, there are currently no pharmacological
syk stimulators for experimental or clinical use, introducing significant barriers to further
investigation of syk as a potential HDT. Rhesus theta defensin-1 (RTD-1) is an antimicro-
bial peptide, with potent antifungal properties in both in vitro and in vivo mouse models.
RTD-1 also promotes neutrophil recruitment and reduces TNEF, IL-13 and IL-17 production
in C. albicans infected mice [189,190]. Furthermore, RTD-1 suppresses pro-inflammatory
cytokines in in vitro and in vivo mouse models, reducing host damage, improving long
term outcomes and improving pathogen clearance [191-194]. Hence, RTD-1 represents a
promising new class of therapy, capable of modulating host responses to improve long
term outcomes to infection, while also having a direct antifungal effect.

HDTs may also modulate innate immune cell responses, to improve their fungicidal
activity. Following successful clinical trials, interferon gamma (IFNv) is already used as a
HDT as an antifungal prophylaxis and halves the occurrence of acute Aspergillus infection
in CGD patients [195-197]. IFNy stimulates increased ROS production by granulocytes,
as well as promoting Th1 responses and enhanced macrophage activity [198,199]. Recent
evidence has suggested IFNy production is impaired in patients with chronic pulmonary
aspergillosis, suggesting IFNy therapy may also be beneficial in these patients [200]. An-
other potential HDT is HIF-1« (Hypoxia Inducible Factor) stabilisation. Hif-1x stabilisation
is protective against Mycobacterium marinum infection in zebrafish larvae via IL-13, which
stimulates antimicrobial nitric oxide production [201,202]. In addition, Hif-1« deficient
mice have been shown to be more susceptible to C. albicans infection [203]. Hif-1c stabili-
sation has potential as a HDT for treatment of fungal infections but requires appropriate
in vitro models that allow both genotypic and phenotypic characterisation of the effects of
Hif-1o stabilisation on fungal infection and immune cell behaviour.

An emerging HDT opportunity in fungal diseases is an increased understanding of
trained innate immunity, where innate immune cells exhibit long-term adaptive characteris-
tics after immune challenge [204]. Much of the research in this area has focused on training
immunity with bacterial products, such as lipopolysaccharide (LPS) or bacillus Calmette-
Guérin vaccine (BCG) that can trigger different trained immunity programmes that protect
against subsequent infections [205]. However, some of the earliest demonstrated examples
of trained immunity were in murine studies using low-dose Candida spp infection in T-
and B-cell depleted animals, that showed protection against a subsequent lethal dose of
fungal infection [206]. The fungal cell wall component 3-glucan was sufficient to provide
trained innate immunity protection and this response was dependent on functional circu-
lating monocytes [206]. There is emerging evidence that challenge with avirulent Candida
spp can provide protection against sepsis caused by bloodstream fungal infections, with
a potential role for GR-1" putative myeloid-derived suppressor cells (MDSCs) [207,208].
These findings open up the possibility of using trained immunity to treat fungal infections,
but there is more to understand on the exact mechanisms, programmes and specificity of
fungal-induced trained immunity before potential exploitation in the clinic [209].

5. Conclusions

From established processes, such as phagocytosis and production of ROS, to recently
discovered phenomena, such as hyphal folding, the innate immune system is critical in
host immune responses to fungal infections. The fact that new mechanisms are still being
uncovered highlights the complexity of the innate response. However, many questions
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remain unanswered. It remains to be seen how clinically significant recent observations
from in vitro/ex vivo experiments are, for example, NET release, fungal shuttling and
hyphal folding. The ability to unravel these questions relies on in vivo models for fungal
infections, which are translatable to human disease and immune responses. These models
are also vital to understand mechanisms underlying increased vulnerability to fungal
infections in immunocompromised individuals and the effects of HDTs on fungal clearance
and immune cell behaviour.
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