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The heterogeneous immune landscape between lung
adenocarcinoma and squamous carcinoma revealed by
single-cell RNA sequencing
Chengdi Wang 1✉, Qiuxiao Yu2, Tingting Song1, Zhoufeng Wang1, Lujia Song1, Ying Yang1, Jun Shao1, Jingwei Li1, Yinyun Ni1,
Ningning Chao1, Li Zhang1✉ and Weimin Li 1✉

A thorough interrogation of the immune landscape is crucial for immunotherapy strategy selection and prediction of clinical
responses in non-small-cell lung cancer (NSCLC) patients. Single-cell RNA sequencing (scRNA-seq) techniques have prompted the
opportunity to dissect the distinct immune signatures between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC), the two major subtypes of NSCLC. Here, we performed scRNA-seq on 72,475 immune cells from 40 samples of tumor and
matched adjacent normal tissues spanning 19 NSCLC patients, and drew a systematic immune cell transcriptome atlas. Joint
analyses of the distinct cellular compositions, differentially expressed genes (DEGs), cell–cell interactions, pseudotime trajectory,
transcriptomic factors and prognostic factors based on The Cancer Genome Atlas (TCGA), revealed the central roles of cytotoxic and
effector T and NK cells and the distinct functional macrophages (Mφ) subtypes in the immune microenvironment heterogeneity
between LUAD and LUSC. The dominant subtype of Mφ was FABP4-Mφ in LUAD and SPP1-Mφ in LUSC. Importantly, we identified a
novel lymphocyte-related Mφ cluster, which we named SELENOP-Mφ, and further established its antitumor role in both types,
especially in LUAD. Our comprehensive depiction of the immune heterogeneity and definition of Mφ clusters could help design
personalized treatment for lung cancer patients in clinical practice.
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INTRODUCTION
Immune therapies have presented sustained clinical significance
in non-small-cell lung cancer (NSCLC).1 However, due to intrinsic
genomic and immunogenic heterogeneity, whether a specific
form of immunotherapy is effective for different patients may be
difficult to predict.2 As the major cause of cancer-related mortality,
lung cancer accounts for 1.796 million deaths (18%) annually on a
global scale.3 NSCLC constitutes over 85% of lung cancer cases;4

its two main subtypes, accounting for approximately 80% of
NSCLC cases, are lung adenocarcinoma (LUAD) and lung
squamous carcinoma (LUSC).5,6 To uncover the role of the distinct
genetic profiles of lung cancer subtypes among patients, new
research opportunities have arisen that might contribute to
different therapeutic decisions.7,8

There are diverse predictors of response to therapy in the tumor
microenvironment (TME), including genomic features, transcrip-
tomic signatures and epigenetic modifications, which also
contribute to the heterogeneity of clinical response across cancer
subtypes and orchestrate either beneficial or adverse outcomes
for tumor progression.9,10 As a crucial part of the TME, the immune
microenvironment contains a comprehensive combination of
immune cells including macrophages (Mφ), lymphocytes, mono-
cytes and dendritic cells (DC), and immune checkpoint molecules

including programmed cell death-1 (PD-1), programmed cell
death ligand 1 (PD-L1), and cytotoxic T-lymphocyte antigen 4
(CTLA-4),11 many of which are regarded as putative biomarkers in
clinical practice.
Considering the complexity of the tumor microenvironment,

single-cell RNA sequencing (scRNA-seq), which reveals compre-
hensive transcriptome profiling at single-cell resolution with an
unbiased catalog of cellular diversity, is a promising tool to
extensively investigate the immune heterogeneity in the tumor
microenvironment.1,12 Compared with bulk sequencing which
renders averaging of the signals,13 scRNA-seq is uniquely poised
to interrogate specific cellular subpopulations and states. How-
ever, existing studies have mainly focused on stromal cells and
cancer cells in the TME, as exemplified by Lambrechts and co-
workers elucidating the heterogeneous nature of stromal cells in
the lung cancer TME.12 However, Guo and colleagues have
characterized the T-cell landscape by single-cell sequencing.1 Yet,
the dynamics and molecular features of the immune landscape in
lung cancer at single-cell resolution remain largely uncharted,
let alone the details of the distinct immune atlases between LUAD
and LUSC.
To bridge this gap, in this study, we first sought to provide an

immune cellular atlas for lung cancer with a comparison between
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LUAD and LUSC. We conducted scRNA-seq on 40 samples of
matched tumor and adjacent normal tissues from 19 NSCLC
patients (LUAD: n= 10; LUSC: n= 9), comprehensively character-
ized the transcriptomic features of immune cells, decoded
dynamic changes in cell percentage, and identified the hetero-
geneity of cell subtypes and intercellular interactions between
LUAD and LUSC. The current study could help explain the
difference in the two major NSCLC subtypes through the insights
into cellular composition, states and dynamics in the immune
microenvironment, and paved the way for the development of
future therapeutic targets in the TME for the lung cancer clinical
workflow.

RESULTS
High-resolution scRNA-seq revealed the immune landscape of
LUAD and LUSC
To characterize the immune landscape in NSCLC, a total of
40 samples of tumor and adjacent normal lung specimens (NL)
from 19 NSCLC patients (10 LUAD and 9 LUSC) were resected and
immediately processed to generate a single-cell suspension
enriched for viable cells, and the isolated live cells were used
directly. Subsequently, scRNA-seq was performed to investigate
the immune heterogeneity between the two subtypes of NSCLC
(Fig. 1a and Supplementary Fig. 1a). The clinical information and
sequencing metrics of these samples are appended in Supple-
mentary Table 1 and Supplementary Table 2, respectively. More
technical details, including the quality control criteria and filtering
steps, are presented in the Methods and Materials. Furthermore,
the dissociation-related genes FOS, FUN, and HIF1A, were all
expressed on the formalin-fixed paraffin-embedded (FFPE) tumor
samples. Thus they were retained in the subsequent analysis
(Supplementary Fig. 1b). CD45, as a pan-leukocyte marker, has
been used to define the leukocytes by multiparametric flow
cytometry.14 Thus, CD45+ cells among all obtained cells were
identified as immune cells in our study and selected for
subsequent analyses (Fig. 1a). In total, 72,475 immune cells,
encompassing 17,277 unique genes, passed quality control, with
38,169 cells from tumor tissues and 34,306 from adjacent normal
tissues, and none of these cells were patient- or disease-specific
(Fig. 1c and Supplementary Fig. 1c).
All immune cells were sorted into 9 cell types according to the

expression level of canonical marker genes as reported pre-
viously1,12 by using the dimensional reduction method of
t-distributed stochastic neighbor embedding (t-SNE),15 including
B cells, CD4+ T cells (CD4), CD8+ T cells (CD8), regulatory T cells
(Tregs), macrophages (Mφ), dendritic cells (DC), granulocytes
(Gran), mast cells and natural killer cells (NK) by well-recognized
marker genes (Fig. 1b and Supplementary Fig. 1e), with an average
of 3558 unique transcripts per cell type (Supplementary Fig. 1d).
All cell types were further validated and refined by SingleR
analysis.16 The common markers of each cell type are visualized as
a heatmap (Fig. 1d) and the top 20 marker genes of each cell type
are listed in Supplementary Table 3.
Next, we elucidated the fraction of immune cell types in

different disease types and each patient (Fig. 1e and Supplemen-
tary Fig. 1f). Based on comparisons of NL and tumor tissues of all
immune cells in each patient, B cells, Tregs, and mast cells were
predominant in tumor tissues, while NK cells and Gran were
prevalent in NL tissues, and each cell type included cells from
more than one patient (Fig. 1e). The fraction of immune cell types
in LUAD, NL(AD), LUSC, and NL(SC) tissues showed similar
distributions (Fig. 1e), but we also found that some cell types
varied significantly among these disease types, such as B cells,
Tregs, and mast cells (Supplementary Fig. 1f). To avoid the
influence of library size on the results, the frequency we calculated
was the proportion of each cell type in different tumor types. In
addition, mast cells, B cells, CD8 cells, and Tregs were also found

mainly derived from LUSC, while only Mφ and DC were dominated
by cells from LUAD (Fig. 1e and Supplementary Fig. 1f). Taken
together, our scRNA-seq analyses dissected the heterogeneity of
the immune landscape between LUAD and LUSC and showed that
LUSC might obtain higher immune heterogeneity than LUAD.

The significance of macrophages and lymphocytes contributed to
the immune heterogeneity of lung cancer subtypes
Investigation of the key factors that induce the immune
heterogeneity between LUAD and LUSC would provide a glimpse
of the different responses of lung cancer subtypes to immu-
notherapy.17 First, compared with adjacent tissues, although the
co-existence of some immune function-related genes, were co-
expressed in the two main cancer subtypes, the HLA-D family,
NKG7, GNLY, and immune-related gene FCGR3A were enriched in
LUAD, whereas LUSC distinctly expressed prognosis-related genes,
such as IGHG3, IGHG4, IGHG1 and IGKC (Supplementary Fig. 2a). In
addition, some genes presented cell type-specific expression, thus,
we further compared the overlapping DEGs between both
subtypes, and found that NK cells, Gran, and CD8 cells shared
more common dysregulated genes between LUAD and LUSC,
while DC, Tregs, CD4 cells, and Mφ had fewer overlapping genes
(Supplementary Fig. 2b). These results indicated the commonal-
ities and differences of immune signatures in the different lung
cancer subtypes.
To further unveil the role of these immune cells in their

microenvironment, we then investigated the immune cell type
composition and the DEGs in each cell type between LUAD and
LUSC. The compositions of B cells and mast cells from different
tissues of origin of treatment-naïve patients presented promi-
nent differences between the two cancer subtypes (P < 0.05,
Kruskal–Wallis tests) (Fig. 2a and Supplementary Fig. 2c), which
also shared the fewest overlapping genes (Fig. Supplementary
Fig. 2b). All immune cell types displayed cancer subtype-specific
features and functions (Fig. 2b, c, and Supplementary Fig. 2d),
and some immunoglobulin genes (IGKC, IGHG1, IGHG3, IGHG4,
and IGLC2) were upregulated in each cell type of LUSC tissues
compared with LUAD (Fig. 2b and Supplementary Fig. 2e), which
were reported to gradually increase in T cells from normal
tissues to the tumor and to metastasis in lung cancer.18,19 XIST
was upregulated in LUAD, which promoted lung cancer cell
growth. In addition, we noticed that the highly expressed DEGs
such as SPP1, CD8A, and CD8B in LUSC were mostly expressed in
lymphocytes and myeloid cells, while those highly expressed in
LUAD were mostly enriched in myeloid cells, especially Mφ, as
exemplified by FN1, LTA4H, OLR1, and FBP1 (Fig. 2b). As shown in
Fig. 2c and Supplementary Fig. 2d, the genes specifically
expressed in lymphocytes, except for B cells, were mostly
involved in T-cell activation, cytokine response and stem cell
differentiation, while myeloid cells, including Mφ, DC, and Gran,
expressed genes involved in lipid metabolism-related pathways
and immune system regulation, thus culminating in the
difference of the immune microenvironment between LUAD
and LUSC.
Highly expressed genes in tumors also contributed significantly

to the heterogeneity between LUAD and LUSC (Fig. 2d and
Supplementary Fig. 2f). Among these genes, MARCO, a scavenger
receptor on the cell surface of Mφ and MARCO+Mφ that
enhances regulatory T (Treg) cell proliferation and IL10 production
while diminishes CD8 T-cell activities,20 was highly expressed in
Mφ; ALOX5AP is a 5-lipoxygenase-activating protein that could
specifically influence pulmonary function,21 and HLA-DRB5,
belonging to the HLA class II molecule, was highly expressed in
both Mφ and Tregs of LUAD; While IGKC, previously reported to be
expressed in stroma-infiltrating plasma cells and to serve as a
prognostic marker in NSCLC,22 was validated in our study to be
highly expressed in all immune cell types of LUSC. SPP1, which
mediates Mφ polarization and lung cancer evasion, was shown to
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be a specific marker in Mφ of LUSC (Fig. 2b).23 Furthermore, the
high expression of MARCO, ALOX5AP and SPP1 were all associated
with a poor prognosis in LUSC (Fig. 2e). Immunofluorescence
staining also showed the high expression of ALOX5AP and MARCO
in immune cells in LUAD and SPP1 and IGKC in LUSC (Fig. 2f).

To further dissect the immune heterogeneity of gene regula-
tion, the single-cell regulatory network inference and clustering
(SCENIC) analysis for DEGs was performed to assess the
differences in the expression levels of transcription factors (TFs)
between LUAD and LUSC.24 Further exploration showed that
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NFE2L2, CEBPB, SPI1, and ELF1 were found specifically in LUAD and
were mainly enriched in Mφ, while BHLHE40, JUN, ATF4, STAT3, and
XBP1 were merely activated in LUSC (Fig. 2g and Supplementary
Fig. 2g). PPI network analyses of these TFs and targeted DEGs also
revealed similar results. BHLHE40, SPI1, and ELF1 shared many
target DEGs from LUAD and LUSC (Fig. 2h). These results
highlighted that the Mφ and lymphocytes drove the immune
heterogeneity of lung cancer. Recent studies on NSCLC also
showed that Mφ could induce epithelial-mesenchymal transition
(EMT), shape the tumor microenvironment, promote tumor
invasiveness, and enhance the Treg cell response and tumor
immunity.25 Tregs could interact with Th17-like cells to balance
the adaptive immune response to tumor antigens.26 Thus, Mφ and
lymphocytes might play a potentially crucial role in the dynamics
of the immune heterogeneity in cancer biology.
Together, we observed distinct immune cell components in the

immune microenvironment between both subtypes of lung
cancer and identified potential prognostic factors of MARCO,
ALOX5AP, and SPP1. We further speculated that the Mφ and
lymphocytes were the dominant immune cells that accounted for
the differences.

Cell–cell interaction analysis targeting the key cells with different
levels of communication in LUAD and LUSC
TME is characterized by complex cell–cell interactions among
different cell populations that ultimately modulate tumor growth
and lead to local invasion/dismal metastasis. To interrogate
putative cell–cell interaction heterogeneity in lung cancer
subtypes, we deployed a set of immune-related ligand–receptor
(L–R) pairs to gain insights into regulatory relationships among all
immune cell types identified in our study.27 A total of 2612 L–R
pairs were predicted to mediate interactions in all immune cells
from tumor tissues. And in line with the DEG analysis, Mφ actively
interacted with other cell types through a large number of
interaction molecular pairs in both LUAD and LUSC (Fig. 3a). Mφ
significantly interacted more strongly with cell types of DC, Gran,
CD8 cells, B cells and Tregs in LUAD patients and with DC, Gran,
NK cells in LUSC patients (Supplementary Fig. 3a). Mφ also
harbored the largest numbers of ligands and receptors (Supple-
mentary Fig. 3b). Correlation analyses between Mφ and all other
cell types based on the expression data of the top 5 marker genes
of each cell type from the TCGA dataset, with P < 0.001 in strongly
interacting cell types, showcased that Mφ from LUSC had a
stronger correlation with DC (R2: 0.80 vs. 0.75), Tregs (R2: 0.83 vs.
0.68) and CD4 cells (R2: 0.71 vs. 0.60) (Supplementary Fig. 3c, d)
than Mφ from LUAD.
By comparing the attraction strengths of L–R pairs27,28 among all

cell pairs, we further uncovered hundreds of specific molecular
pairs mediating cell–cell interactions in these cell pairs. The
majority of these L–R pairs were shared in NSCLC subtypes, but
some distinct L–R pairs were also identified in LUAD and LUSC (Fig.
3b). In LUAD, TNFRSF1A-GRN and C5AR1-RPS19 were enriched
among DC, Gran, and Mφ interactions. These genes, except for
RPS19, were all highly expressed in Gran or Mφ (Fig. 3c) and GRN
was also found enriched in LUAD tissues (Fig. 3d). The TNFRSF1A-
GRN pair could directly bind to disturb the TNFα-TNFR interaction,29

while the C5AR1-RPS19 could promote tumor growth by facilitating
the recruitment of tumor-infiltrating myeloid cells to tumors.30 In
addition, the specific FN1-a4b7 and FN1-a4b1 receptor-ligand
complexes indicated the existence of functional interactions
between Mφ and all other immune cells (Fig. 3b and Supplemen-
tary Fig. 3e). Thus, we suspected that the level of FN1 might be a
significant regulatory factor in the immune microenvironment for
LUAD patients. In LUSC, Gran cells expressed higher levels of
PLAUR, which has been identified as a valuable immune signature
with prognostic power in esophageal squamous cell carcinoma.31

And the ligand a4b1 was found mainly in DC and Mφ (Fig. 3b and
Supplementary Fig. 3f). ALOX5-ALOX5AP was involved in the
interaction of Mφ, Gran, and DC. CD44-HBEGF and ANXA1-FRR1,
both related to tumor progression, were also exclusive L–R pairs
programming CD4, CD8, DC, Gran, and Mφ interactions (Fig. 3b
and Supplementary Fig. 3f). These genes were all expressed in
Gran, Mφ and mast cells. CD44 and ANXA1 were also expressed in
CD4 and CD8 cells (Fig. 3c), and were especially highly expressed in
LUAD (Fig. 3d).
To better characterize potential signaling crosstalk between DC,

Gran and Mφ, we then subjected the tumor sections from LUAD
and LUSC patients to perform multicolor immunohistochemistry
(IHC) staining. In LUAD, multicolor IHC staining showed the
physical juxtaposition of DC (CD1C+) and Mφ (CD68+) cells, and
the molecular pair TNFRSF1A-GRN was also expressed in the two
cell types, substantiating the interaction of the DC and Mφ on
TNFRSF1A-GRN (Supplementary Fig. 3e). The analogous result was
also observed for FN1-a4b1 in DC and Mφ (Supplementary Fig. 3e).
In LUSC, we observed the interactions of ALOX5-ALOX5AP and
CD44-HBEGF molecular pairs in DC (CD1C+) and Gran (S100A8+)
cells after multicolor IHC staining (Supplementary Fig. 3f).
Analyses of the biological functions revealed that interactions

related to IL-17 signaling as well as PD-L1 expression and the PD-1
checkpoint pathway, including CXCL10-CXCR3, CXCR3-CCL20, IL1
receptor-IL1B, IL1 receptor inhibitor-IL1, CD28-CD86, and PDCD1-
FAM3C, were more abundant in LUSC, while the interaction pairs
in T-cell receptor signaling pathway such as CD40-CD40LG, TNF-
ICOS, and TNF-TNFRSF1B, and those related to angiogenesis
signaling, exemplified by VEGFA-FLT1 and ADRB2-VEGFB, were
more abundant in LUAD than in LUSC (Fig. 3e).
Taken together, immunomodulatory signaling interactions were

more abundant in LUAD than LUSC. And those interactions in
LUAD were more enriched in therapeutic and prognostic
responses, indicating heterogeneity and plasticity of the tumor
ecosystem that differed according to the tumor stages. And Mφ
may play a role in the inflammation and infiltration during the
progression of the tumor, which was consistent with previous
studies.32–34

Smoking reshaping the immune landscape of LUAD tissues
Tobacco smoking remains the most established cause of lung
carcinogenesis, and the occurrence of LUSC is strongly associated
with smoking, while the diagnoses of non-smoking patients have
increased drastically in LUAD recent years, especially among
women.7,35 Thus, we further examined the effects of smoking as a
risk factor on the immune microenvironment of lung

Fig. 2 Distinct gene expression patterns of immune cells in the heterogeneity in LUAD and LUSC. a t-SNE plot showing the cell type
distribution of LUAD and LUSC. b The heat map showing the expression of signature genes of each cell type varies between LUAD and LUSC
(|logFC| ≥ 0.25 and adjusted P-value ≤ 0.05). The color indicates the effect size. c Different colored bar plots showing differences in GO
function pathways enriched per cell type by GSEA based on the DEGs between LUAD and LUSC. d Violin plots comparing the expression levels
of MARCO, ALOXAP5, IGKC, and SPP1 in all immune cells between LUAD and LUSC. The P-values by Wilcoxon tests are shown. e Overall survival
curves of TCGA LUSC data. f Multicolor IHC staining in LUAD and LUSC tissues for verifying the expression of cancer subtype specific genes in
immune cells (scale bar = 20 μm). g Heat map of gene expression regulation by transcription factors using SCENIC of all the immune cells for
different sample origins. The yellow text represents the specific TFs in LUAD, and the green text represents the specific TFs in LUSC. h TF-gene
regulation networks between different genes of all immune cells in LUAD and LUSC
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adenocarcinoma and found that patients with a smoking history
had more DC, Mφ and mast cells, while those with a non-smoking
history enriched had more Gran, CD4 and CD8 cells (Supplemen-
tary Fig. 4a–c). In regard to DEGs, the oncogenic gene XIST, the
HIF-2α target gene SCGB3A1, and tumor necrosis factor (TNF)-

targeted gene HSPA6 were highly expressed in cells from the non-
smoking group, while DDX3Y, SCGB3A2, and CCL18 were over-
expressed in the cells from the patients with a smoking history,
particularly in Mφ (Supplementary Fig. 4d). CCL18 was previously
reported to be released from tumor-associated Mφ in breast
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cancer, promoting angiogenesis and tumor progression,36 and we
deepened the understanding of this factor in lung cancer.
Functional analyses of DEGs between the smoking and non-

smoking groups showed that these genes were mostly from
lymphocytes, participating in interleukin-related signaling pathways.
In contrast, the genes from myeloid cells were related to T-cell
activation, differentiation and cytokine pathways (Supplementary Fig.
4e). GSEA also showed that the genes enriched in the Notch, cytokine
and Fc_epsilon_RI signaling pathways were abundant in the smoking
group (Supplementary Fig. 4f), while the genes upregulated in non-
smoking group could activate EGFR tyrosine kinase inhibitor (EGFR-
TKI) resistance, ErbB (contributing to resistance to radiation and
chemotherapy in cancer), PPAR, Wnt pathways and ECM-receptor
interactions (a known pathway contributing to the non-smoking lung
cancer) (Supplementary Fig. 4g).
Therefore, we speculated that the immune heterogeneity cast a

more significant impact on tumor progression and drug resistance
in non-smoking patients than in smoking patients. Mφ and
lymphocytes were the cellular bases of such difference.

Cytotoxic and effector dominant T and NK cells in the immune
heterogeneity of distinct lung cancer subtypes
T cells play a central role in immune responses to cancer.37 Currently
in clinical practice, PD-1/PD-L1 status and CD8+ TILs have been
suggested as appropriate measurements to predict different clinical
outcomes and inform immunotherapeutic strategies.38–40

We identified seven distinct cell subtypes by reclustering 15,853
CD4+ T cells (Fig. 4a, b, Supplementary Fig. 5a–d and Supplementary
Table 4) including naïve (CCR7+ SELL+), Effector (IFNG+ CD44+), Tregs
(IL2RA+ FOXP3+), exhausted (PDCD1+ LAG3+), memory (S100A4+

CD44+), activated (FOS+ JUN+) and γδT (TRGC1+ TRDC+) cells.
Specifically, 9,603 (60.58%) CD4+ T cells were obtained from tumor
tissues, of which 24.21% were from LUAD and 36.37% were from
LUSC tissues (Supplementary Fig. 5a). The distribution of CD4+ T cell
subtypes showed that the tumor tissues, compared to adjacent
tissues, exhibited an enrichment of Tregs cells and a decline of
memory cells. Furthermore, LUAD, compared with LUSC, had more
Effector and activated cells as well as fewer Tregs cells (Fig. 4b, c and
Supplementary Fig. 5a). Exhausted, Tregs and Effector cells obtained a
higher number of DEGs, revealing their important role of them in the
tumor immune environment (Supplementary Fig. 5b).
Notably, activated cells, the most enriched subtype in LUAD

(Supplementary Fig. 5a), expressed high levels of epithelial cell
markers, such as SFTPB and SCGB3A2, indicating anti-inflammatory
features (Fig. 4b). Further development trajectory analyses revealed a
similar trajectory between different tumor subtypes and was divided
into 3 paths: from the naïve or Effector cells to Tregs, memory and
exhausted cells, which was consistent with the previous studies41,42

(Fig. 4d, e and Supplementary Fig. 5c, d). Intriguingly, the naïve cells
were also expansive at the end state with exhausted cells, which may
be due to the higher expression levels of proliferative genes such as
MKI67 (Supplementary Fig. 5c, d). We also found the high expression
of ANXA1, CD52 and CCL5 as well as the depleted expression of AREG
and DNAJB1 at the beginning of the developmental trajectory (Fig. 4f).
For CD8+ T cells, ten subtypes were identified by subclustering

of 8735 CD8+ T cells43 (Fig. 4g, Supplementary Fig. 5e, f and

Supplementary Table 5): navïe T cells (CCR7+ SELL+), Effector
memory (CD44+ S100A4+ ANXA1+), memory (S100A4+ CD44+),
Effector (IFNG+ CD44+), GZMK+ Effector (GZMK+ CXCR6+), KLRC1+
Effector (KLRC1+ KLRD1+), cytotoxic (NKG7+ GZMA+ GZMB+),
exhausted (PDCD1+ HAVCR2+), proliferation (MKI67+ STMN1+),
and γδT (TRGC2+ TRDC+). The exhausted CD8+ T cells also were
characterized by the immune-checkpoint molecules (PDCD1,
HAVCR2, BTLA, TIGIT, and CTLA4), and T cell exhaustion-
associated transcription factors TOX (Supplementary Table 5).
Subsequently, we found that the NL tissues obtained more
Effector memory and γδT cells, while tumor tissues had more
memory and navïe T cells (Supplementary Fig. 5e). The fractions of
CD8+ T cells in two lung cancer subtypes were comparable with
that in each other (Fig. 1e), but the Effector cells were enriched in
LUAD, and cytotoxic, exhausted, GZMK+ Effector as well as
KLRC1+ Effector cells were abundant in LUSC (Fig. 4h and
Supplementary Fig. 5e). The developmental trajectory of CD8+
T cells suggested a multiple branched structures (Fig. 4i, j and
Supplementary Fig. 5g): naïve T cells were the root, to diverse end
states of a branch, including exhausted, cytotoxic, proliferation,
GZMK+ Effector and KLRC1+ Effector cells, while the Effector
memory cells were also arranged at the trajectory start state.
Interestingly, the naïve T cells could also be an end state, which
was similar to the CD4+ T cells. Furthermore, the trajectory of
CD8+ T cells in LUAD was markedly different from that in LUSC,
with the proliferation at the end state in LUAD, and cytotoxic,
GZMK+ Effector cells in LUSC (Fig. 4i). We also found that during
developmental trajectory, CCL4, CCL4L2, GZMK, and CMC1 were
more abundant at the end state while the expression levels of
ANXA1, CRIP1, EMP3, and GZMB were reduced (Fig. 4j), among
which CCL4 was regarded as a crucial proinflammatory cytokine in
lung.44

Reclustering 20,584 NK cells revealed 12 subclusters (Fig. 4k–m
and Supplementary Fig. 5h): C0-C11, and a distinct sub-cluster
composition was observed between LUAD and LUSC. The
percentage of each cell subcluster revealed that C0 and C1 cells
were enriched in LUAD tissues, while C2 and C4 cells were
abundant in LUSC tissues (Fig. 4l). C0 cells and C4 cells both highly
expressed FCGR3A (CD16), while C0 cells were also characterized
by the expression of the cytotoxic marker TYPOBP and C4 cells
expressed more TRDC. Furthermore, the proinflammatory factor
CCL4L2 was more enriched in C2 cells than C1 cells (Fig. 4m). We
also noted that the tumor enriched C5 cells were characterized by
the expression of resting NK cells markers, such as AREG, XCL1, and
KLRC1, while the C9 cells, which expressed the CX3CR1 and NKG7,
were abundant in normal tissues.
Taken together, reclustering of the lymphocytes showed

distinct cell compositions the two lung cancer subtypes, and the
effector, cytotoxic cells contributed to their specific immune
response against tumor.

Distinctive macrophages sub-cluster compositions promoting
lung cancer phenotypes
The important role of Mφ in NSCLC development has been
established, but the distinct functions they harbored between
LUAD and LUSC remain largely uncharted. A previous study

Fig. 3 Ligand–receptor interactions between different immune cell types in LUAD and LUSC. a Chord plot summarizing interconnections
between different immune cell types from LUAD and LUSC. Lines represent potential interconnections between cell types, with line thickness
proportional to the number of ligand–receptor pairs expressed in the connected cell types. b The molecular interaction pairs of different
immune cell type interaction pairs in LUAD and LUSC, and the molecule pair marker in red showing the LUAD and LUSC specific molecular
pairs. c Dot plot showing the expression of the tumor subtype specific ligands and receptors in each cell type. The color and size indicate the
effect size. d The expression of specific ligands and receptors in LUAD and LUSC. Bubble size represents the ratio of LUAD/LUSC based on the
expression. e, f Dot plot showing the mean expression level and percentage of selected interaction pairs involved in IL-17, T-cell receptor, PD-
L1 expression and the PD-1 checkpoint pathway and angiogenesis. The expression of each gene was considered separately for each
sample source
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indicated that Mφ were further divided into three major
groups, namely FABP4hi, SPP1hi, and FCN1hi, and played diverse
roles in fibrotic lower lobes in idiopathic pulmonary fibrosis
(IPF).45 Here, to extensively investigate the heterogeneity of
Mφ between the two NSCLC subtypes, 11,016 Mφ were
reclustered into four discrete subpopulations based on
signature genes, which were defined as FABP4, FCN1, SPP1,

and SELENOP-Mφ (Fig. 5a–c). However, the expression of the
each marker was not exclusively in a unique cluster, as shown
in the violin plot (Fig. 5c). Specifically, we observed that 1407
FCN1 (19.5%), 2873 SPP1 (39.9%), 2562 FABP4 (35.6%) and 364
SELENOP (5%) Mφ from LUAD tissues, while LUSC samples
contained 1381 FCN1 (36.2%), 1698 SPP1 (44.6%), 278 FABP4
(7.3%), and 453 SELENOP (11.9%) Mφ. Notably, FABP4-Mφ
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mainly existed in LUAD, and SPP1-Mφ were more enriched in
LUSC (Fig. 5b, d).
Notably, elevated expression levels of production of

immunoglobulin-related genes IGHG4, IGKC, IGLC2, IGHG3, and
PLAU were detected in the SPP1-Mφ cluster, suggesting the
proinflammatory and anti-tumor functions of this cluster in lung
cancer (Supplementary Fig. 6a). While the binding-related
molecules, including S100A8, ANXA1, VCAN, EMP1 and AREG, were
primarily expressed in the FCN1-Mφ cluster (Supplementary Fig.
6a). And the FABP4-Mφ enriched the genes closely associated with
fatty acids and obesity, including FABP4, CES1, HPGD and IGFBP2,
which was consistent with a previous study46 (Supplementary Fig.
6a). Furthermore, the novel cluster of Mφ we identified, which was
named as SELENOP-Mφ, highly expressed SELENOP. And SELENOP
has been shown to contribute to the local antioxidant capabilities,
thus protecting against inflammatory tumorigenesis.47 In our
study, the SELENOP-Mφ cluster also highly expressed FOLR2, IL32,
CD3D and LTC4S, indicating their intimate correlation with
lymphocyte-related function (Supplementary Fig. 6a).
Survival analysis of each macrophage subcluster-specific

markers based on the transcriptomic data from the TCGA
database (513 LUAD and 501 LUSC) showed that increased AREG,
IGHA1, MMP14, PLAU, S100A8 and decreased HPGD were inversely
correlated with the overall survival of LUSC patients (Supplemen-
tary Fig. 6b). Among these genes, MMP14, PLAU, and IGHA1 were
specifically upregulated in the SPP1-Mφ, suggesting the role of this
cluster in the LUSC tumorigenesis (Supplementary Fig. 6a). The
increased levels of SELENOP and FOLR2, markers of the SELENOP-
Mφ cluster, may help explain the good prognosis of LUAD patients
(Supplementary Fig. 6a, c). Hence, we speculated that the
SELENOP-Mφ cluster might play an antitumor role in LUAD.
To deeply dissect the role of each Mφ subcluster in the

development of lung cancer, we interrogated the functions of
these cell types by the single sample Gene Set Enrichment
Analysis (ssGSEA) score based on the signatures of M1, M2,
angiogenesis and phagocytosis.48 The LUAD enriched subclusters
FABP4-Mφ and FCN1-Mφ were closely associated with phagocy-
tosis, which is important in immune responses, while the
dominant cluster in LUSC, SPP1-Mφ exhibited an enrichment of
genes related to angiogenesis. Interestingly, all functional types
had a high enrichment score in our newly identified cluster
SELENOP-Mφ, indicating the importance of this cluster in tumor
progression (Fig. 5e). The GO analysis also found that the
participation of the SPP1-Mφ cluster in protein metabolism and
cytokine-related pathways. By comparison, leukocyte proliferation,
cell differentiation and lipoprotein metabolism were activated in
the FCN1-Mφ, and lymphocyte activation and nucleoside phos-
phate metabolism were activated in the FABP4-Mφ cluster. In
addition, the SELENOP-Mφ participated in peptide metabolism,
protein transport and cytokine secretion (Fig. 5f). Further analysis
of DEGs between LUAD and LUSC showed that the SCGB3A2 and
SPINK1, which were overexpressed in Mφ of smoking patients

from LUAD (Supplementary Fig. 4d), were augmented in FCN1-Mφ
(Fig. 5g and Supplementary Fig. 6d). Interestingly, by compared
with LUAD, some antibody transcripts, such as IGHG3, IGHA1,
IGLC2, IGKC, IGHG4, and IGLC3, were highly expressed in the SPP1-
Mφ from LUSC (Fig. 5g, and Supplementary Fig. 6d, e), and
immunofluorescent staining also showed that these genes were
highly expressed in Mφ in LUSC tissue (Fig. 5h). Therefore, we
concluded that Mφ subclusters showcased diverse functional
states between LUAD and LUSC.
Together, we have extensively explored Mφ and discovered a

novel subcluster, SELENOP-Mφ, in addition to three other reported
subclusters, which each played a distinct role in LUAD and LUSC.

Developmental trajectory defined distinct states of Mφ associated
with the tumor development
To discern how changes in macrophage subtype-specific gene
expression contribute to the tumor immune heterogeneity
between LUAD and LUSC. We applied Monocle2 to reconstruct
the pseudotemporal trajectory inference of all acquired macro-
phages (Fig. 6a, b and Supplementary Fig. 7a). The Mφ trajectory
yielded five developmental hierarchies (State 1–5) where the
FABP4-Mφ cluster was located at the starting point of cell
evolution on this map (Fig. 6a, b, Supplementary Fig. 7a, b), and
suggested a binary branched structure (Fig. 6b): FABP4-Mφ as the
root, SPP1-Mφ at the end state of branch 1, and SPP1-Mφ and
FCN1-Mφ clusters at the end state of branch 2. Notably, the novel
subcluster SELENOP-Mφ existed throughout the developmental
trajectory and accumulated mainly at the end of branch 2 (Fig. 6b
and Supplementary Fig. 7a). The developmental trajectory of Mφ
in LUAD and LUSC showed obvious differences at the start state,
suggesting the importance of FABP4-Mφ in the progression of
tumorigenesis (Fig. 6b and Supplementary Fig. 7b). We also
identified 399 differentially expressed genes that exhibited
dynamic expression during the pseudotime of branch 1, which
was a subset of those in branch 2 (Supplementary Table 6). And in
the State 2, which was the terminal state of branch 2, enriched
more cells from NL(AD) than NL(SC) tissues (Supplementary Fig.
7a, b), suggesting that branch 2 may contribute more to the
slightly divergent developmental trajectories of Mφ in the
adjacent tissues of the two NSCLC subtypes.
Previous studies have indicated that the Mφ promote cancer

initiation and malignant progression, and are more correlated with
LUSC than LUAD.12,49 In this study, we found that some
chemokine-related molecules, including CXCL2, CCL3, and CCL3L1,
were concentrated in states 1, 3, and 5, which enriched SPP1-Mφ
and were basically a half-half mixture of LUAD and LUSC at branch
1 (Fig. 6c, d and Supplementary Fig. 7b). In branch 2, some
immune checkpoint factors, such as TNFSF13B, TNFRSF1B, and
TNFRSF14 were upregulated in state 1, 3, 4 and 5 (Fig. 6e).
Additionally, the genes specifically enriched in LUSC included the
immune function-related molecules of MMP9 and MMP14,
immunoglobulin response checkpoints of IGHG4, IGLC2 and IGHA1,

Fig. 4 Re-clustering and developmental trajectory of T and NK cells in LUAD and LUSC. a Clustering of 15,853 CD4+ T cells from all samples.
Each dot corresponds to a single cell, colored according to cell type. b Dot plot showing the expression of top 5 marker genes in each CD4
sub-cluster. The color and size indicate the effect size. c Percentages of each immune cell type in LUAD, LUSC, NL(SC), and NL(AD). Y-axis:
Average percentages of samples across the four groups. Groups are shown in different colors. Each bar plot represents one subtype. Error bars
represent ± SEM. All differences with P < 0.05 are indicated; Kruskal–Wallis rank test was used for analysis. d, e Developmental trajectory of
CD4+ T cells inferred by monocle, colored by cell subtype and sample group. f Representative gene expression levels of different marker
genes. The size of each dot represents relative expression levels. g Clustering of 8735 CD8+ T cells from all samples. Each dot corresponds to a
single cell, colored according to cell type. h Percentages of each immune cell type in LUAD, LUSC, NL(SC), and NL(AD). Y-axis: Average percent
of samples across the four groups. Groups are shown in different colors. Each bar plot represents one subtype. Error bars represent ± SEM. All
differences with P < 0.05 are indicated; Kruskal–Wallis rank test was used for analysis. i Developmental trajectory of CD8+ T cells inferred by
monocle, colored by pseudotime and cell subtype split by sample group. j Representative gene expression levels of different marker genes.
The size of each dot represents the relative expression levels. k Clustering of 20,584 NK cells from all samples. Each dot corresponds to a single
cell, colored according to cell type. l Average proportion of each NK subtype between LUAD, LUSC, NL(SC), and NL(AD). m Dot plot showing
the expression of classic marker genes in each subtype
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tumor angiogenesis molecules of CXCL8 and VEGFA, and the
myeloid suppression cell molecules of THBS1 and IL1B (Fig. 6e, f),
while in LUAD, some chemokine-related molecules, including
CCR2, CCL2, and FPR2, were increased as well as the T-cell
activation factor CD44 and the T cell activation inhibitor ANXA1
were highly expressed during the developmental trajectory (Fig.
6c, e, f). Taken together, these results suggested that the
differentiation trajectory of Mφ conducted multiple immune
functions in the progression of both NSCLC subtypes, but was
more evident in LUSC.

Single-cell regulatory network inference and clustering (SCENIC)
analysis was performed to assess the differences in the expression
levels of transcription factors (TFs) in the process of Mφ
differentiation.24 The number of TF target genes is listed in
Supplementary Table 7. PPI network analysis in branch 1 and
branch 2 revealed that the TF target genes enriched in branch 1
were CXCL2, CCL3, SPP1, and ICAM1, while those enriched in
branch 2 included TNFRSF1B, TNFSF13B, and VEGFA (Fig. 6g, h).
Upon further analysis, although LUAD and LUSC shared TFs, they
also exhibited exclusive TFs (Supplementary Fig. 7c). For instance,
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SPI1 was found in both LUAD and LUSC, while IRF1 in LUAD and
IRF7 in LUSC were specifically functioned, both of which might
serve as a single biomarker for predicting prognosis and
metastasis in NSCLC50 (Supplementary Fig. 7c).
Collectively, we substantiated that Mφ had a more crucial role in

the progression of LUSC, and speculated that the immune
microenvironment in LUSC might be more complex than that
in LUAD.

Unique roles of Mφ subclusters in the immune heterogeneity of
lung cancer subtypes revealed by extensive analyses of cell–cell
interactions
Having established that Mφ subclusters played different functions in
NSCLC subtypes, and lymphocytes also were identified to contribute
to the heterogeneity between LUAD and LUSC, we further
investigated the interaction of each Mφ subcluster with

lymphocytes. Multiple differential cell interaction pairs were
predicted in the two lung cancer subtypes by the R package
CellChat51 (Fig. 7a and Supplementary Fig. 8a). In LUAD, the
interactions between FABP4-Mφ and SELENOP-Mφ, SPP1-Mφ, CD4
cells, CD8 cells, Tregs and NK cells were stronger than those in LUSC,
while the SELENOP-Mφ and FCN1-Mφ obtained enhanced interac-
tions with CD4 and CD8 cells in LUSC (Supplementary Fig. 8a).
Regarding the molecular interaction pairs, more and stronger

overexpressed ligands and receptors were identified in LUAD than
LUSC (Supplementary Fig. 8b). Chemokine-related pairs, such as
CCL3-CCR1, CCL3-CCR5, and CCL5-CCR1, were more activated
between SELENOP-Mφ/SPP1-Mφ and CD8 cells in LUSC. By
contrast, the FN1-related molecular pairs, including FN1-CD44 (a
marker of cancer stem cells) and FN1-(ITGAV+ ITGB1), were
prompted between SELENOP-Mφ/SPP1-Mφ and FABP4-Mφ/FCN1-
Mφ/CD4/CD8 cells in LUAD (Fig. 7b). Notably, the human
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leukocyte antigen genes of HLA-A/B/C/E were more closely
interacted with the cytotoxic T lymphocyte (CTL) signature CD8B
of these cell pairs in LUAD, but with CD8A in LUSC (Fig. 7b).
Then, we predicted the differential signaling pathways and

projected them onto a two-dimensional manifold according to

their functional similarity (Fig. 7c and Supplementary Fig. 8c). The
various pathways were clustered into 4 groups: Cluster1 to
Cluster4, and the signaling pathways belonging to Cluster1 were
mainly from LUAD, such as UGRP1, TNF, and HGF. We also
identified some signaling pathways enriched in LUSC, including
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CSF3 (activation of inflammation), TIGIT and VEGF (Fig. 7c and
Supplementary Fig. 8c). The MHC-II signaling pathway, which is a
predictive biomarker for sintilimab plus chemotherapy in the first-
line treatment of locally advanced or metastatic NSCLC, was
activated in the Mφ subtype communication with NK cells in LUSC,
and with Tregs in LUAD (Fig. 7d). And the SPP1 pathway showed
greater cell interaction between the SPP1-Mφ cluster and NK cells
in LUSC than in LUAD (Supplementary Fig. 8d). The COLLAGEN
and the metastasis-related signaling pathway FN1 in LUAD,
activated the communication between SPP1-Mφ and FCN1-Mφ/
FABP4-Mφ/SELENOP-Mφ cluster (Fig. 7d and Supplementary Fig.
8d). The distinct pathways in LUSC, such as TIGIT and cell
proliferation related LCK, enhanced the interaction between NK
cells and SELENOP-Mφ, SPP1-Mφ clusters (Fig. 7d). Interestingly,
some incoming signaling pathways were found to be specific to
one subtype of lung cancer, as exemplified by HGF (a new
highlight in the treatments of lung cancer), KIT (activating the JAK/
STAT and PLC/PKC signaling pathways) in LUAD, and the CSF3 and
CDH5 in LUSC (Supplementary Fig. 8e).
As a result, we hypothesized that Mφ might interact with T cells

through ligand–receptor pairs, which are crucial in the tumor
progression and the formation of immune heterogeneity between
LUAD and LUSC. The connections of the FABP4-Mφ cluster and
CD8, CD4 cells were more prevalent in LUAD, while interactions of
SPP1-Mφ, FCN1-Mφ clusters and CD8, NK cells were enriched in
LUSC. SELENOP-Mφ, as a novel cluster, played key roles in both
LUAD and LUSC, as revealed by our cell–cell interaction analyses.

DISCUSSION
In the present study, we have depicted a large compendium of a
high-resolution single-cell immune landscape in NSCLC, and
identified significant differences in the immune microenviron-
mental signatures between LUAD and LUSC. We revealed that Mφ
and lymphocytes contributed significantly to the immune hetero-
geneity between two major subtypes of NSCLC patients. These
findings can serve as a valuable reference for further explorations
to obtain detailed biological insights and to develop new immune
checkpoints or therapeutic targets.
Further exploration of lymphocytes demonstrated the key roles

of cytotoxic and effector T and NK cells in the immune landscape
of NSCLC subtypes. Reclustering Mφ identified four distinct
functional subclusters, and uncovered their specific cellular
interactions with lymphocytes in the two tumor subtypes.
Importantly, we identified a novel lymphocyte-related subcluster
named SELENOP-Mφ which highly expressed FOLR2, IL32, CD3D,
and LTC4S. Through survival analyses based on established TCGA
dataset, we hypothesized that the SELENOP-Mφ cluster might play
an antitumor role in LUAD.
In this study, Mφ cells, with a very high number of DEGs, had

the second fewest genes shared in LUAD and LUSC, playing a
crucial role in a comprehensive portrait of the immune hetero-
geneity in cancer biology. Generally, Mφ in the two NSCLC
subtypes showed similar but slightly divergent developmental
trajectories in tumor progression. It was plausible that Mφ
conducted more immune functions in the progression of LUSC

compared than in LUAD. Furthermore, among the Mφ subtypes,
the dominant subclusters were FABP4-Mφ in LUAD and SPP1-Mφ
in LUSC. FABP4, previously was reported in breast cancer to be a
functional marker in macrophages52, and highly expressed SPP1 in
macrophages would contribute to lung fibrosis.45 Our current
study supplemented the roles of these two biomarkers in
macrophages in shaping the heterogeneity between LUAD
and LUSC.
Mφ function essentially in shaping the tumor microenvironment

(TME), tumor immunity and response to immunotherapy, which
makes them a valuable target for cancer treatment.25,50 Our study
presented a heterogeneous nature of the Mφ in the lung cancer
setting, and identified that the Mφ might have divergent effects
according to their different subsets, either pro- or anti-tumor,
which cast doubt on the M1/M2 Mφ polarization system. Mφ
phenotypes can be more complex, the potential use of which as
potential biomarkers or treatment targets should be further
explored. In survival analyses, enriched ARG, IGHA1, MMP14, PLAU,
S100A8 and diminished HPGD in LUSC, as well as decreased
SELENOP and FOLR2 in LUAD were all significantly correlated with
a worse survival in NSCLC patients.
Moreover, we found that the function of each cluster in Mφ was

regulated by unique TFs in LUAD and LUSC patients, and the
majority of TFs were significantly activated in SPP1-Mφ and FABP4-
Mφ clusters (Fig. 6e). According to previous researches, TFs, along
with mRNAs, miRNAs, and proteins, constitute the interaction and
regulatory mechanisms of NSCLC progression. TFs of FOXM1 and
MYBL2 were overexpressed in tumors and were associated with
the dysregulation of the cell cycle and enhancement of cell
proliferation in NSCLC.53,54 To conclude, we supported the
regulatory roles of TFs and specified the influence on two Mφ
clusters.
In our study, we clarified the role of a specific Mφ cluster: the

SPP1-Mφ cluster. We identified that this cluster highly expressed
immunoglobulin-related genes, such as IGHG4, IGKC, IGLC2, IGHG3,
and PLAU, as well as tumorigenesis-related genes like MMP14,
PLAU, and IGHA1. In the cell–cell interaction analyses, MIF-
TNFRSF14, SPP1-CD44, and SPP1-PTGER4 were all identified in the
SPP1-Mφ cluster. The role of the SPP1-Mφ cluster was established
in both LUAD and LUSC patients, especially in the LUSC cohort.
According to previous studies, the SPP1+ TAMs are closely related
to cancer-associated endothelial cells and fibroblasts, thus
modulating the tumor microenvironment. This role has been
investigated in lung cancer, colorectal cancer, and breast
cancer.25,55 The current study further illuminated the distinct
impact of the SPP1-Mφ cluster in LUSC, with larger fractions and
more active interactions with other immune cells.
Our study still has certain limitations worth noting. First, the

current techniques cannot distinguish the tumor tissues from the
tumor microenvironment, and resections conducted with the
human eye can mistake the boundaries between the two types of
components. In this case, the identification and statistical analyses
can be inaccurate. Second, we did not perform in-depth in vivo
and in vitro experimental validations of our findings. Therefore,
the actual clinical value of our results entails further explorations.
Third, the relationships between different Mφ subtypes and the

Fig. 7 Differential communication patterns between Mφ subclusters and lymphocytes in LUAD and LUSC. a Heatmap showing the differential
number and strength of interactions between Mφ subtypes and lymphocytes in LUAD and LUSC. The color represents the communication
probability. b Selected significant ligand–receptor pairs that contribute to the signaling sending between cell types from LUAD and LUSC. The
dot color and size represent the calculated communication probability and p values. The p values are computed from one-sided permutation
test. c Selected significant signaling pathways were ranked based on their differences in overall information flow within the inferred networks
between LUAD and LUSC. The top signaling pathways colored red are more enriched in LUAD, the middle ones colored black are equally
enriched in LUAD and LUSC, and the bottom ones colored green are more enriched in LUSC. d Chord plot showing inferred intercellular
communication network of MHC-II, Collagen, TIGIT and LCK signaling in LUAD and LUSC. Inner and outer bars showing autocrine and
paracrine signaling to Mφ subtypes and lymphocytes, respectively. Bar sizes are proportional to the number of cells in each cell group and line
width represents the communication probability
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potential linkages between the Mφ and B cells were not fully
investigated. Finally, as a retrospective study, the intrinsic bias was
inevitable.
The initial objective of our study was to examine the immune

cells in both tumors and adjacent tissues and to decode the
differences between LUAD and LUSC. In our study, high-resolution
single-cell RNA sequencing, differentially expressed genes (DEGs),
pseudotime, transcription factor, reclustering and SCENIC analyses
were the relevant tools and measurements that we adopted to
detect the various dimensions of gene expression variances. We
determined the roles of Mφ, described the properties of different
Mφ subtypes, found genetic points that might serve as treatment
targets, and explored the prognostic factors.
In the era of precision medicine, immunotherapy might be a

revolutionary treatment approach for malignant diseases like
NSCLC. Thus, assaying the immune environment of tumors and
depicting various subtypes of immune responses has become
imperative.56 Our study has provided a comprehensive depiction
of the NSCLC immune landscape at single-cell resolution, and
identified inter-subtype differences in the immune microenviron-
mental signatures. Future studies are required to clinically and
experimentally validate our findings in evaluating the immune cell
populations and their prognostic value in patients.

METHODS AND MATERIALS
Sample collection and patient characteristics
With approval from the Ethics Committee of West China Hospital,
Sichuan University, we collected tumor and adjacent normal
tissues from 19 pathologically diagnosed NSCLC patients (10
LUAD and 9 LUSC) during surgical resections, and rapidly digested
the tissues to obtain single-cell suspensions. All patients were
diagnosed with primary lung tumors and untreated. Their ages
varied from 48 to 80, with a median of 57. The stages of these
patients were determined by the 8th TNM Classification. Clinical
characteristics including age, sex, smoking status, pathological
subtype and stage are listed in Supplementary Table 1.

Preparation of single-cell suspensions
Freshly obtained resected tissues were rinsed with Hanks’
Balanced Salt Solution (HBSS) after the operation, subsequently
shredded on ice to smaller pieces with collagenase I/IV in HBSS,
and incubated for 30 min at 37 °C with manual shaking every
10min. The digested tissues were then passed through a 70-μm
nylon mesh filter, and the cell suspension were centrifuged at
500g for 5 min at 4 °C. After removing the supernatant, the pelted
cells were suspended in red blood lysis buffer, and next
resuspended in buffer (0.04%BSA+ PBS) after being washed with
HBSS. Cell suspensions, after depleting dead cells through flow
cytometry, were directly processed for single-cell RNA-seq,
following the manufacturer’s instructions. Alternatively, cell
suspensions were frozen in 20% Dimethyl Sulfoxide (DMSO) and
Fetal Bovine Serum (FBS). The cDNA library was constructed within
24 h.

Single-cell RNA sequencing
We mixed a single-cell suspension with 0.4% trypan blue dye at a
ratio of 9:1. Cells were counted using a Countess®II Automated Cell
Counter. The proportion of living cells was calculated and should
exceed 90% for quality control, and the proper concentration of
cells should be no less than 1000 cells/μL. We adopted short-read
long sequencing and microfluidic techniques to simultaneously
analyze the transcriptome expression profile of 500–10,000 cells in
each sample. PCR amplification was performed using cDNA as the
template. First, the cDNA enzyme was broken into fragments of
approximately 200–300 bp, and mixed with the sequencing joint
P5 as well as the sequencing primer R1, which was the
conventional process in traditional second-generation

sequencing. Finally, PCR amplification was performed. In this
way, we constructed a standard sequencing library.
The double-ended sequencing mode on the Illumina sequen-

cing platform was utilized to conduct our high-throughput
sequencing of constructed libraries. At the Read1 end, information
regarding the 16 bp barcode and the 10 bp UMI was used to
quantify the cell number and expression level. At the Read2 end,
the cDNA fragment served as the reference in genomic alignment
to determine the gene to which the mRNA corresponded to.
Libraries were sequenced on the Illumina NovaSeq 6000 platform
at West China Hospital, Sichuan University, Chengdu. On average,
each sample generated 200 Gb of raw data and a total of 3.9 T of
data were available.

Alignment and quantification
We obtained 40 samples from 19 individuals, and the raw gene
expression matrices were generated using CellRanger (version
3.0.1). Information was processed in R (version 3.6.0) using the
Seurat R package (version 2.3.4). We further selected high-quality
cells to be preserved, with the following criteria: 1) the number of
genes identified in a single cell ranged from 200 to 8000; 2) the
total number of UMI in a single cell was less than 50,000; 3) the
proportion of mitochondrial gene expression in a single cell, the
indicator of apoptosis-related cell condition, was less than 25%.
For the potential dissociation-related genes, such as FOS and FUN,
we first conducted immunohistochemistry on the formalin-fixed
paraffin-embedded (FFPE) tumor samples for these genes. If they
were not expressed on FFPE, we removed these genes in
subsequent analysis.

Visualization
In Seurat, t-SNE (t-distributed stochastic neighbor embedding), the
nonlinear dimension reduction method, was used to map high-
dimensional cellular data into a two-dimensional space, bringing
together cells with similar expression patterns and further
separating cells with different expression patterns further apart.
The differences between the cells were thus made more
comprehensible. Subsequently, we used SingleR to make annota-
tions for each cell type. SingleR identified cell types based on
similarities in expression patterns between the cells to be
identified and the reference cells.

Cell–cell interaction analysis
We inputted the single-cell gene expression matrix and analyzed
the ligand–receptor information contained in the CellPhoneDB
software. We only considered receptors and ligands expressed by
cell clusters that were above a percentage of the user-specified
threshold (the default was 10%). The abundance was the indicator
used to evaluate the number of expressed ligand–receptor pairs,
allowing for a preliminary assessment of the communication
between cells. To identify biological associations, we used
CellPhoneDB software to conduct pair comparisons between all
cell types in the dataset and to target the significantly enriched
ligand–receptor pairs in each pair of cells. Furthermore, the cell
interaction network map was constructed to illustrate the
regulatory relationship between cells. Moreover, we also used
the NicheNet software to identify the influential ligands in the
interacting receptor signaling cells. The weighted network of
ligand-target gene regulation was depicted, which we referred to
score the regulatory potential of the ligands in the receptor
signaling cells.
To unravel the differential communication of cell types between

LUAD and LUSC, we inputted the single-cell gene expression
matrix and analyzed based on the ligand–receptor information
contained in CellChat software with the default parameters, which
modelled the communication probability and identified significant
communications. To identify functional pathway changes, we also
delineated signaling changes across LUAD and LUSC.
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Transcription factor analysis
Based on the single-cell RNA-seq results, we used the SCENIC
software to infer the regulatory network of transcription factors.
We regarded each regulatory network as a regulon. Through the
analysis of the regulon activity in each cell type, we determined
the differences in the regulatory activity of transcription factors
among different cell types.
We adopted GENIE3 to target the important genes with

significant numbers, used Rcistarget to determine regulons based
on the StarGet dataset, and utilized AUCell to quantify the activity
of regulons using the AUC value. Different regulons may contain
the same target genes, through the common target genes. We
connected all transcription factors and used Cytoscape to illustrate
the regulatory network between transcription factors and
target genes.
The Spearman correlations between TFs and target genes in

each module were calculated, and each module was divided into
two sub-modules, either activation or inhibition, according to the
positive and negative values of correlation.

Pseudotime analysis
Pseudotime analysis, also called cell trajectory analysis is
commonly used to predict the evolutionary trajectory of cell
subtypes and apoptosis pathways, or to infer the differentiation
trajectory of stem cells during the disease progression. In the
current study, we performed pseudotime analysis by using
Monocle 2, an analysis tool based on the expression patterns of
key genes. According to the pseudotime value, Monocle modelled
the gene expression level as a smooth and nonlinear pseudo time
function to show the gene expression changes with time. FDR < 1e
−5 was regarded as significantly different.

Survival and correlation analyses
We used TCGA data to evaluate the prognostic value of cell-cluster
specific genes and the correlation of inter-cell clusters. We
downloaded the transcriptomic expression and clinical data of
1014 NSCLC patients (513 LUAD and 501 LUSC) from the TCGA
database by the R package TCGAbiolinks. For survival analysis, all
patients with LUAD or LUSC were divided into two groups (high
expression and low expression) based on the mean value of the
specific gene in these samples, then modelled by the survival
package and visualization. For correlation analysis, the mean
values of the top 5 marker genes from the LUAD or LUSC dataset
in each cell type were represented as the expression value of the
cell type in the public dataset. Then, we conducted the correlation
analysis between macrophages and other cell types by the
ggstatsplot package. A P-value < 0.01 was regarded as significantly
different.

The Opal multiplex immunohistochemistry, mIHC
The Opal multiplex IHC staining method based on tyramine signal
amplification (TSA) technology allows the detection of more than
seven different markers on the same tissue slice using different
colored dyes combined with spectral imaging and quantitative
analysis software, therefore, the abundant in situ tissue informa-
tion can be accurately presented. In this study, the Opal Polaris
7-color Manual IHC Kit was used for the multistaining of 4 µm
sections of clinical paraffin tissue after dewaxing and rehydration
with xylene and gradient alcohol solution. Note that only double-
distilled water and freshly prepared wash buffer working solution
should be used for tissue washing throughout the experiment;
and the samples should not be exposed to tap water. The staining
process of Opal technology is similar to the normal immunohis-
tochemical staining, except that only one antibody can be
incubated in each round of staining, and an antibody elution
step is added to remove the noncovalently bound antibody from
the antigen by microwave elution, but retain the TSA fluorescence
signal covalently bound to the antigen surface, thus achieving

direct antigen labeling without antibody interference. In this
experiment, 4 kinds of antibodies needed to be stained on one
tissue, so 4 times incubations of primary antibody, secondary
antibody, and TSA signal amplification incubation and 5 times of
antigen repairs were needed. The 4th incubation was followed by
the last antigen repair, then DAPI staining and Fluoromount-G
sealing. Specific detailed experimental steps can be referred to the
kit instructions and adjusted as appropriate. The equipment used
to implement spectral imaging is a multispectral tissue imaging
system (PerkinElmer Vectra®), and the software used for pathology
results analysis was Phenochart 1.0 and PerkinElmer inForm.
The antibodies used in the experiments were: CD1C (ORIGENE,

TA505411S, mouse), CD68 (Biolegend, 916104, mouse), S100A8
(proteintech, 15792-1-AP, rabbit), ALOX5 (5 Lipoxygenase/5-LO,
abcam, ab169755, rabbit), ALOX5AP (ATLAS ANTIBODIES,
HPA026592, rabbit), CD44 (Affinity, DF6392, rabbit), HBEGF (Santa,
sc-365182, mouse), TNF-R1 (Santa, sc-8436, mouse), GAN (ORI-
GENE, TA807351S, mouse), hlntegrin α4β1 (R&D, MAB10603,
human), FN1 (Fibronectin, abcam, ab2413, rabbit), CK5/6 (Millpore,
MAB1620,mouse), PanCK (abcam, ab7753, mouse), CD45 (abcam,
ab40763, rabbit), IGHA1 (ProMab, 31070, mouse), Lambda Light
chain (abcam, ab124719, rabbit), IGKC (abcam, ab134929, rabbit),
IGHG3 (abcam, ab193172, rabbit), IGHG4 (HUABIO, ET1609-56,
rabbit), SPP1 (abcam, ab214050, rabbit), MARCO (abcam,
ab231046, rabbit), and ALOX5AP (ATLAS ANTIBODIES,
HPA026592, rabbit).

Immunohistochemistry (IHC)
Tissues were immediately fixed in 10% neutral formalin solution
for 48–72 h after surgery. The dehydration instrument completes
the graded dehydration and immerses the tissues in wax. The
4 μm sections were baked in a 67 °C oven for more than 4 h after
the paraffin embedding, and then deparaffinized in xylene and
graded ethanol in distilled water. Immunohistochemistry uses a
two-step method. Antigen retrieval was performed with a
microwave in a water bath with Tris-EDTA solution for 2 * 8 min.
Then, endogenous peroxides were blocked in 3% H2O2 for 15 min
at room temperature, Subsequently, the corresponding primary
antibody working solution was incubated at 4 °C overnight, and
the secondary antibody, goat anti-rabbit IgG (Dako, Shanghai,
China) is incubated at 37 °C for 65min, the sections were
incubated with DAB working solution for 3 min. Finally, hematox-
ylin was used to counterstain the cell nuclei, and the sections were
dehydrated, cleared and fixed with neutral gum. The immunohis-
tochemical pictures were collected by an Olympus IX83 micro-
scope. The antibodies used in this study were: c-Jun (Abcam,
ab32137, rabbit), c-Fos (Abcam, ab222699, rabbit), HIF-1 (Abcam,
ab51608, rabbit).

Statistical analyses
All statistical analyses were performed using R (version 3.6.0), and
two-tailed p values were used to evaluate the statistical
significance. In our study, p values were calculated through
Bonferroni correction, and |log2FC| ≥ 0.25, P < 0.05 was considered
statistically significant.
In the Seurat package, the rank-sum test was used to analyze the

differential gene expression in different cell subpopulations. We then
used a barrier model-based analysis of single-cell transcriptomics
(MAAST) to examine the significance of the differential genes and
corrected the significant p values with multiple tests.
To test whether there were significant differences between

LUSC and LUAD, LUSC and LUSC_normal, LUAD and LUAD_normal
in the fraction of each cell type in our study. First, we calculated
each cell type fraction in each sample. Then, the Kruskal–Wallis
test, which is a one-way ANOVA with the observations replaced by
ranks, was used to detect the significance of the differences in cell
fractions between the above three groups, with P < 0.05
considered statistically significant.
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GSEA analyses
By using GO function and KEGG pathway significant enrichment
analysis, we analyzed the biological functions of the differentially
expressed genes. Through quantification of the significant
enrichment in pathways, the major biochemical metabolic and
signal transduction pathways involved in differentially expressed
genes were identified. To predict the functional features of Mφ
subclusters, we also used the single sample gene set enrichment
analysis (ssGSEA) analysis approach to score the functional
signatures, which were downloaded from previous studies.
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