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Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder with slow progression whose symptoms can be identified at 
late stages. Early diagnosis and treatment of PD can help to relieve the symptoms and delay progression. However, this 
is very challenging due to the similarities between the symptoms of PD and other diseases. The current study proposes a 
generic framework for the diagnosis of PD using handwritten images and (or) speech signals. For the handwriting images, 
8 pre-trained convolutional neural networks (CNN) via transfer learning tuned by Aquila Optimizer were trained on the 
NewHandPD dataset to diagnose PD. For the speech signals, features from the MDVR-KCL dataset are extracted numerically 
using 16 feature extraction algorithms and fed to 4 different machine learning algorithms tuned by Grid Search algorithm, 
and graphically using 5 different techniques and fed to the 8 pretrained CNN structures. The authors propose a new technique 
in extracting the features from the voice dataset based on the segmentation of variable speech-signal-segment-durations, i.e., 
the use of different durations in the segmentation phase. Using the proposed technique, 5 datasets with 281 numerical features 
are generated. Results from different experiments are collected and recorded. For the NewHandPD dataset, the best-reported 
metric is 99.75% using the VGG19 structure. For the MDVR-KCL dataset, the best-reported metrics are 99.94% using the 
KNN and SVM ML algorithms and the combined numerical features; and 100% using the combined the mel-specgram 
graphical features and VGG19 structure. These results are better than other state-of-the-art researches.

Keywords Feature extraction · Hyperparameters optimization · Machine learning (ML) · Parkinson disease (PD) · Speech 
segmentation · Transfer learning (TL) · Voice segmentation

1 Introduction

Parkinson’s disease (PD) is a chronic neurological disorder 
resulting from the diminishment in the levels of dopamine 
as a result of a shortage of dopamine-producing cells in 
the brain. As the brain is the control center of the entire 
human body, any deficiency in the work of its cells affects 

the signals propagating to the different parts and causes dif-
ferent symptoms. In the case of PD, symptoms can be clas-
sified into motors and non-motors (Politis et al. 2010). In 
the first category, patients suffer from symptoms including 
(1) tremors, (2) Freezing of Gait (FoG), (3) muscle rigidity, 
(4) Fear of Falling (FoF), (5) slow movements, (6) impaired 
posture, (7) micrographia, and (8) voice abnormality (Berus 
et al. 2019). In the second category, symptoms include (1) 
depression, (2) dementia, (3) sleep disorders, (4) anxiety, (5) 
slow thinking, and (6) fatigue (Almeida et al. 2019).

PD mostly affects people after 60 years old. However, 
it sometimes affects patients in the 40s because of genetic 
reasons (De Lau and Breteler 2006). PD can affect both gen-
ders, but it has been proven that male patients are affected 
more compared to females (Lamba et al. 2021). The main 
concern with PD is that symptoms appear clearly after the 
loss of about 80% of the dopaminergic cells (Sveinbjornsdot-
tir 2016). Till this moment, researchers are unable to specify 
the reason behind that disease. There is no treatment for PD 
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until the recent moment, but symptoms can be controlled 
by proper medications (Hireš et al. 2021). Therefore, early 
detection of PD can help patients have a self-sufficient life 
(Gupta et al. 2018).

Several diagnostic markers of PD can be used, of which 
the handwriting and voice signals because of their low cost 
and less time consumption compared to MRI or other brain 
tests are selected. Patients with PD have problems in motor 
skills including those used for writing due to the effect of 
muscle rigidity, shacking, and slow movement (Dias et al. 
2020). Although changes in handwriting are hardly perceiv-
able in the early stages of the disease, it is still an essential 
biomarker of PD diagnosis (Kamran et al. 2021). With the 
evolution in deep learning, visual features can be extracted 
automatically and used to train a network of several layers to 
correctly classify patients of PD from normal people.

Abnormalities in voice signals are another biomarker 
of the existence of PD. Patients with PD have their voice 
turned softer, with fast and monotonous speech. These 
abnormalities might be unnoticeable to normal people and 
need experts (Ali et al. 2019). Speech impairments can be 
observed from either running speech or continuous vowel 
phonation (Rizvi et al. 2020). Diagnosing PD from voice 
changes has become very popular in recent research due to 
its simplicity and time-saving. Therefore, the use of voice 
tests in the diagnoses of PD is of trending interest (Caliskan 
et al. 2017).

The application of deep learning (DL) to image classi-
fication has guaranteed better accuracy (Xiao et al. 2021b, 
2021a; Balaha et al. 2021b). Convolutional neural network 
(CNN) is the commonly used DL approach in the field of 
medical imaging because of their robustness in automatic 
feature extraction (Li et  al. 2021; Balaha et  al. 2021a; 
Huynh et al. 2016). Applications of CNN in medical imag-
ing include pancreas segmentation (Roth et al. 2015), brain 
tumor segmentation (Havaei et al. 2017; Guttman et al. 
2003), liver cancer segmentation Li et al. 2018), detection of 
cerebral microbleeds (Dou et al. 2016), COVID-19 (Balaha 
et al. 2021e, 2021d; Bahgat et al. 2021), skin cancer detec-
tion Połap 2019), and Alzheimer’s disease (Helaly et al. 
2021; Khagi et al. 2018). To build a CNN from scratch, 
big data must be available to train the network efficiently. 
However, in case of limited available data, it is preferable 
to use existing models that were previously trained such as 
ImageNet, and “transfer” all the knowledge in the model tar-
geted to be trained on the new data. This approach is called 
transfer learning (TL) (Cao et al. 2013; Balaha et al. 2021c).

The use of metaheuristic algorithms (i.e., optimizers) in 
solving optimization problems is currently the most com-
mon approach (Sörensen and Glover 2013). With their flex-
ibility, an optimal solution can be achieved (Yousri et al. 
2021). Unfortunately, concerning the no free lunch (NFL) 
theorem, a single optimization algorithm can outperform 

other algorithms in some problems, but it can also have bad 
performance for other problems. Therefore, new algorithms 
are continuously being built. Examples of the currently 
available algorithms include Genetic Algorithms (Holland 
1992), Particle Swarm Optimization (Kennedy and Eberhart 
1995), Bat Algorithm (Yang and Gandomi 2012), Red Fox 
Optimization Algorithm (Połap and Woźniak 2021), and 
Marine Predators Algorithm (Faramarzi et al. 2020). The use 
of metaheuristic algorithms in learning the hyperparameters 
of CNN is of great interest in recent researches (Singh et al. 
2021; Loussaief and Abdelkrim 2018; Wang et al. 2019; 
Khalid and Javaid 2020; Soon et al. 2018).

Machine learning (ML) algorithms are usually used in 
data classification problems (Aggarwal et al. 2021; Raheja 
et al. 2021; Thapliyal et al. 2021; Chakradar et al. 2021). 
The most important step of ML is to successfully extract the 
essential features that guarantee robust classification. Dif-
ferent ML algorithms are available such as decision trees 
(Rokach and Maimon 2005) and support vector machines 
(Steinwart and Christmann 2008). However, they all have 
approximately the same principle; i.e., the machine is trained 
on data for correct classification (Jordan and Mitchell 2015).

In the current study, a comprehensive generic framework 
for early and accurate detection of PD using both handwrit-
ten images and speech signals is proposed. It consists of four 
phases, namely (1) datasets collection, (2) pre-processing, 
(3) hyperparameters optimization, and (4) classification, to 
handle both data types. For handwritten images, patients 
are required to draw specific shapes. The resulting shapes 
are then diagnosed by the system. Here, 8 pre-trained CNN 
models via TL, namely (1) ResNet50 (He et al. 2016), (2) 
VGG16, (3) VGG19 (Simonyan and Zisserman 2014), (4) 
MobileNet (Howard et al. 2017), (5) MobileNetV2 (Sandler 
et al. 2018), (6) MobileNetV3Small, (7) MobileNetV3Large 
(Howard et al. 2019), and (8) InceptionResNetV2 (Szegedy 
et al. 2017) are used. To optimize the hyperparameters, 
an optimization algorithm called Aquila Optimizer (AO) 
(Abualigah et al. 2021) is utilized. This algorithm is based 
on the behavior of Aquilas during the hunting process. Due 
to the limitation of available handwriting data, different data 
augmentation techniques are applied to increase the diversity 
dataset to avoid overfitting.

For the speech signals, 16 numerical feature extraction, 5 
graphical feature extraction, and 4 machine learning (ML) 
algorithms are used. The ML algorithms are (1) Decision 
Tree (DT) (Loh 2011), (2) Support Vector Machine (SVM) 
(Vapnik 2013), (3) Naïve Bayes (NB) Tsangaratos and Ilia 
2016), and (4) K-Nearest Neighbor (KNN) (Zhang et al. 
2017). A new approach in the features’ dataset preparation 
concerning the speech signals’ segmentation is proposed. 
It involves segmenting the voice signals into segments of 
different durations and combining them into a heterogene-
ous dataset. 5 heterogeneous datasets with 281 numerical 
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features each and 5 graphical features are generated. To opti-
mize the hyperparameters, the grid search (GS) (LaValle 
et al. 2004) is used with the ML algorithms and AO with the 
pre-trained CNN models.

1.1  Contributions

The contributions of the presented work can be summarized 
in the following points:

• Proposing a generic framework for early and accurate 
diagnosis of PD using a combination of disorders in both 
handwritten images and speech signals.

• Using a combination of disorders in both the handwritten 
and speech signals.

• Using 8 pre-trained CNN models via TL to classify PD 
using the handwritten images and 4 ML algorithms to 
diagnose PD from speech signals.

• Applying 16 numerical feature extraction and 5 graphical 
feature extraction algorithms that generated 281 numeri-
cal features and 5 graphical features.

• Optimizing the CNN and ML hyperparameters using GS 
and AO.

• Proposing a new approach in voice segmentation using 
different durations to increase the diversity and hetero-
geneity features.

1.2  Paper organization

The rest of the paper is divided into 4 sections. Section 2 
presents some state-of-the-art studies about the diagnosis of 
PD. Section 3 describes the methodology used to build the 
proposed framework. The experimental results, discussion, 
and comparative study of the proposed framework are dis-
cussed in Sect. 4. Section 5 presents the current study limita-
tions. Section 6 presents the conclusions and future works.

2  Results

A lot of research has been done to diagnose PD using intel-
ligent techniques. Pereira et al. (2015) made a dataset called 
HandPD of 55 subjects with 37 PD and 18 healthy subjects. 
They applied different ML classifiers, i.e., NB, SVM, and 
optimum-path forest (OPF), on the extracted features. They 
reported a maximum accuracy of 78.9% using the NB clas-
sifier. In their other trial, Pereira et al. (2016b) performed 
many experiments using CNN. They applied different train/
test split ratios and different image resolutions. They could 
achieve an accuracy of 80.19%.

In their next study, Pereira et al. (2016a) applied different 
metaheuristic techniques, namely firey algorithm, bat algo-
rithm, and molecule swarm optimization, to extract features 

from the handwriting dataset. They used CNN in classifica-
tion. They could achieve an accuracy of 90.385%. In Pereira 
et al. (2018), Pereira et al. applied CNN to the same dataset 
and could achieve an accuracy of 95%. Senatore et al. (2019) 
applied cartesian genetic programming (CGP) for the clas-
sification of PD. The authors used the HandPD dataset, and 
from their results, they could achieve a global accuracy of 
72.36%.

PaHaW dataset was also used in many studies. For exam-
ple, Impedovo (2019) applied an SVM classifier with a lin-
ear kernel on it. They could achieve an accuracy of 98.44%. 
Naseer et al. (2020) used AlexNet architecture via TL in 
the diagnosis of PD. They applied different augmentation 
techniques to increase the dataset size and could achieve 
an accuracy of 98.28%. Kamran et al. (2021) applied dif-
ferent CNN structures via TL on a combination of different 
datasets, namely HandPD, NewHandPD, and Parkinson’s 
Drawing datasets. They also applied different augmenta-
tion techniques. They could report a maximum accuracy of 
99.22% using the AlexNet structure.

Several studies using speech data are also made. For 
instance, Caliskan et al. (2017) used two speech datasets, 
namely the Oxford Parkinson’s Disease Detection (OPD) 
dataset and Parkinson Speech Dataset with Multiple Types 
of Sound Recordings (PSD). They applied a deep neural net-
work classifier for the detection of PD. They could achieve 
an average accuracy of 93.79% using the OPD dataset. Sakar 
et al. (2013) collected voice samples from 20 subjects to cre-
ate a PD voice dataset. After extracting the essential features, 
they used SVM and KNN classifiers. They could report a 
maximum accuracy of 77.5% using the SVM classifier.

Zahid et al. (2020) used AlexNet structure via TL to learn 
acoustic features and generate spectrograms. They used the 
pc-Gita dataset and could achieve an accuracy of 99.7%. 
Tuncer and Dogan (2019) proposed a novel pre-process-
ing technique called the octopus-based pooling technique. 
They also applied Singular Value Decomposition for feature 
extraction and Neighborhood Component Analysis for fea-
ture selection. They could report a maximum accuracy of 
97.62% using the 1-Nearest Neighbor classifier.

These studies are just examples of many other studies 
(Parziale et al. 2021; Qasim et al. 2021; Orozco-Arroyave 
et al. 2016; Tsanas et al. 2012; Kurt et al. 2019; Solana-Lav-
alle et al. 2020; Kurt et al. 2018; Kuresan et al. 2021). The 
application of IoT has also guaranteed better management 
and control Sun et al. 2021; Bhardwaj et al. 2021; Połap 
2018).

2.1  Summarization

Table 1 summarizes the discussed related studies.
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3  Methodology

The current study suggests a generic framework (shown in 
Fig. 1) for Parkinson’s disease learning and optimization. 
The framework is divided into four major phases. They are 
(1) datasets collection, (2) pre-processing, (3) classification, 
and (4) hyperparameters optimization phases. In summary, 
the data collection phase presents insights into the used Par-
kinson datasets. The pre-processing phase is responsible for 
handling the images (and voice) data and preparing them 
for the classification phase. The classification and hyper-
parameters optimization phases focus on optimizing a pre-
trained CNN model and handling numerical records using 
ML algorithms. The phases are discussed in the following 
subsections.

3.1  Datasets collection phase

The current study works on two public datasets. They 
are (1) The NewHandPD (Pereira et  al. 2016b) and (2) 
Mobile Device Voice Recordings at King’s College Lon-
don (MDVR-KCL) (Jaeger et al. 2019). (Check Section 5: 
Limitations)

3.1.1  The NewHandPD dataset

The first dataset consists of 594 images partitioned into 
6 classes, where 3 of them belong to healthy people and 
the remaining three belong to PD patients. They are (1) 
HealthyMeander (140 images), (2) HealthySpiral (140 
images), (3) HelthyCircle (35 images), (4) PatientCircle (31 
images), (5) PatientMeander (124 images), and (6) Patient-
Spiral (124 images) (Pereira et al. 2016b). Samples from it 
are shown in Fig. 2.

3.1.2  The MDVR‑KCL dataset

The MDVR-KCL dataset consists of “SpontaneousDia-
logue” and “ReadText” voice records where each of them 
consists of 2 classes (i.e., PD for sick and HC for healthy 
people). The number of PD and HC cases are 15 and 21 
respectively in the “SpontaneousDialogue” category and 
16 and 21 respectively in the “ReadText” category (Jaeger 
et al. 2019).

3.2  Pre‑processing phase

The used pre-processing approaches for the images are (1) 
data equalization, (2) data augmentation, and (3) scale con-
version while for the voice records are (1) numerical features 
representation, (2) graphical representation, and (3) scale 
conversion.

3.2.1  Images manipulation

The equalization process is applied by finding the highest class 
concerning the number of records and augmenting the rest of 
the classes’ records randomly until they reach the highest num-
ber. Data augmentation techniques are used to increase the 
diversity of the images, especially since the available online PD 
datasets are limited. The followed techniques are (1) shifting, 
(2) shearing, (3) zooming, (4) flipping, (5) rotation, and (6) 
brightness changing (Perez and Wang 2017). The augmentation 
is used in two locations in the current study. The first location 
is used before the learning process to equalize the number of 
records in each class. The second location is applied during the 
optimization and learning process with different ranges. The 
scale conversion includes four used techniques (1) normaliza-
tion 

(
in

255

)
 (Kumar and Verma 2010), (2) min-max scaling 

(
in−min(in)

(max(in)−min(in))

)
(Fulkerson and Wolfe 1962), (3) standard scal-

ing 
(

in−�

�

)
 (Fulkerson and Wolfe 1962), and (4) max-abs scal-

ing 
(

in

max(|in|)

)
 where in is the input image, � is the image mean 

value, and � is the image standard deviation value.

3.2.2  Voice records manipulation

The voice records can be processed numerically and graphi-
cally using ML or DL approaches. 16 voice feature extractions 
techniques are used (1) Mel-frequency Cepstral Coefficients 
(MFCC) using the Slaney and HTK methods (Sigurdsson 
et al. 2006), (2) Mel-spectrogram (Kaneko et al. 2020), (3) 
chroma-based techniques (chroma-only, Short-time Fourier 
Transform (STFT) Griffin and Lim 1984), Constant-Q Chro-
magram (CQT) (Liu and Xie 2012), and Chroma Energy 
Normalized (CENS) Kattel et al. 2019)), (4) spectral-based 
techniques (contrast, flatness, centroid, bandwidth, and roll-off 
frequency) (Bou-Ghazale and Hansen 1994), (5) Zero-crossing 
Rate (ZCR) (Inbar et al. 1986), (6) Tonnetz techniques (normal 
and harmonic) 2022 2022), and (7) Root Mean Square Error 
(RMSE) (Chai and Draxler 2014). The voice records are rep-
resented graphically using 5 techniques (1) spectrogram, (2) 
Mel-spectrogram, (3) STFT, and (4) MFCC using the Slaney 
and HTK methods. The STFT split the signal into time win-
dows and runs the Fourier transform on each window to get 
the same information (Alsberg et al. 1997). The spectrogram 
is the frequency change over time. The Mel-spectrogram is the 
acoustic time-frequency representation. The MFCC describes 
the overall shape of a spectral envelope (Terasawa et al. 2012). 
The spectral-contrast describes the differences between the 
peaks and valleys in the spectrum. The Tonnetz is the tonal 
centroid features.

How the voice segmentation is applied (one of the study 
contributions)? The input voice record is read, assuming it is 
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Fig. 1  The Parkinson diseases learning and optimization framework

Fig. 2  Samples from the 
NewHandPD dataset classes
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a 95-seconds duration as an example. For a pre-defined seg-
mentation duration, assuming 10 seconds, the voice is cut into 
9 segments where each segment is 10-seconds in duration. The 
remaining 5 seconds are neglected as they are lower than the 
segmentation duration. This process is run again for another 
segmentation duration. In the current study, the voices are seg-
mented using 5, 15, 30, and 60 segmentation durations. Also, 
the output numerical features and graphs from all of them are 
combined. Hence, the authors generated 5 numerical and graphi-
cal datasets from records. Figure 3 shows the proposed voice 
segmentation approach graphically.

3.2.3  Current study followed configurations

In the current study, the used pre-defined ranges in the first data 
augmentation location are 15% shifting in the width (and height), 
15% shearing, 15% zooming, horizontal (and vertical) flipping, 
25◦ rotation, and brightness changing with limits of [0.8, 1.2]. 
For the NewHandPD dataset, the number of total images after 
equalization is 840 (i.e., 140 images in each class with a size of 
(100, 100, 3)). For the MDVR-KCL dataset, the “Spontaneous-
Dialogue” and “ReadText” voice records are combined and 281 
features are extracted. Each voice record is cut into segments with 
different time durations (e.g., 10 seconds).

Table 2 shows the number of extracted features using each 
mentioned technique. Table 3 shows the number of extracted 
graphs using each segment duration in seconds. Figure 4 shows 
sample graphs for each technique for the 60-second-segment-
duration and they are extracted in the 480 DPI resolution.

3.3  Classification and optimization phases

ML algorithms are used to classify the numerical features for 
the voice records dataset. The convolutional neural network 
(CNN) (i.e., a DL approach) is used to classify the handwrit-
ten images dataset.

3.3.1  Machine learning algorithms

The used ML algorithms are (1) decision trees (DT), (2) 
support vector machines (SVM), (3) Naïve Bayes (NB), and 
(4) K-nearest neighbor (KNN). Each ML algorithm is put 
in a pipeline in the order of (1) a dataset scaler layer, (2) a 
variance threshold layer, and (3) the ML algorithm.

3.3.2  Pre‑trained CNN models

8 pre-trained CNN models on the ImageNet dataset, using the 
transfer learning approach (TL), are used instead of compil-
ing models from scratch. They are (1) ResNet50, (2) VGG16, 
(3) VGG19, (4) MobileNet, (5) MobileNetV2, (6) MobileNet-
V3Small, (7) MobileNetV3Large, and (8) InceptionResNetV2 
models. Each model is concatenated with a global average 

pooling 2D layer, a dropout layer, and an output layer. The 
output activation function is set to SoftMax and the pre-trained 
weights’ initialization is set to ImageNet. The input shape is 
set to (100, 100, 3) in the colored RGB mode.

3.3.3  Hyperparameters optimization

Training the models require specifying a set of hyperparam-
eters such as batch size and dropout. The current study sug-
gests using the grid search (GS) (with the ML algorithms) 
and injecting the Aquila Optimizer (AO) metaheuristic opti-
mizer (with the CNN models) to find the best combination 
that will lead to the highest performance metric.

AO depends on four hunting mechanisms (1) high soar with 
vertical stoop in which the Aquila explores the search space 
(Equation 1), (2) contour flight with short glide attack in which 
surrounds the target (Equation 2), (3) a low flight with a slow 
descent attack in which the Aquila performs a vertical attack 
(Equation 3), and (4) walking and grab a prey in which the 
Aquila attacks the target (Eq. 4) Abualigah et al. 2021).

where X(t + 1) is the solution of the next iteration t + 1 , X(t) 
is the solution of the current iteration t, T is the number of 
iterations, Xbest is the best-obtained solution, Xm is the mean 
location of the current solutions, D is the dimension value, 

(1)
X(t + 1) = Xbest(t) × (1 −

t

T
) + (Xm(t) − Xbest(t) × rand)

(2)X(t + 1) = Xbest(t) × Levy(D) + XR(t) + (y − x) × rand

(3)
X(t + 1) = (Xbest(t) − XM(t)) × � − rand+

((UB − LB) × rand + LB) × �

(4)
X(t + 1) = QF × Xbest(t) − (G1 × X(t) × rand)−

G2 × Levy(D) + rand × G1

Fig. 3  Presentation of the proposed voice records segmentation 
approach
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Levy(D) is the levy flight distribution function, y (and x) are 
used to present the spiral shape in the search domain, rand 
is a random uniform value, UB is the upper bound, LB is 
the lower bound, � (and � ) are the exploitation adjustment 

parameters, G1 is a notation of the various motions of the 
AO, G2 is a decreasing value from 2 to 0, and QF is the 
quality function used to equilibrium the search techniques.

The word “generic” means that the framework can 
accept and handle any metaheuristic optimizer and it is not 
restricted by the specified optimizers in the current study.

3.3.4  Current study followed configurations

The AO population in the current study populates 10 solu-
tions where each solution’s dimension equals 14. The reason 
behind this number is that each column in the solution is 
mapped to a specific hyperparameter randomly. These are 
the target hyperparameters to get optimized.

They are (1) training loss function, (2) training batch 
size, (3) dropout ratio, (4) TL learning ratio, (5) parameters 
(i.e., weights) optimizer, (6) augmentation rotation range, 
(7) augmentation width shift range, (8) augmentation height 
shift range, (9) augmentation shear range, (10) augmenta-
tion zoom range, (11) augmentation horizontal flipping, 
(12) augmentation vertical flipping, and (13) augmentation 
brightness change (“from” and “to” ranges).

In the grid search, the hyperparameters are (1) “nNeigh-
bors” is the number of neighbors to use, (2) “leafSize” is the 
leaf size passed to the tree, (3) “p” is the power parameter 
for the Minkowski metric, (4) “criterion” is the function to 
measure the split quality, (5) “maxDepth” is the tree maxi-
mum depth, (6) “splitter” is the strategy used to choose the 
split at each node, (7) “alpha” is the additive (Laplace/Lid-
stone) smoothing parameter, (8) “C” is the regularization 
parameter, (9) “kernel” is the kernel type to be used in the 
algorithm, (10) “degree” is the degree of the polynomial 
kernel function, (11) “gamma” is the kernel coefficient, and 
(12) “threshold” is the threshold value used by the vari-
ance threshold layer. Table 4 shows the used ranges for each 
hyperparameter in the current study.

Table 2  Summarization of the number of extracted numerical fea-
tures for the MDVR-KCL dataset

Category Technique No. features

MFCC Slaney 40
HTK 40

Mel-Spectrogram 128
Chroma-based Chroma-only 12

STFT 12
CQT 12
CENS 12

RMSE 1
Spectral-based Contrast 7

Flatness 1
Centroid 1
Bandwidth 1
Roll-off Frequency 1

ZCR 1
Tonnetz Normal 6

Harmonic 6
Total 281

Table 3  Summarization of the number of extracted graphs for the 
MDVR-KCL dataset

Segment duration (s) No. PD No. HC Total

5 310 420 730
15 258 366 624
30 126 179 305
60 57 79 136
Total 751 1044 1795

Fig. 4  Sample graphs for each technique for the 60-second-segment-duration
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3.4  Performance metrics

The used performance metrics with the ML algorithms are 
the accuracy, F1-score, precision, recall (i.e., sensitivity), 
and AUC; while the used ones with the CNN learning and 
optimization are loss, accuracy, F1-score, precision, recall 
(i.e., sensitivity), specificity, AUC, IOU coefficient, and Dice 
coefficient.

3.5  Framework pseudocode

The used framework pseudocode is shown in Algorithm 1. It 
summarizes the discussed learning and optimization phases 
in the suggested framework abstractly. Comments are added 
for illustration purposes.
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3.6  PD patient diagnosis

After completing the framework discussion, the question is 
“how can the patient perform a diagnosis?”. In the sug-
gested generic framework, the patient can apply two tests 
(1) handwriting test and (2) speech test. In the first test, the 
patient should draw three graphs while in the second test, the 
patient should read certain words (or sentences).

The system accepts the drawn three figures as inputs, con-
verts the scale, applies classification of each type, and takes 
the average of them. The system also accepts the speech 
record, extract the numerical and graphical features of them, 
convert the scale, apply classification of each type, and take 
the average of them. The final decision to the patient is the 
maximum between the two tests. It is worth mentioning that, 
the maximum can be changed to the average. This is sum-
marized graphically in Fig. 5.

4  Experimental results and discussion

The experiments are divided into two categories (1) experi-
ments related to the extracted numerical features and (2) 
experiments related to the images and extracted graphs.

4.1  Environment and configurations

Generally, Python is the used programming language. The 
learning and optimization environments are Google Colab 
(with its GPU) and Toshiba Qosmio X70-A with 32 GB 
RAM and Intel Core i7 Processor (Balaha and Saafan 2021). 
The NewHandPD (6 classes) and MDVR-KCL (2 classes) 
are the used datasets. The dataset split ratio is set to 85% 
(training and validation) and 15% (testing). Dataset shuffling 
is applied. The images (i.e., graphs) are resized to (100, 100, 
3) in RGB. The train and test subsets are different so that 
there is no data leakage.

Table 4  The ranges for each hyperparameter

Optimizer Category Definition Range

AO CNN Learning Loss Function Categorical Crossentropy, Categorical Hinge, KL Divergence, 
Poisson, Squared Hinge, and Hinge

Batch Size From 8 to 64 with a step of 8
Parameters (i.e., weights) & Optimizer Adam, Nadam, Adagrad, Adadelta, Adamax, RMSProp, 

SGD, Ftrl, SGD Nesterov, RMSProp Centered, Adam, and 
AMSGrad

CNN Model Structure Dropout ratio [0.0, 0.6]
TL learning ratio From 0 to 100 with a step of 1

CNN Data Augmentation Rotation Range From 0 to 45 with a step of 1
Width Shift Range [0, 0.25]
Height Shift Range
Shear Range
Zoom Range
Horizontal Flipping [True, False]
Vertical Flipping
Brightness Change (From) [0.5, 2.0]
Brightness Change (To)

GS KNN nNeighbors [1, 2, 3, 5, 7, 10]
leafSize [1, 5, 10, 15]
p [1, 2]

SVM degree [1, 2, 3, 4, 5]
C [0.1, 1, 10, 100, 1000]
gamma [1, 0.1, 0.01, 0.001, 0.0001]
kernel [Linear, Poly, RBF, Sigmoid, Precomputed]

DT criterion [Gini, Entropy]
splitter [Best, Random]
maxDepth From 3 to 14 with a step of 1

NB alpha [0, 0.1, 0.5, 1.0, 1.5, 2, 3, 5, 10]
Variance Threshold threshold [0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5]
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4.2  First category experiments

The current subsection presents and discusses the experi-
ments related to the extracted 281 numerical features using 
the mentioned ML algorithms (i.e., DT, SVM, NB, and 
KNN). For each ML algorithm, five experiments are applied 
on the 5, 15, 30, 60, and mixed durations. The algorithms 
are optimized using the grid search for 10 cross-validation 
runs, to find the best combinations with the highest metrics. 
The metrics (i.e., accuracy, precision, recall, F1, and AUC) 
are captured and reported in Table 5. It reports the best met-
rics 99.94%, 100%, 100%, 99.93%, and 99.95% for accuracy, 
precision, recall, F1, and AUC respectively. It shows that the 
NB algorithm reports the worst metrics. It highlights that the 
suggested contribution, by combining the features, reports 
better metrics than the individual uncombined features. The 
confusion matrices are presented in Table 6.

4.3  Second category experiments

The current subsection presents and discusses the experi-
ments related to the images and extracted graphical fea-
tures using the mentioned pre-trained CNN models (i.e., 
ResNet50, VGG16, VGG19, MobileNet, MobileNetV2, 
MobileNetV3Small, MobileNetV3Large, and Inception-
ResNetV2) and AO meta-heuristic optimizer. The num-
ber of epochs is set to 5. The number of AO iterations and 

population size are set to 25 and 10 respectively, and hence 
250 records are reported. The captured metrics are the loss, 
accuracy, F1, precision, recall, specificity, AUC, IOU coef., 
and Dice coef. as mentioned.

4.3.1  The NewHandPD experiments

The top-1 record is reported concerning the testing accu-
racy for each pre-trained CNN model in Table 7. It shows 
that neglecting the horizontal and vertical flipping is prefer-
able by six and five models respectively. The metrics results 
are above 93% while the best metrics are 0.029, 99.75%, 
99.75%, 99.75%, 99.75%, 99.95%, 100%, 99.75%, 98.87%, 
and 99.04% for the loss, accuracy, F1, precision, recall, spec-
ificity, AUC, IOU coef., and Dice coef. respectively. The 
KL divergence loss function and SGD Nesterov (and SGD) 
weights optimizers are the suggested hyperparameters by 
the experiments. The results are graphically summarized in 
Fig. 6 and the correlations are reported in Table 8.

4.3.2  The MDVR‑KCL experiments

The top-1 record using VGG19 is reported concerning the 
testing accuracy for each combined dataset (i.e., STFT, 
MFCC HTK, MFCC Slaney, Specgram, and Mel-Specgram) 
in Table 9. The reason behind depending on the VGG19, it 
reported the best metrics in Table 7. It shows that neglecting 
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the horizontal and vertical flipping is preferable by five and 
three models respectively. The best metrics are 0.090, 100%, 
100%, 100%, 100%, 100%, 100%, 100%, 100%, and 99.09% 
for the loss, accuracy, F1, precision, recall, specificity, AUC, 
IOU coef., and Dice coef. respectively. The Poisson loss 
function and Adagrad (and SGD) weights optimizers are the 
suggested hyperparameters by the experiments. The results 

are graphically summarized in Fig. 7 and the correlations 
are reported in Table 10.

4.4  Time complexity remarks

The major objective of the current study was to build 
a framework for the PD using speech and handwritten 

Table 5  Summary of the ML numerical experiments (i.e., first category experiments)

Duration (s) Algorithm Accuracy Precision Recall F1 AUC Scaler Variance 
threshold

Best classifiers parameters

5 KNN 98.36% 97.76% 98.39% 98.07% 98.36% Min Max 0.01 leafSize = 1, nNeighbors = 1, and p 
= 1

DT 83.42% 89.54% 69.03% 77.96% 81.54% Normalizer 0 criterion = entropy and maxDepth = 5
NB 57.53% 0% 0% 0% 50.00% Normalizer 0 alpha = 0
SVM 98.90% 98.71% 98.71% 98.71% 98.88% Min Max 0.01 C = 0.1, degree = 5, gamma = 1, and 

kernel = poly
15 KNN 99.04% 98.84% 98.84% 98.84% 99.01% Max Abs 0 leafSize = 1 and nNeighbors = 1

DT 96.63% 96.47% 95.35% 95.91% 96.44% Normalizer 0 criterion = entropy and maxDepth 
= 13

NB 58.65% 0% 0% 0% 50.00% Normalizer 0 alpha = 0
SVM 99.04% 98.46% 99.22% 98.84% 99.07% Min Max 0.01 C = 100, degree = 1, and gamma = 

0.1
30 KNN 98.03% 100% 95.24% 97.56% 97.62% Max Abs 0.05 leafSize = 1, nNeighbors = 1, and p 

= 1
DT 97.38% 99.17% 94.44% 96.75% 96.94% Standardization 0.10 maxDepth = 10 and splitter = random
NB 58.69% 0% 0% 0% 50.00% Normalizer 0 alpha = 0
SVM 98.03% 100% 95.24% 97.56% 97.62% Max Abs 0.05 C = 0.1, gamma = 1, and kernel = 

poly
60 KNN 98.53% 100% 96.49% 98.21% 98.25% Max Abs 0.01 leafSize = 1, nNeighbors = 1, and p 

= 1
DT 83.82% 92.68% 66.67% 77.55% 81.43% Normalizer 0 maxDepth = 3 and splitter = random
NB 58.09% 0% 0% 0% 50.00% Normalizer 0 alpha = 0
SVM 94.85% 96.30% 91.23% 93.69% 94.35% Min Max 0 C = 1, degree = 1, and gamma = 0.1

Combined KNN 99.94% 100% 99.87% 99.93% 99.93% Max Abs 0 leafSize = 1 and nNeighbors = 1
DT 97.38% 96.56% 97.20% 96.88% 97.36% Standardization 0.50 criterion = entropy and maxDepth 

= 14
NB 58.16% 0% 0% 0% 50.00% Normalizer 0 alpha = 0
SVM 99.94% 99.87% 100% 99.93% 99.95% Max Abs 0 C = 100, degree = 1, and gamma = 

0.1

Table 6  Summary of the confusion matices (i.e., first category experiments)
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datasets. The target was to achieve high performance met-
rics as reported in the results. The learning and processing 
time was high and hence was not reported exactly in the 
study. However, approximate times can be calculated. It is 
worth noting that the time depended mainly on the working 
environment. The current study worked on two environments 
as mentioned in Sect. 4.1. For the ML model, the second 
environment is used while the first environment is used with 
the CNN models.

For the first category experiments, the GS and 10-folds 
CV are used. Assuming that, each ML model takes one sec-
ond approximately. Table 11 shows the approximate time 
for each ML model. The total approximate time for the ML 
models for a single dataset is 7,300 seconds (i.e., 121 min-
utes or 2 hours). We have 5 datasets as shown in Tables 3 

and 5. Hence, we need 10 hours approximately to launch 
them. Of course, they are approximate times and the ML 
models may take longer than this.

By applying the same concept with the pretrained models 
but with the assumption that each model takes 1 minutes due 
to the model complexity. There are 14 hyperparameters to 
optimize using the AO. The number of iterations is set to 10, 
the population size is set to 25, and the number of epochs is 
set to 5. Hence, there are 10 × 25 × 5 = 1, 250 runs for each 
model to complete. The approximate time is 1,250 minutes 
(i.e., 20 hours) for a single model. We have 8 pretrained 
models in Table 7 and 5 datasets in Table 9. Hence, there 
are 14 experiments. The total approximate time can be 291 
hours (i.e., 12 days).

Table 7  The top-1 record concerning the accuracy for the pre-trained models for NewHandPD

# MobileNet MobileNetV2 MobileNet-
V3Small

MobileNetV-
3Large

ResNet50 VGG16 VGG19 Inception-
ResNetV2

Loss function Categorical 
crossentropy

Categorical 
crossentropy

KL divergence KL divergence KL divergence KL divergence Poisson Categorical 
crossentropy

Batch size 24 8 8 24 56 40 48 56
Dropout ratio 0.42 0 0.37 0.20 0.41 0.26 0.33 0.35
TL learn ratio 89% 0% 84% 55% 22% 57 67 58
Weights opti-

mizer
SGD Nesterov Adam Adagrad SGD Nesterov Adagrad Adagrad SGD SGD Nesterov

Rotation range 29◦ 0◦ 39◦ 7◦ 4◦ 36◦ 31◦ 32◦

Width shift 
range

0.24 0 0.21 0.07 0.20 0.22 0.15 0.22

Height shift 
range

0.24 0 0.05 0.02 0.05 0.03 0.2 0.06

Shear range 0.02 0 0.21 0.23 0.19 0.15 0.15 0.13
Zoom range 0.12 0 0.22 0.25 0.01 0.19 0.22 0.20
Horizontal flip ✓ ✓ × × × × × ×

Vertical flip × ✓ × × ✓ ✓ × ×

Brightness 
range (low)

1.24 0.5 0.92 1.29 1.01 1.34 1.32 0.56

Brightness 
range (high)

1.28 0.5 1.08 1.52 1.67 1.76 1.46 1.3

Loss 0.038 0.032 0.152 0.107 0.049 0.029 0.180 0.049
Accuracy 99.05% 99.40% 95.12% 95.00% 98.81% 99.29% 99.75% 98.21%
F1-Score 99.05% 99.40% 95.16% 95.00% 98.81% 99.29% 99.75% 98.21%
Precision 99.05% 99.40% 95.36% 95.00% 98.81% 99.29% 99.75% 98.21%
Recall 99.05% 99.40% 95.00% 95.00% 98.81% 99.29% 99.75% 98.21%
Specificity 99.81% 99.88% 99.07% 99.00% 99.76% 99.86% 99.95% 99.64%
AUC 99.98% 99.92% 99.67% 99.82% 99.97% 99.99% 100% 99.91%
IOU coefficient 98.87% 98.72% 93.13% 94.80% 97.09% 98.02% 93.45% 97.31%
Dice coefficient 99.04% 98.99% 94.36% 95.77% 97.76% 98.50% 95.17% 97.92%
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4.5  Related studies comparisons

Table  12 shows a comparison between the suggested 
approach and related studies concerning the same used 
datasets.

5  Limitations

The major limitation of the current study is the dataset as the 
PD public and available datasets are limited and there is no 
dataset that contains handwriting and voice data for the same 
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98%

99%

100%

Accuracy F1 Precision Recall Specificity AUC IOU Coef. Dice Coef.

The NewHandPD Experiments Summarization

MobileNet MobileNetV2 MobileNetV3Small MobileNetV3Large ResNet50 VGG16 VGG19 InceptionResNetV2

Fig. 6  The NewHandPD experiments summarization

Table 9  The top-1 record concerning the accuracy using VGG19 for MDVR-KCL

# Specgram Mel-Specgram MFCC (SLANEY) MFCC (HTK) STFT

Loss Function Poisson Poisson Poisson Squared Hinge KL Divergence
Batch Size 48 40 16 48 40
Dropout Ratio 0.06 0.41 0.43 0.19 0.31
TL Learn Ratio 86 67 13 59 61
Weights Optimizer Adagrad SGD RMSProp Centered Adagrad SGD
Rotation Range 29 29 41 41 35
Width Shift Range 0.14 0.2 0 0.09 0.16
Height Shift Range 0.09 0.14 0.15 0.05 0.2
Shear Range 0.01 0.14 0.22 0.13 0.14
Zoom Range 0.13 0.13 0.01 0.13 0.17
Horizontal Flip × × × × ×

Vertical Flip ✓ × × ✓ ×

Brightness Range (Low) 0.72 1.33 0.55 0.65 1.38
Brightness Range (High) 1.32 1.65 1.16 1.33 1.41
Loss 0.619 0.505 0.791 0.654 0.090
Accuracy 89.58% 100% 70.03% 92.68% 96.93%
F1-Score 89.58% 100% 70.03% 92.68% 96.93%
Precision 89.58% 100% 70.03% 92.68% 96.93%
Recall 89.58% 100% 70.03% 92.68% 96.93%
Specificity 89.58% 100% 70.03% 92.68% 96.93%
AUC 96.69% 100% 76.72% 95.33% 99.55%
IOU Coefficient 89.58% 100% 70.03% 92.68% 96.93%
Dice Coefficient 86.85% 99.09% 67.41% 93.22% 94.85%
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patient. In the future, data from PD patients can be collected 
as well to further validate the effect of diversity based on the 
suggested approach.

6  Conclusions and future work

Parkinson’s disease is a progressive and chronic disorder 
that harms the life of the patients. Scientists are still try-
ing to find a suitable treatment for the disease. The main 
problem of PD is that patients are correctly diagnosed 
in the late stages. Therefore, a massive effort is done to 
diagnose PD in its early stages to use the proper medica-
tion to control the symptoms as possible. The challenge is 
that the symptoms of PD are similar to other diseases. In 
this paper, the authors proposed a comprehensive generic 
framework for the early diagnosis of PD using a combi-
nation of disorders in handwritten and (or) speech sig-
nals. For handwriting disorders, 8 pre-trained deep CNNs 
via TL, namely ResNet50, VGG16, VGG19, MobileNet, 

65%

70%

75%

80%

85%

90%

95%

100%

Accuracy F1 Precision Recall Specificity AUC IOU Coef. Dice Coef.

The MDVR-KCL Experiments Summarization

Specgram Mel-Specgram MFCC (SLANEY) MFCC (HTK) STFT

Fig. 7  The MDVR-KCL experiments summarization

Table 11  Approximate times for each ML model

Model Hyperpa-
rameters 
#

Total configurations # With 10 folds Approxi-
mate time 
(s)

KNN 3 6 × 4 × 2 = 48 480 480
SVM 4 5 × 5 × 5 × 5 = 625 6,250 6,250
DT 3 2 × 2 × 12 = 48 480 480
NB 1 9 90 90

7300

Table 12  Related studies 
comparisons

References Best accuracy Other metrics

Pereira et al. 2015) 78.9% –
Pereira et al. 2016b) 80.19% –
Pereira et al. 2016a) 90.39% –
Pereira et al. 2018) 95% –
Senatore et al. 2019) 72.36% –
Impedovo 2019) 98.44% –
Naseer et al. 2020) 98.28% 85.98% precision, 67.57% sensitivity, and 

76.37% specificity
Kamran et al. 2021) 99.75% (CNN-TL) –
Sakar et al. 2013) 77.5% –
Caliskan et al. 2017) 86.09% 58.27% sensitivity abd 95.39% specificity
Goyal et al. 2021) 99.37% –
Tuncer and Dogan 2019) 97.62% by 1NN 97.61% F1
Zahid et al. 2020) 99.7% –
Proposed approach 99.94% (ML) Table 5
Proposed approach 99.75% (NewHandPD) Table 7
Proposed approach 100% (MDVR-KCL) Table 9
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MobileNetV2, MobileNetV3Small, MobileNetV3Large, 
and InceptionResNetV2, are used to diagnose PD using 
the handwritten spirals drawn by PD patients. To maintain 
an enhanced performance, the authors used a metaheuris-
tic optimizer, namely the Aquila optimizer, to optimize the 
hyperparameters in the different CNN structures to achieve 
the best structure. For voice signals, both numerical and 
graphical features are extracted. Numerical features are 
extracted using 16 feature extraction algorithms, namely: 
(1) MFCC using the Slaney and HTK methods, (2) Mel-
spectrogram, (3) chroma-based techniques (chroma-only, 
STFT, CQT, and CENS), (4) spectral-based techniques 
(contrast, flatness, centroid, bandwidth, and roll-off fre-
quency), (5) ZCR, (6) Tonnetz techniques (normal and 
harmonic), and (7) RMSE. These features are used in 4 
machine learning (ML) algorithms, namely Decision Tree 
(DT), Support Vector Machine (SVM), Naïve Bayes (NB), 
and K-Nearest Neighbor (KNN). The grid search algo-
rithm is applied to optimize the parameters of the different 
ML algorithms. Graphical features are extracted using 5 
techniques, namely (1) spectrogram, (2) Melspectrogram, 
(3) STFT, and (4) MFCC using the Slaney and HTK meth-
ods. These features are applied to the different pretrained 
CNN structures. One of the major contributions of the cur-
rent work is proposing a new feature extraction algorithm. 
The idea of the proposed algorithm is to use a dataset of 
voice segments divided by different durations to guaran-
tee a variety in the features. For the NewHandPD dataset, 
the best-reported metrics are 99.75% using the VGG19 
structure. For the MDVR-KCL dataset, the best-reported 
metrics are 99.94% using the KNN and SVM ML algo-
rithms and the combined numerical features; and 100% 
using the combined the mel-specgram graphical features 
and VGG19 structure. These results are better than other 
state-of-the-art researches.

6.1  Future work

The proposed framework and suggested approach can be 
improved by adding other biomarkers and datasets including 
UPDRS scores for the classification of PD based on sever-
ity. Other deep learning classifiers such as recurrent neu-
ral networks (RNN) can be used for frequency-time data. 
The authors plan to apply the proposed framework to other 
diseases such as Alzheimer’s and heart diseases. Instead of 
pre-trained models, we also plan to build a CNN model from 
scratch for the framework. We also plan to use CNN in the 
pre-processing phase due to its powerful features.

Appendix A: Table of abbreviations

The table of abbreviations is shown in Table 13.
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