Table 4.
The ranges for each hyperparameter
Optimizer | Category | Definition | Range |
---|---|---|---|
AO | CNN Learning | Loss Function | Categorical Crossentropy, Categorical Hinge, KL Divergence, Poisson, Squared Hinge, and Hinge |
Batch Size | From 8 to 64 with a step of 8 | ||
Parameters (i.e., weights) & Optimizer | Adam, Nadam, Adagrad, Adadelta, Adamax, RMSProp, SGD, Ftrl, SGD Nesterov, RMSProp Centered, Adam, and AMSGrad | ||
CNN Model Structure | Dropout ratio | [0.0, 0.6] | |
TL learning ratio | From 0 to 100 with a step of 1 | ||
CNN Data Augmentation | Rotation Range | From 0 to 45 with a step of 1 | |
Width Shift Range | [0, 0.25] | ||
Height Shift Range | |||
Shear Range | |||
Zoom Range | |||
Horizontal Flipping | [True, False] | ||
Vertical Flipping | |||
Brightness Change (From) | [0.5, 2.0] | ||
Brightness Change (To) | |||
GS | KNN | nNeighbors | [1, 2, 3, 5, 7, 10] |
leafSize | [1, 5, 10, 15] | ||
p | [1, 2] | ||
SVM | degree | [1, 2, 3, 4, 5] | |
C | [0.1, 1, 10, 100, 1000] | ||
gamma | [1, 0.1, 0.01, 0.001, 0.0001] | ||
kernel | [Linear, Poly, RBF, Sigmoid, Precomputed] | ||
DT | criterion | [Gini, Entropy] | |
splitter | [Best, Random] | ||
maxDepth | From 3 to 14 with a step of 1 | ||
NB | alpha | [0, 0.1, 0.5, 1.0, 1.5, 2, 3, 5, 10] | |
Variance Threshold | threshold | [0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5] |