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Abstract
Biological neurons keep sensitive to external stimuli and appropriate firing modes can be 
triggered to give effective response to external chemical and physical signals. A piezoelec-
tric neural circuit can perceive external voice and nonlinear vibration by generating equiva-
lent piezoelectric voltage, which can generate an equivalent trans-membrane current for 
inducing a variety of firing modes in the neural activities. Biological neurons can receive 
external stimuli from more ion channels and synapse synchronously, but the further encod-
ing and priority in mode selection are competitive. In particular, noisy disturbance and 
electromagnetic radiation make it more difficult in signals identification and mode selec-
tion in the firing patterns of neurons driven by multi-channel signals. In this paper, two dif-
ferent periodic signals accompanied by noise are used to excite the piezoelectric neural cir-
cuit, and the signal processing in the piezoelectric neuron driven by acoustic waves under 
noise is reproduced and explained. The physical energy of the piezoelectric neural circuit 
and Hamilton energy in the neuron driven by mixed signals are calculated to explain the 
biophysical mechanism of auditory neuron when external stimuli are applied. It is found 
that the neuron prefers to respond to the external stimulus with higher physical energy and 
the signal which can increase the Hamilton energy of the neuron. For example, stronger 
inputs used to inject higher energy and it is detected and responded more sensitively. The 
involvement of noise is helpful to detect the external signal under stochastic resonance, and 
the additive noise changes the excitability of neuron as the external stimulus. The results 
indicate that energy controls the firing patterns and mode selection in neurons, and it pro-
vides clues to control the neural activities by injecting appropriate energy into the neurons 
and network.
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1  Introduction

A simple neuron model is helpful to discern and predict the dynamical properties of neu-
rons. For better understanding, the biophysical property and mechanism of signal process-
ing, the effect of ion channels, electromagnetic induction, energy flow, synaptic plasticity, 
and controllability in coupling synapses should be considered in the biological and bio-
physical neuron models. Artificial neuron models often develop from the neural circuits  
composed of capacitor, inductor, nonlinear resistor, and specific electric components such  
as memristors, thermistors, phototubes, Josephson junctions, and piezoelectric ceramics. For 
example, a piezoelectric ceramic can be connected to a simple neural circuit for discerning  
external voice and mechanic vibration, and this neural circuit can be mapped into a piezo-
electric neuron for exploring the dynamics of auditory neuron. The auditory cortex is the 
auditory center of the brain. The inner ear sends electrical signals to this area of the brain 
to receive external sounds. According to the changes of sound environment, the adaptabil-
ity of neurons can be used to adjust the sound processing process. Even in a noisy envi-
ronment, the human ear can detect and distinguish the subtle differences of sound, and 
has the ability to accurately capture a specific sound in complex dialogue [1–5]. Recent 
research in the field of neuroscience has shown that the brain can decode special auditory 
signals in complex environments, which is called auditory attention detection (AAD); it 
opens up new opportunities for the cognitive control of auditory prostheses such as hear-
ing aids and cochlear implants [6–9]. For example, Mesgarani et  al. [1] obtained inva-
sive recordings from the primary and nonprimary auditory cortex (AC) in neurosurgical 
patients as they listened to multi-talker speech, and they revealed the neural computations 
underlying the hierarchical formation of auditory objects in human AC during multi-talker 
speech perception. Xu et  al. [10] investigated how sensory-to-category transformation is 
implemented by cortical neurons during a stimulus categorization task, and their results 
uncovered a task-dependent dynamic reorganization of cortical response patterns serving 
as a neural mechanism for sensory-to-category transformation during perceptual decision-
making. The detection and discrimination of input spatiotemporal sequence by neurons is 
the basis of brain function and human brain perception, cognition and motor output. Ref. 
[11] has realized the simulation of human ear sound azimuth discrimination by construct-
ing a simple dual input/dual output coupled artificial neural network. Li et al. [12] inves-
tigated the neural mechanisms of speech comprehension in noise using a functional near-
infrared spectroscopy-based inter-brain approach, and they claimed that speaker–listener 
coupling analysis provides added value and new sight to understand the neural mechanism 
of speech-in-noise comprehension. From physical aspect, Zhou et al. [13] suggested that 
a piezoelectric ceramic can be embedded into a simple neural circuit, and then external 
sound and acoustic wave can be perceived to trigger appropriate firing patterns. In particu-
lar, Guo et al. [14] explained the biophysical mechanism for wave filtering of acoustic wave 
imposed on the piezoelectric neural circuit and auditory neuron. In addition, this kind of 
frequency selection and wave filtering can be used to understand why human eyes are sen-
sitive to certain frequency band as visible light [15].

Noise is often applied on nonlinear oscillators and network for estimating the effect  
of stochastic disturbance and uncertain stimuli. For isolated oscillator, distinct regular 
oscillation can be developed under nonlinear resonance by taming noise with appropri-
ate intensity, and periodic stimulus can also be effective to control the chaotic oscillation,  
and regular behavior is obtained due to the effect of forced vibration [16–19]. Synchro-
nization stability between nonlinear oscillators can be approached under noise even no 
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coupling is applied, which is classified as resonance synchronization [20–24]. For neural 
circuits and biological neurons, noise is often considered as uncertain disturbance result-
ing from electromagnetic radiation, and then noisy term can be applied to regulate the 
membrane potential and channel current as well. Additive noise on membrane potential 
behaves similar role as external electric forcing, and the excitability of neuron is changed 
to regulate the firing patterns; also, external energy is injected. One important application 
of stochastic resonance is its signal detection [25–28]; maximal information propagation is 
obtained, and strong subthreshold periodic driving signal can make the system have high 
peak signal-to-noise ratio (SNR). In the nervous system with multi periodic signal inputs, 
under certain noise intensity, a single neuron driven by the mixed periodic signal of fun-
damental frequency and harmonic frequency has the greatest response to the fundamental 
frequency signal [20, 29]. When noise driving and electromagnetic radiation are imposed 
on the excitable media and neural circuits synchronously, most auditory neurons still can 
discern and encode external periodic signals, which makes auditory neurons show regular 
discharge patterns [30–34]. In practical way, many simple neural circuits can be improved 
to enhance the potential biophysical functions by incorporating a memristor, Josephson  
junction, phototube, piezoelectric ceramic, or thermistor into any of the branch cir-
cuit. For example, the involvement of memristor into the neural circuit can estimate its  
effect of electromagnetic induction and build memristive synapse [35–39]. The connection  
of Josephson junction to neural circuit can discern the effect of external magnetic field 
[40–42]. The phototube activated by external illumination can be used to excite neural circuit  
and the signal processing of artificial eyes can be reproduced [43–45]. The neural circuit 
coupled by thermistor can perceive the changes of temperature, and thermosensitive neu-
ron can be obtained [46–48]. In particular, Yao et al. [49] built a multi-functional neural 
network composed of piezoelectric neuron, thermosensitive neuron, and light-sensitive 
neuron, and field coupling is activated to study the collective behaviors for discerning the 
cooperation mechanism of neurons from different functional regions of the brain. That is, 
these electric components can perceive external physical signals by converting external 
stimuli including noise into equivalent currents, and its physical mechanism is considered 
as energy injection and energy encoding.

In fact, biological neurons and artificial neural circuits can perceive and receive multi-
channel inputs, and the competitive cooperation enables appropriate mode selection and 
firing patterns. For the auditory system, neurons can discern specific frequency band of 
acoustic waves except those distinct periodic signals even in presence of noise [50]. In 
this paper, based on the known piezoelectric neuron, more than two periodic signals are 
imposed on the neural circuit composed of piezoelectric ceramics; the average power of 
inputs and intrinsic Hamilton energy of the functional neuron are estimated to discuss the 
response mechanism of neuron driven by multi-channel stimuli in noisy condition. It pre-
dicts that the neuron prefers to give smart response to the external stimulus with higher 
average power, and similar stochastic resonance can be induced when the external noise 
is tamed carefully. The external signals are considered as periodic signals, chaotic signals 
for reproducing realistic signals covering acoustic wave within certain frequency band; it 
seems that the neuron used to respond to the signals injecting more energy, and thus neu-
ral activities can be guided and regulated to present most suitable firing patterns. Each 
biological neuron can be considered as a charged body and external electromagnetic field 
will change the static distribution of intracellular and extracellular ions, and also the chan-
nel current will be regulated as well. When external electromagnetic field is fluctuated, 
stochastic disturbance will be induced. The neural circuits are often sensitive to external 
magnetic field. For piezoelectric ceramics, external acoustic wave and mechanic vibration 
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seldom are periodic type and certain stochastic disturbance is accompanied. Therefore, 
the filtered wave and signals in this neural circuit coupled by piezoelectric ceramics are 
approached by using periodic signal and certain noise. Additive noise is imposed, and the 
excitability is changed rather than ion channels, which are sensitive to channel noise.

2 � Model and scheme

Within artificial neurons and neural circuits, external realistic signals are captured and 
converted into equivalent current/voltage for exciting the generic neurons, and the firing 
mode becomes distinct and unique in the firing patterns without discerning the difference 
in external stimuli. For standard periodic signal and constant signal, most of the firing 
modes can present distinct characteristics and firing patterns to give response to certain 
external stimulus. However, the biological neurons can be able to discern the main infor-
mation and discard the secondary information even in noisy condition when more signal 
sources are used to excite the neurons. During the electric response, external stimulus can 
input energy and the inner physical field energy in the neurons can be changed effectively. 
In fact, the energy absorption of energy in the neuron is nonlinear rather than monotonous 
way because the external forcing is encoded by a nonlinear processing in the neuron. On 
the other hand, biological neurons can keep robust to some external stimulus under wave 
filtering and its firing patterns are dull to the external forcing signals as shown in Fig. 1.

As shown in Fig. 1, the auditory neurons can discern the difference between more than 
two acoustic waves even in noisy condition by inducing sensitive spatiotemporal patterns 
and firing modes in the neural activities. Therefore, it is important to explore the potential 
physical mechanism for response to external stimuli in presence of noise. For simplicity, 
two external signal sources accompanied by Gaussian white noise are imposed on a piezo-
electric neural circuit, which is used to reproduce the biophysical property of auditory neu-
ron and it is shown in Fig. 2.

In generic way, the current iNR across the nonlinear resistor NR is often approached by

where V0, ρ and V denote the cut-off voltage in the i-V curve for NR, normalized parameter 
for resistance in the linear region, and voltage across the NR, respectively. As reported in 
Ref. [13], the output voltage VPC from the piezoelectric device can be described by

(1)iNR = −
1

�

(
V −

1

3

V3

V2
0

)

(2)VPC =
F

S

d33

�
h = P ⋅ h ⋅ g = VPC(F,�)

Fig. 1   Schematic diagram for 
signal encoding in the auditory 
neurons in the brain in presence 
of two signal sources under noise
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where F, S, d33, ε, and h represent the external mechanical force, surface area, piezoelectric 
strain constant, dielectric constant, and thickness of the piezoelectric ceramic, respectively. 
By applying surface coating, the piezoelectric ceramic is effective to filter and absorb 
external mechanic vibration and acoustic wave within certain frequency band and ampli-
tudes. As a result, the piezoelectric ceramic behaves as a voltage source for exciting the 
neural circuit, and a piezoelectric neuron is obtained to simulate the dynamical property 
and signal processing as auditory neuron effectively after scale transformation. That is, the 
output voltage across the piezoelectric ceramic is mainly dependent on the external force 
and the intrinsic parameter μ. When the piezoelectric device is selected, the output volt-
age is controlled by external acoustic wave and noise as well. According to the known 
Kirchhoff theorem, the circuit equations for the piezoelectric neural circuit in Fig. 2 can be 
obtained by:

where the variable V and iL remark the output voltage across the capacitor and channel cur-
rent across the induction coil, respectively. For further nonlinear analysis on the sampled 
time series, standard scale transformation is applied on the physical variables and param-
eters in Eq. (3), and it is defined by:

As a result, the piezoelectric neural circuit for Eq. (3) is replaced by a functional auditory 
neuron as follows:

where the variable x and y represents the membrane potential and recovery variable for 
channel current, respectively. Most of the parameters (a, b, c, ξ) are adjustable because 
they are mapped from the physical parameters for capacitance, inductance, resistance, and 
constant voltage. Under specific condition, the electric signal converted from acoustic wave 
via piezoelectric ceramics can be selected with distinct periodic signal or combination  

(3)

{
C
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Fig. 2   Schematic diagram for 
piezoelectric neural circuit 
driven by more than two acoustic 
waves in presence of Gaussian 
white noise. NR represents a 
nonlinear resistor, PC denotes a 
piezoelectric ceramic, C, L and E 
describe the capacitor, induction 
coil, and constant voltage source, 
respectively. Rs and R are linear 
resistors and the constant E is 
used to describe the reversal 
potential of the ion channel
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of finite periodic stimuli. In noisy condition, the equivalent electric signal ξupc filtered 
from the acoustic wave can be approached by periodic signals and stochastic disturbance, 
which can be considered from the disturbance of electric field and imposed on the mem-
brane potential as additive noise. The realistic voice can generate equivalent VPC across the 
piezoelectric device under piezoelectric conversion and its form is controlled by external 
physical signal and the material property of the piezoelectric device connected to the neu-
ral circuit. The filtered acoustic wave is mapped into equivalent piezoelectric current ξupc, 
which can be selected as single periodic signal or mixed signals composed of periodical 
signals and noise, and then the neural activities can be controlled completely.

where the statistical property of the Gaussian white noise ζ(τ) with zero average value can 
be estimated as < ζ(τ) >  = 0.0, < ζ(τ) ζ(s) >  = Dδ(τ − s), D is the noise intensity and δ(*) 
represents Dirac-δ function. A1, A2 and f1, f2 define the amplitude and frequency in the 
piezoelectric current/voltage after piezoelectric conversion, respectively. When the piezo-
electric neuron is driven by a single periodic signal, it presents a variety of firing modes by 
changing the amplitude or frequency of the external stimulus carefully, and the neuron will 
present distinct firing patterns when all parameters are fixed. In case of ξupc3, two different 
periodic signals are imposed synchronously, in which external stimuli are used to excite the 
neuron from different channels. It is interesting to predict and confirm that the final firing 
mode and patterns will be dependent on which external stimulus. In addition, this question 
becomes more interesting in presence of noise.

As is known, the physical field energy EN is kept in the electric components such as 
capacitor and induction coil, and the similar dimensionless field H also exists in the bio-
logical neurons as well.

That is, the field energy in the neural circuit driven by piezoelectric current from  
the piezoelectric ceramic can be estimated by the equivalent Hamilton energy H, which is 
dependent on the membrane potential, channel current, and one intrinsic parameter as well. 
As a result, the firing mode is changed by external forcing and then the Hamilton energy is 
regulated synchronously. From physical viewpoint, external stimulus and forcing can inject 
energy into the neuron, and then the firing modes can be controlled effectively. Within an 
eigencycle T, the average power of a periodic signal is estimated by

where A is the amplitude of the external signal, and the average power becomes a constant. 
In the presence of noise, the signal-to-noise ratio (SNR) is often estimated to predict the 
occurrence of stochastic resonance, and it is calculated by applying fast Fourier transform 
(FFT) on the sampled time series for any variables. The SNR curve can be obtained by 

(6)
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changing the noise intensity, and each value for SNR can be obtained by finding the follow-
ing values (h, ωp, Δω) in the power spectrum for the membrane potentials.

where h means the maximum value of power spectrum peak, and ωp and Δω define the 
frequency associated with the peak value of power, the half height width of the highest 
peak of the power spectrum. S and B denote the peak value and fundamental frequency of 
the power spectrum. Besides the periodic and mixed signals defined in Eq. (6), the realistic 
acoustic wave can be as signals with wide frequency band, for example, chaotic signals 
from the Chua system [51, 52] are shown in Eq. (10).

where α, β, γ are normalized parameters, and m0 and m1 are normalized parameters for the 
conductance in the curve i-v for the Chua diode. The nonlinear function f(x′) describes the 
dimensionless current across the nonlinear resistor (diode) of the Chua circuit. By setting 
appropriate parameters, the Chua system can present chaotic state, periodic state, and then 
the first variable x′ will be used as realistic signal source for checking the sensitivity of 
the neural circuit. In practical way, surface coating of piezoelectric devices is helpful and 
effective to filter the realistic acoustic wave like quasi-periodic and chaotic signals, and 
thus only finite frequency band and amplitude can be converted into equivalent electric sig-
nal for exciting the neural circuit, and thus external acoustic wave is detected and discerned 
effectively.

3 � Numerical results and discussion

In this section, the standard fourth order Runge–Kutta algorithm is applied to find numeri-
cal solutions of the dynamical systems, the transient for calculation is about 2000 time 
units, and the time step is fixed at 0.01. The initial values for variables in Eq. (4) are fixed 
at (x0,y0) = (0.2, 0.1), and then initial values (x0′, y0′, z0′) = (0.01, 0.1, 1.0) are used to trig-
ger chaotic series from Chua system shown in Eq. (10). As presented in Eq. (6) and Eq. (8), 
the average power values for three kinds periodic signals are obtained by < P1 >  = 0.0338, 
< P2 >  = 0.04805, < P3 >  = 0.57245. In Fig. 3, the evolution of membrane potential and fir-
ing patterns, Hamilton energy, and the SNR under noise are calculated, respectively.

The firing patterns are regulated by changing the external stimulus, and the Hamilton 
energy is also changed. The average Hamilton energy is increased when higher amplitude 
in the external forcing is applied because more energy can be injected and captured by the 
neuron. When the firing patterns show distinct periodicity, periodic attractors are formed 
synchronously. Similar stochastic resonance (SR) is induced and peak value is detected 
in the power spectrum by changing the noise intensity carefully. In particular, the opti-
mal noise intensity tends to be a lower value for inducting stochastic resonance when 

(9)SNR = h
�p

Δ�
= 10log10(

S

B
)

(10)

⎧⎪⎨⎪⎩

ẋ
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the neuron is excited by external stimulus with higher power value, and higher Hamilton 
energy is obtained as well. It indicates the occurrence of SR becomes easier because injec-
tion of more energy into the neuron. That is, distinct periodic signal can be effectively dis-
cerned and identified in presence of noise when SR is induced. As a result, stronger noise 
will induce bursting and even chaotic patterns. It is interesting to discern the main contri-
bution and role in regulating the Hamilton energy and firing mode in the neural activities 
when two different periodic stimuli are applied for exciting the neuron. Firstly, we consider 
the case that two external stimuli show slight diversity in the average power, which the 
external stimulus F is composed of two periodic signals with close average power, and the 
results are calculated in Fig. 4.

When external forcing F1 and F2 are combined and applied to excite the neuron syn-
chronously, higher Hamilton energy is obtained by capturing more energy from the exter- 
nal stimuli. Similar SR is induced and the peak value for power occurs at lower noise inten-
sity. In case of periodic firing, the attractors become periodic and the involvement of noise 
will change the profile of the attractors. In case of SR state, the neuron tends to present  
regular firing and oscillation and average Hamilton energy is obtained. Compared the pro-
file of the attractors, it is found that the neuron driven by combined signals prefers to show 
similar firing patterns induced by F2 with higher average power. It indicates that the neuron 
may give response to the external stimulus with higher energy injection and power value. 
It is worthy of investigating the signal identification of two periodic signals with higher  
diversity in power, and the results are estimated in Fig. 5.

Compared with the case for neuron driven by single periodic stimulus, the Hamilton 
energy is further increased when more periodic stimuli are applied because more energy 
is injected and encoded. When noise is applied, periodic attractor is corrupted to induce a 
chaotic attractor. Higher noise intensity is required to induce SR when the periodic stimuli 
are held with higher power. In case of SR, regular firing patterns are induced and kept in 

Fig. 3   Evolution of firing patterns, Hamilton energy, SNR, and ISI bifurcation in the piezoelectric neuron 
driven by periodic signals. For (a), F1 is applied with A1 = 0.26, f1 = 0.015, then F1 is applied and noise 
intensity is changed for getting SNR; (b) F2 is applied with A2 = 0.31, f2 = 0.015, then F2 is applied and 
noise intensity is changed for getting SNR; (c) F3 is applied with A3 = 1.07, f3 = 0.015, then F3 is applied 
and noise intensity is changed for getting SNR. The parameters are selected as a = 0.7, b = 0.8, c = 0.1, and 
ξ = 0.175, and the initial values are selected as (0.2, 0.1) in Eq. (5). The inserted subfigure shows the formed 
attractors under the same parameter setting
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the neural activities. In addition, the firing mode is mainly decided and controlled by the 
external forcing F3 with higher power because the threshold of noise intensity for induc-
ing SR is the same as the value for neuron driven by single periodic signal F3. That is, the 
external stimulus with higher power can be identified and perceived more sensitively than 
other stimuli with lower power values. It is interesting to discuss the response in the neural 
activity of neuron driven by chaotic signal, which is derived from the Chua circuit and 
average power value < P4 >  = 0.023, and the results are shown in Fig. 6.

Fig. 4   (a) Evolution of membrane potential and Hamilton energy in the neuron driven by two periodic sig- 
nals (F1 + F2) synchronously in absence of noise. (b) SNR distribution and ISI bifurcation under noise.  
(c) Firing patterns and Hamilton energy under noise D = 3. The parameters are selected as a = 0.7, b = 0.8, 
c = 0.1, ξ = 0.175, A1 = 0.26, f1 = 0.015, A2 = 0.31, and f2 = 0.015, and the initial values are selected as (0.2, 
0.1) in Eq. (5). The inserted subfigure shows the formed attractors under the same parameters setting

Fig. 5   (a) Evolution of membrane potential and Hamilton energy in the neuron driven by two periodic sig-
nals (F1 + F3) synchronously in absence of noise. (b) SNR distribution and ISI bifurcation under noise. (c) 
Firing patterns and Hamilton energy under noise D = 17. The parameters are selected as a = 0.7, b = 0.8, 
c = 0.1, ξ = 0.175, A1 = 0.26, f1 = 0.015, A2 = 1.07, and f2 = 0.015, and the initial values are selected as (0.2, 
0.1) in Eq. (5). The inserted subfigure shows the formed attractors under the same parameters setting
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It is found that the neuron is forced to present chaotic behavior when external chaotic 
stimulus is applied, and the average Hamilton energy is decreased to lower value when 
chaotic attractor is formed. In addition, similar SR is induced in the neural activities when 
noise is tamed carefully in presence of chaotic driving, and SNR reaches the peak value at 
noise intensity D = 58. It is interesting to discuss the identification between periodic signal 
(F1, < P1 >  = 0.0338) and chaotic signal (F4, < P4 >  = 0.023), and the results are plotted in 
Fig. 7.

It is found the final firing mode and patterns are mainly controlled by the chaotic forc-
ing when the average power in the periodic stimulus is lower as the average power in the 
chaotic driving, and then the firing patterns show distinct chaotic behaviors. When noise 
intensity is increased, chaos in the formed attractor and firing patterns is further enhanced 
and the neuron tends to keep lower Hamilton energy. That is, the periodic signal is dif-
ficult to be discerned and it is covered by the chaotic forcing and the Hamilton energy in 
the auditory neuron is further decreased. The SNR reaches a peak value at noise intensity 

Fig. 6   Evolution of firing patterns (a); Hamilton energy (b); SNR (c); and ISI bifurcation (d) in the audi-
tory neuron driven by chaotic signals under noise. The parameters are fixed at α = 10, β = 16, γ = 0.01, 
m0 =  − 1.296, m1 =  − 0.7364, a = 0.7, b = 0.8, c = 0.1, ξ = 0.175, A1 = 0.26, and f1 = 0.015, and initial values 
are selected as (0.2, 0.1) in Eq. (5), and (0.01, 0.1, 1.0) in Eq. (10). The inserted subfigure shows the formed 
attractors under the same parameters setting

Fig. 7   (a) Evolution of membrane potential and Hamilton energy in the neuron driven by periodic and cha-
otic signals (F1 + F4) synchronously in absence of noise. (b) SNR distribution and ISI bifurcation under 
noise. (c) Firing patterns and Hamilton energy under noise D = 90. The parameters are fixed at α = 10, 
β = 16, γ = 0.01, m0 =  − 1.296, m1 =  − 0.7364, a = 0.7, b = 0.8, c = 0.1, ξ = 0.175, A1 = 0.26, and f2 = 0.015, 
and initial values are selected as (0.2, 0.1) in Eq. (5), and (0.01, 0.1, 1.0) in Eq. (10). The inserted subfigure 
shows the formed attractors under the same parameters setting
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D = 90, the regularity in the firing patterns is enhanced at this noise intensity, and it is simi-
lar to the case for neuron driven by single periodic signal F1. The neuron prefers to select 
the chaotic firing mode induced by F4, and the periodic stimulus is covered by the chaotic 
forcing. It is interesting to discuss the case when periodic signal with higher power value 
(F3, < P3 >  = 0.572) and chaotic stimulus (F4, < P4 >  = 0.023) are applied to excite the neu-
ron, and the signal identification is shown in Fig. 8.

The involvement of chaotic stimulus can decrease the Hamilton energy in the neuron, 
and neuron prefers to show similar periodic firing patterns as the case for neuron driven 
by single periodic signal F3. Similar SR occurs at the noise intensity D = 17, which is also 
effective to induce SR in the neuron driven by sole periodic signal F3. In particular, the 
Hamilton energy shows slight increase under the SR state.

In a summary, the external stimuli contain different powers and energy scales and cer-
tain energy is injected and encoded by the neuron. The neuron prefers to give sensitive 
response to the external stimulus containing higher energy or power, and then the energy 
is absorbed to control the firing modes effectively. In noisy condition, the neuron can be 
induced with similar SR when two different external stimuli are applied. The neuron often 
shows lower Hamilton energy when the neuron is forced to present chaotic behaviors, but 
similar SR can still be induced by applying appropriate noise intensity. When external 
stimuli are composed of periodic and chaotic signals with close power, the periodic firing 
mode is corrupted to show chaotic behaviors and identification of weak periodic signal 
becomes difficult. Above all, we discussed and clarified the potential response criterion for 
isolated neuron driven by more than two periodic signals, and it is said that neuron gives 
preference to external inputs with higher power and energy even noise is considered. When 
two or more neurons are clustered in the same region or area, the energy diversity between 
neurons will enable the creation of synaptic connections for reaching possible energy bal-
ance [53–55]. As mentioned in Ref. [56–60], estimation of Hamilton energy and control 
the energy flow are much effective to control the synchronous behaviors of chaotic systems 

Fig. 8   (a) Evolution of membrane potential and Hamilton energy in the neuron driven by periodic and cha-
otic signals (F3 + F4) synchronously in absence of noise. (b) SNR distribution and ISI bifurcation under 
noise. (c) Firing patterns and Hamilton energy under noise D = 17. The parameters are fixed at α = 10, 
β = 16, γ = 0.01, m0 =  − 1.296, m1 =  − 0.7364, a = 0.7, b = 0.8, c = 0.1, ξ = 0.175, A3 = 1.07, and f2 = 0.015, 
and initial values are selected as (0.2, 0.1) in Eq. (5), and (0.01, 0.1, 1.0) in Eq. (10). The inserted subfigure 
shows the formed attractors under the same parameters setting
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and neurons. Therefore, dynamical response in the neural activities of neurons is also con-
trolled by the energy injection and absorption, and thus neurons can give appropriate mode 
selection and response to different external stimuli. Biological neurons show distinct intel-
ligence with handling the signals processing, and each neuron in the neural network can 
perceive any external stimulus and then its intrinsic energy is regulated to create appro-
priate synapse connection to adjacent neurons without preferring the energy level in the 
inputs with higher value. That is, neurons can perceive external stimulus randomly and the 
increase of intrinsic Hamilton energy will be shared and kept balance when appropriate 
links are created via chemical or memristive synapse connections to adjacent neurons.

4 � Conclusions

A realistic sound signal or acoustic wave often contains distinct wave band, and it can be 
perceived and discerned by neurons only when it has distinct power value than other signal 
sources. An external stimulus can inject certain energy into the neuron or neural circuit, 
and the increase of the Hamilton energy will regulate the dynamics of the forced neural cir-
cuit or excited neuron. When two different signal sources are applied to excite the neuron 
from different channels, the inner field energy of neuron is tamed and the neuron prefers to 
show firing mode and energy value as the case for neuron controlled by external stimulus 
with higher power value. That is, among periodic stimuli, the neural activity of neuron will 
be dominated by the external forcing that can inject more energy into the neuron. In experi-
ence, stronger inputs as larger amplitude can induce a prior response than weak disturbance 
because of higher energy injection hidden in the external stimuli with stronger intensity. 
Under noisy condition, similar SR can be induced when two or more periodic stimuli are 
applied. In particular, similar SR also occurs when chaotic signal is used to excite the neu-
ron under appropriate noise intensity. The results meet our experience that a signal proces-
sor prefers to receive and encode the external signal with higher energy and then the firing 
mode is controlled by this external stimulus completely. In noisy condition, the external 
stimulus can be discerned under SR state.
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