AO |
CNN Learning |
Loss Function |
Categorical Crossentropy, Categorical Hinge, KL Divergence, Poisson, Squared Hinge, and Hinge |
Batch Size |
From 8 to 64 with a step of 8 |
Parameters (i.e., weights) & Optimizer |
Adam, Nadam, Adagrad, Adadelta, Adamax, RMSProp, SGD, Ftrl, SGD Nesterov, RMSProp Centered, Adam, and AMSGrad |
CNN Model Structure |
Dropout ratio |
[0.0, 0.6] |
TL learning ratio |
From 0 to 100 with a step of 1 |
CNN Data Augmentation |
Rotation Range |
From 0 to 45 with a step of 1 |
Width Shift Range |
[0, 0.25] |
Height Shift Range |
|
Shear Range |
|
Zoom Range |
|
Horizontal Flipping |
[True, False] |
Vertical Flipping |
|
Brightness Change (From) |
[0.5, 2.0] |
Brightness Change (To) |
|
GS |
KNN |
nNeighbors |
[1, 2, 3, 5, 7, 10] |
leafSize |
[1, 5, 10, 15] |
p |
[1, 2] |
SVM |
degree |
[1, 2, 3, 4, 5] |
C |
[0.1, 1, 10, 100, 1000] |
gamma |
[1, 0.1, 0.01, 0.001, 0.0001] |
kernel |
[Linear, Poly, RBF, Sigmoid, Precomputed] |
DT |
criterion |
[Gini, Entropy] |
splitter |
[Best, Random] |
maxDepth |
From 3 to 14 with a step of 1 |
NB |
alpha |
[0, 0.1, 0.5, 1.0, 1.5, 2, 3, 5, 10] |
Variance Threshold |
threshold |
[0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5] |