Skip to main content
. 2022 Aug 26:1–21. Online ahead of print. doi: 10.1007/s12652-022-04342-6

Table 4.

The ranges for each hyperparameter

Optimizer Category Definition Range
AO CNN Learning Loss Function Categorical Crossentropy, Categorical Hinge, KL Divergence, Poisson, Squared Hinge, and Hinge
Batch Size From 8 to 64 with a step of 8
Parameters (i.e., weights) & Optimizer Adam, Nadam, Adagrad, Adadelta, Adamax, RMSProp, SGD, Ftrl, SGD Nesterov, RMSProp Centered, Adam, and AMSGrad
CNN Model Structure Dropout ratio [0.0, 0.6]
TL learning ratio From 0 to 100 with a step of 1
CNN Data Augmentation Rotation Range From 0 to 45 with a step of 1
Width Shift Range [0, 0.25]
Height Shift Range
Shear Range
Zoom Range
Horizontal Flipping [True, False]
Vertical Flipping
Brightness Change (From) [0.5, 2.0]
Brightness Change (To)
GS KNN nNeighbors [1, 2, 3, 5, 7, 10]
leafSize [1, 5, 10, 15]
p [1, 2]
SVM degree [1, 2, 3, 4, 5]
C [0.1, 1, 10, 100, 1000]
gamma [1, 0.1, 0.01, 0.001, 0.0001]
kernel [Linear, Poly, RBF, Sigmoid, Precomputed]
DT criterion [Gini, Entropy]
splitter [Best, Random]
maxDepth From 3 to 14 with a step of 1
NB alpha [0, 0.1, 0.5, 1.0, 1.5, 2, 3, 5, 10]
Variance Threshold threshold [0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5]