Skip to main content
. 2022 Jul 31;12(8):1262. doi: 10.3390/jpm12081262

Table 3.

Quality metrics (%) of the ML models for NH prediction.

PH Sampling/Parameters RF LogRLasso ANN
CGM CGM + Clinical Data CGM CGM + Clinical Data CGM CGM + Clinical Data
15 min OS Se
Sp
AUC
93.6 (3.4)
90.1 (2.4)
0.958 (0.011)
90.9 (2.8)
91.8 (2.3)
0.953 (0.012)
93.6 (1.9)
91.9 (2.2)
0.962 (0.010)
93.0 (3.0)
93.0 (2.0)
0.968 (0.014)
90.5 (5.9)
91.4 (1.6)
0.946 (0.032)
90.8 (2.5)
89.1 (4.5)
0.935 (0.029)
NS Se
Sp
AUC
91.8 (1.2)
91.1 (3.9)
0.959 (0.020)
94.5 (2.6)
91.4 (3.3)
0.97 (0.017)
93.6 (3.4)
91.2 (2.5)
0.957 (0.021)
92.4 (2.5)
92.3 (3.7)
0.958 (0.025)
88.6 (3.6)
92.6 (3.1)
0.934 (0.032)
90.3 (3.1)
91.0 (1.6)
0.935 (0.027)
US Se
Sp
AUC
88.2 (5.2)
92.7 (2.1)
0.953 (0.023)
92.3 (3.4)
90.6 (1.3)
0.956 (0.009)
90.5 (6.7)
91.4 (1.4)
0.947 (0.036)
90.8 (4.7)
91.2 (2.4)
0.947 (0.018)
90.0 (4.7)
90.2 (2.8)
0.947 (0.033)
91.9 (3.7)
88.9 (3.6)
0.945 (0.017)
30 min OS Se
Sp
AUC
87.6 (1.9)
88.9 (3.1)
0.927 (0.03)
86.6 (3.6)
87.0 (2.6)
0.911 (0.019)
90.4 (1.7)
87.5 (2.2)
0.932 (0.06)
91.0 (3.5)
87.7 (3.7)
0.94 (0.012)
87.6 (3.9)
88.0 (4.0)
0.918 (0.031)
84.6 (5.2)
87.2 (5.5)
0.881 (0.034)
NS Se
Sp
AUC
87.1 (4.6)
87.1 (6.0)
0.92 (0.036)
90.4 (4.7)
87.4 (1.6)
0.942 (0.028)
87.1 (4.0)
90.8 (1.9)
0.928 (0.012)
86.9 (4.0)
90.3 (1.9)
0.933 (0.012)
86.6 (3.2)
88.7 (2.2)
0.924 (0.018)
83.3 (4.2)
86.3 (2.8)
0.881 (0.049)
US Se
Sp
AUC
89.5 (3.6)
86.5 (2.8)
0.912 (0.031)
92.4 (3.1)
85.3 (1.2)
0.923 (0.021)
85.1 (5.6)
89.5 (1.8)
0.913 (0.027)
90.3 (3.2)
86.7 (1.9)
0.92 (0.03)
85.1 (5.3)
87.5 (2.7)
0.908 (0.028)
85.2 (3.6)
84.8 (2.2)
0.901 (0.023)

The SD values of the estimates obtained with cross-validation process are shown in the parentheses. The highest AUC values for each PH and ML algorithm are highlighted in bold. Abbreviations: ANN, Artificial Neural Networks; AUC, area under the curve; CGM, continuous glucose monitoring; LogRLasso, Logistic Linear Regression with Lasso regularization; NP, nocturnal hypoglycemia; PH, prediction horizon; RF, Random Forest; OS, oversampling; NS, no sampling; US, undersampling; Se, sensitivity; Sp, specificity.