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ABSTRACT

An important question in toxicological risk assessment is whether non-animal new approach methodologies (NAMs) can be
used to make safety decisions that are protective of human health, without being overly conservative. In this work, we
propose a core NAM toolbox and workflow for conducting systemic safety assessments for adult consumers. We also
present an approach for evaluating how protective and useful the toolbox and workflow are by benchmarking against
historical safety decisions. The toolbox includes physiologically based kinetic (PBK) models to estimate systemic Cmax levels
in humans, and 3 bioactivity platforms, comprising high-throughput transcriptomics, a cell stress panel, and in vitro
pharmacological profiling, from which points of departure are estimated. A Bayesian model was developed to quantify the
uncertainty in the Cmax estimates depending on how the PBK models were parameterized. The feasibility of the evaluation
approach was tested using 24 exposure scenarios from 10 chemicals, some of which would be considered high risk from a
consumer goods perspective (eg, drugs that are systemically bioactive) and some low risk (eg, existing food or cosmetic
ingredients). Using novel protectiveness and utility metrics, it was shown that up to 69% (9/13) of the low risk scenarios
could be identified as such using the toolbox, whilst being protective against all (5/5) the high-risk ones. The results
demonstrated how robust safety decisions could be made without using animal data. This work will enable a full evaluation
to assess how protective and useful the toolbox and workflow are across a broader range of chemical-exposure scenarios.

Key words: Bayesian modelling; new approach methodologies; point of departure; physiologically based pharmacokinetics;
probabilistic risk assessment.

The rapid development of new, non-animal approaches for con-
ducting toxicological safety assessments has been driven by
several factors. These include ethical considerations, regulatory
action (animal test bans for certain types of ingredients), and
the need to assure the safety of chemicals using efficient, cost-
effective, and robust methods (Dent et al., 2018, 2021; Thomas

et al., 2019). Non-animal approaches also have the potential to
improve safety assessments by using more human-relevant
tools through coverage of key biological pathways or targets.
Next-generation risk assessment (NGRA) provides a way to inte-
grate new approach methodology (NAM) data from various
sources into the decision-making process, allowing for safety
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assessments to be conducted without the use of animal data.
Recently, the International Cooperation for Cosmetics
Regulation outlined 9 principles for the use of NGRA to make
decisions on consumer safety for ingredients in cosmetics prod-
ucts (Dent et al., 2018). In particular, the approach is (1)
exposure-led, (2) hypothesis driven, (3) uses a tiered and itera-
tive approach to make safety decisions, and (4) is designed to
prevent harm. Although low tier approaches such as exposure-
based waiving (Yang et al., 2017) or history of safe use
(Constable et al., 2007; Neely et al., 2011) will be sufficient to
make a decision on safety for some chemical-exposure scenar-
ios, when this is not possible, risk assessments can be com-
pleted at higher tiers using appropriate NAM-based tools and
approaches. Several frameworks describing how NAMs can be
integrated for safety decision making have also been developed
over the last decade, most notably the SEURAT-1 tiered work-
flow for conducting ab initio risk assessments of systemic
repeat-dose toxicity (Berggren et al., 2017), and the next-genera-
tion blueprint of computational toxicology from the U.S.
Environmental Protection Agency (EPA) (Thomas et al., 2019).

To demonstrate the practical application of the frameworks
and principles underpinning NGRA, detailed case studies have
recently been published focusing on the ab initio risk assess-
ment of specific ingredients under various exposure scenarios
using NAMs (Baltazar et al., 2020; OECD, 2021). A general concept
throughout is that if the exposure level of a chemical in humans
is far below the concentration needed for it to have any biologi-
cal effect, then it is unlikely to trigger any toxicity. Estimates of
systemic exposure are obtained using physiologically based ki-
netic (PBK) models (Bois et al., 2017; Mumtaz et al., 2012; Pearce
et al., 2017) and potential biological effects are assessed using
points of departure (PODs) from in vitro assays (Farmahin et al.,
2017; Harrill et al., 2019, 2021; Reynolds et al., 2020). The ap-
proach is designed to be protective of human health rather than
predictive of any specific toxicities (Dent et al., 2018; Paul
Friedman et al., 2020). As such, the in vitro assays are selected
based on whether they are able to detect very early biological
perturbations, before the onset of any adverse effects. Examples
of relevant assays include high-throughput transcriptomics
(Harrill et al., 2021), phenotypic profiling (Nyffeler et al., 2020),
assays for measuring cellular stress (Hatherell et al., 2020), or
profiling of specific biological targets, such as key receptors,
enzymes, transporters, and ion channels (Bowes et al., 2012).
The PODs and exposure estimates can be combined into a single
metric, the bioactivity exposure ratio (BER) (or margin of safety)
(Baltazar et al., 2020; Wetmore et al., 2015). Overall, the approach
is similar to traditional risk assessment, in that toxicologists do
not expect animals to behave exactly as humans (Hartung,
2008; Van Norman, 2019), or to express the same adverse effects
following administration of a chemical. However, no-observed-
(adverse)-effect levels from toxicology studies in animals have
been used as pragmatic PODs reflecting in vivo bioactivity for
many years, which is then compared with predicted levels of
consumer exposure to give a margin of safety for decision-mak-
ing (SCCS, 2021c).

Although individual case studies have helped exemplify the
overall NGRA approach, there is still a need to establish a stan-
dardized set of tools and workflows for obtaining an initial BER
estimate when low-tier approaches are not sufficient, and de-
termine whether these can be used reliably for a wide range of
chemicals and exposure scenarios (Dent et al., 2021). It is envis-
aged that such an approach could be used to decide, depending
on the BER, whether a given chemical-exposure scenario is low
risk, or whether to use higher tier approaches to refine the risk

assessment further. Within this, there are various factors that
will determine the overall protectiveness of such an approach,
such as the “biological coverage” of the in vitro assays (do the
assays cover enough biological effects to be protective?) (Paul
Friedman et al., 2020; Thomas et al., 2019), or uncertainty in the
accuracy of the PBK estimates (Moxon et al., 2020; Paini et al.,
2017, 2021; Punt et al., 2022; Wambaugh et al., 2019), particularly
when the models are parameterized using either in silico predic-
tions or in vitro data. Furthermore, there are currently no guide-
lines for determining a BER threshold that represents a low
safety risk. In traditional risk assessment, uncertainty factors
are used that account for the intra- and interspecies differences
in toxicodynamics and toxicokinetics. Typically for cosmetic
applications, a margin of safety of 100 is considered acceptable
to assure consumer safety and account for these variations
(SCCS, 2021c). However, these have in general been established
through historical precedent and experience (Renwick, 1993)
that developed over many decades, which is not the case with
NAMs, necessitating an alternative approach for defining suit-
able safety thresholds (Rusyn and Chiu, 2022).

We propose to address the above challenges in 2 steps. First,
in this work, we present a core toolbox of NAMs (in vitro and
computational) together with a workflow for how they should
be used together to calculate the BER, based on recent systemic
NGRA case studies (Baltazar et al., 2020). We also present an ap-
proach for evaluating how protective and useful the combined
workflow and toolbox are for conducting systemic safety as-
sessment for a given chemical-exposure scenario. An important
part of the approach is establishing a prototype decision model
(eg, safety thresholds) for identifying low-risk exposure scenar-
ios based on the BER. This is done in a data-driven manner,
where the data from this initial (pilot) study will serve as a
training set for a larger evaluation. The full evaluation of the
toolbox and associated decision model will involve generating
toolbox data (ie, corresponding to a test set) for a much larger
set of compounds and exposure scenarios. Taking this 2-step
approach can help to remove potential bias that can emerge
due to post-rationalization of the data.

The evaluation approach is based on the idea of benchmark-
ing BERs generated using the toolbox and workflow against his-
torical safety decisions, the key principles of which are
demonstrated in this work using data generated for 24 different
exposure scenarios covering 10 chemicals. In summary, the
objectives of this work are 3-fold:

1. Present a core toolbox of NAMs (in vitro and computational)
together with a workflow on how they should be used to-
gether to provide an initial BER estimate for use in systemic
toxicity safety assessments, obtained without the use of an-
imal data.

2. Present a proof-of-concept study on how to evaluate the
performance of the toolbox and workflow using bench-
marks based on historical safety decisions.

3. Use this pilot study to establish a prototype decision model
upon which to conduct the full evaluation.

MATERIALS AND METHODS
Overview of the Toolbox and Workflow

Following previous NGRA case studies for systemic exposure
(Baltazar et al., 2020; OECD, 2021), the workflow is divided into 3
distinct modules (Figure 1): one for estimating the internal ex-
posure of a chemical based on a given use-case scenario, and
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one for estimating the various PODs based on in vitro bioactivity
data. Outputs from these modules are combined in the third
module to estimate the BER. The approach is aimed at assessing
systemic toxicity in adults; consideration of Development and
Reproductive Toxicology will be addressed in a separate study.

The POD estimation module consists of 3 of the in vitro bioac-
tivity platforms used in (Baltazar et al., 2020) to obtain a BER

estimate: high-throughput transcriptomics (or
“transcriptomics” for brevity), a cell stress panel and in vitro
pharmacological profiling. The latter 2 platforms were selected
to cover off cellular stress and targeted biological effects, re-
spectively, whereas the transcriptomics platform (generated us-
ing multiple cell models—HepG2, HepaRG, and MCF-7) was
included to provide a nontargeted approach to capture

Figure 1. Schematic of the systemic safety toolbox and associated workflow, which comprises 3 modules: one to estimate the exposure using physiologically based kinetic

(PBK) models, another to estimate the point of departure (POD) based on the cell stress panel (CSP), high throughput transcriptomics (HTTr), and in vitro pharmacological

profiling (IPP) bioactivity data. The workflow involves combining the outputs from these 2 modules into the third module to estimate the bioactivity exposure ratio (BER).
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biological effects potentially not detected using the other tools.
Measurements for the cell stress and transcriptomics platforms
are both performed 24 h after exposure to the test chemical. The
data are then analyzed using concentration-response models to
obtain the POD estimates in terms of the nominal concentration
(ie, the total concentration expected to be present in the medium
based on how the dosing solution was prepared). From this, a
platform-specific POD is obtained per bioactivity platform for
each chemical (referred to hereafter as the “platform POD”). Two
different methods are used to estimate the transcriptomics plat-
form: the global POD, as described in Reynolds et al. (2020) and
the minimum BMDL (the lower bound of the pathway-average
Benchmark concentration [Farmahin et al., 2017]) obtained using
BMDexpress2 (Phillips et al., 2019). The exposure module includes
PBK models that are used to estimate the plasma Cmax for the
benchmark chemical-exposure scenarios. In any ab initio risk as-
sessment, there will be several sources from which PBK model
parameters could be obtained, including in silico predictions,
in vitro assays, and/or clinical measurements (Li et al., 2022;
Moxon et al., 2020; Paini et al., 2021; Punt et al., 2022). These differ-
ent sources can in turn affect the level of uncertainty that should
be attributed to a particular PBK model prediction (where higher
uncertainty is expected with models parameterized using only in
silico predictions when compared with models calibrated against
clinical data). The different parameter-estimate sources are rep-
resented as levels L1–L3, respectively. A separate Bayesian
model, henceforth referred to as the Cmax error distribution
model, is therefore included in the toolbox to quantify the uncer-
tainty in the Cmax estimate, conditional on the parameter level
being used. In the BER estimation module, the outputs from the
Cmax error distribution model are combined with the smallest (ie,
most conservative) platform POD for a given benchmark
chemical-exposure scenario to estimate a probability distribution
for the BER.

Overview of the Evaluation Approach

The overall concept of the evaluation approach is to generate
toolbox data (exposure estimates, PODs, and BER distributions)
for a range of benchmark chemical-exposure scenarios that
would either be considered low-risk (eg, existing food or cos-
metic ingredients) or high-risk (eg, drugs that are systemically
bioactive) from a consumer goods perspective, following the
workflow as though each one were part of an ab initio risk as-
sessment (Figure 2), and then assessing whether low risk sce-
narios can be correctly identified as such based on the toolbox
BER estimates using an appropriate decision model. Here,
chemical-exposure scenarios that could not be identified as low
risk using the toolbox are regarded as “uncertain” risk, reflecting
the fact that they could either correspond to a high risk or low
risk scenario. In a real risk assessment, these chemical-
exposure scenarios could be refined further using higher tier
tools (which is beyond the scope of this work).

The evaluation approach comprises a 4-stage process, de-
fined as follows. At stage 1, chemicals are selected where there
is evidence that, for a defined exposure scenario, the chemical
is likely to cause some form of systemic toxicity in humans
(representing a high-risk exposure scenario), or for which there
is a history of safe use supported by a conventional safety as-
sessment (low-risk exposure scenario). At stage 2, concentra-
tion response bioactivity data (using high-throughput
transcriptomics, the cell stress panel and in vitro pharmacolog-
ical profiling) are generated for all the test chemicals identified
at stage 1. Appropriate concentration ranges are established

for each compound and each in vitro bioactivity platform (see
the “In vitro bioactivity data” section). In parallel, internal expo-
sure estimates are generated for each chemical-exposure sce-
nario using PBK modeling. Here, Cmax plasma estimates are
obtained for all available parameterization levels (L1–L3, see
the “Exposure estimation” section). The corresponding uncer-
tainty in these predictions are then quantified using the Cmax

error distribution model. At stage 3, these results are combined
to obtain probabilistic estimates of the BER for each chemical-
exposure scenario at each PBK model parameterization level.
At stage 4, the BER estimates and corresponding chemical
exposure-scenario risk classifications that were assigned at
stage 1 are combined to quantify the overall protectiveness
and utility of the toolbox (see the “Decision making using BERs,
protectiveness, and utility” section). The final stage of the eval-
uation depends on the selection of an appropriate decision
model. As a first step toward this, the toolbox data generated
in this work were used to explore and establish a prototype de-
cision model (see below).

Stage 1: Definition of Benchmark Chemical-Exposure
Scenarios

At least 1 consumer exposure scenario was identified for each
benchmark chemical from the literature to allow PBK modeling
of either in-market or maximum use levels (foods, cosmetics),
recommended treatment regimens (pharmaceuticals) or poi-
soning cases. A summary of the various benchmark chemical-
exposure scenarios and associated risk classifications is pro-
vided in Table 1. Risk classifications of “high” or “low” were
assigned to each benchmark scenario for the purpose of safety
decision-making in the context of a consumer product (eg, per-
sonal care products). In other words, if the documented safety
profile of the benchmark chemical-exposure was used as a deci-
sion for inclusion in a consumer product, it would be considered
high or low risk accordingly.

The risk classifications for each chemical-exposure scenario
were performed based on the availability of existing toxicologi-
cal information and evidence of systemic effects in humans at
the listed exposures. Regulatory bodies such as European Food
Safety Agency (EFSA), European Scientific Committee on
Consumer Safety (SCCS), Research Institute for Fragrance
Materials (RIFM), the U.S. EPA, and the U.S. Food and Drug
Administration (FDA) provide comprehensive reviews of the
toxicological information available for chemicals used as foods,
cosmetics, and pesticides. Where available, data and conclu-
sions from these reports were used to support the assigned risk
classifications. Case reports and literature reviews were found
that identified high risk levels for caffeine and paraquat dichlor-
ide that collated evidence of serious systemic effects, including
the potential for death, following overdose and accidental in-
gestion, as listed in Table 1. For benchmark chemicals adminis-
tered as a drug intended to be systemically bioactive, it was
considered that although there is an inherent risk of adverse
effects for a proportion of patients, even at the therapeutic
dose, such pharmaceuticals are only administered where the
benefit outweighs the risk, and hence were classified as high
risk by default. Notably, there were no systemic effects,
intended or unintended, for the administration of sulforaphane
to post-surgery males in the clinical trial identified, and there-
fore this is classified as low risk from a consumer goods per-
spective (Cipolla et al., 2015).

MIDDLETON ET AL. | 127



Figure 2. Overview of the proposed approach for evaluating the systemic safety toolbox and workflow. The approach is divided into 4 stages, involving the systematic

generation and analysis of toolbox data for selected low- and high-risk benchmark chemical-exposure scenarios (Figure 1). At the final stage, bioactivity exposure ratio

(BER) estimates are obtained for each chemical-exposure scenario. These BER estimates are used to understand (1) whether the BER can be used to correctly identify be-

tween low-risk benchmark exposures, based on a given decision model, and (2) to calculate the protectiveness and utility of the toolbox and thereby assess its overall

performance. Results obtained in this study are used to establish a prototype decision model and associated performance metrics (ie, protectiveness and utility), which

will then be used to assess the toolbox in the full evaluation.
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Table 1. Overview of Each Chemical-Exposure Scenario and Associated Risk Classifications

Compound Use Scenario Risk Classification Risk Classification Reasoning Reference

Paraquat dichloride Oral 35 mg/kg ingestion
(poisoning)

High risk The minimum oral human lethal
dose is 35 mg/kg/day. Paraquat
poisoning leads to multiorgan
failure with specific pulmonary
edema and fibrosis.

WHO, 1984; Bertram et al.,
2013

Rosiglitazone Oral 8 mg/day High risk The maximum recommended
daily dose for the treatment of
diabetes is 8 mg/day.
Rosiglitazone leads to adverse
effects such as weight gain, ane-
mia, fluid retention, and adverse
effects on lipids. Importantly,
fluid retention may exacerbate
or lead to heart failure and other
effects. A low dose of 2 mg/day
shows some efficacy.

Wolffenbuttel et al., 2000;
Yki-J€arvinen, 2004Oral 2 mg/day High risk

Doxorubicin
hydrochloride

75 mg/m2/day infusion for
10 min

High risk The incidence of symptomatic
chronic heart failure is esti-
mated to be 3%–4% after a cu-
mulative dose of 450 mg/m2 if
doxorubicin is administered as a
bolus or short infusion of 45–
75 mg/m2 every 3–4 weeks.

Biganzoli et al., 2003; Injac
and Strukelj, 2008; Lee
et al., 2010; Oakervee
et al., 2005; Rahman
et al., 2007

4.5 mg/m2/day continuous
infusion for 4 days, re-
peated every 3 weeks

Butylated hydroxytoluene
(BHT)

Dermal 0.5% in body lotion Low risk Used safely in cosmetic products
and foods. Existent consumer
risk assessment from the SCCS.

SCCS, 2021b

Oxybenzone Dermal 2% in a sunscreen Low risk Used safely as a UV filter in cos-
metic products. Existent con-
sumer risk assessment from the
SCCS.

SCCS, 2021a
Regulation (EC) No
1223/2009

0.5% in a body lotion Low risk

4-Hexylresorcinol Oral throat lozenge (2.4 mg) Low risk Used safely as a throat lozenge.
Antimicrobial and anesthetic
effects are local only, supported
by clinical data.

Matthews et al., 2020;
McNally et al., 2012

Dermal 0.5% face serum Low risk Used safely in cosmetic products.
Exposure level supported by ex-
istent toxicological data.

EFSA Panel, 2014; Won
et al., 2014

Oral food residue 3.3 mg/kg
bw/day

Low risk Existent consumer risk assessment
from EFSA.

EFSA Panel, 2014

Caffeine Oral dietary intake—400 mg/
day

Low risk No evidence for concern with re-
spect to systemic toxicity from
the available toxicological data,
as concluded by EFSA, Health
Canada, and the FDA.

Blanchard and Sawers,
1983; EFSA Panel on
Dietetic Products,
Nutrition and Allergies,
2015; Nawrot et al., 2003

Dermal 0.2% shampoo Low risk

Oral tablets/overdose >10 g High risk Evidence of serious adverse sys-
temic effects, which can result
in death.

Jabbar and Hanly, 2013

Dermal clinical (2 mg/cm2 of
a solution containing 2.5%
caffeine applied to a test
area of 25 cm2)

Low risk No evidence for concern with re-
spect to systemic toxicity from
the available toxicological data
at this level, as concluded by
EFSA, Health Canada, and the
FDA. No reports of systemic
effects from volunteers adminis-
tered 1.25 mg topical caffeine as
part of this clinical study.

Otberg et al., 2008

Coumarin Oral dietary intake 4.085 mg/
day

Low risk Used safely in flavorings and other
food ingredients with flavoring
properties. Existent consumer
risk assessment from EFSA.

EFSA, 2008

Oral dietary intake 0.1 mg/kg
bw/day

Low risk
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Stage 2: Exposure Estimation

PBK Modeling
PBK models were developed using GastroPlus 9.8 (Simulation
Plus, Lancaster, California), which is a specialist modeling soft-
ware that includes modules to simulate several administration
routes including intra-venous, oral, and dermal absorption.
Model parameters include logP (logarithm of octanol-water par-
tition coefficient), water solubility, unbound fraction in plasma
(fup), blood: plasma ratio (Rbp), hepatic intrinsic clearance (CLint),
Madin-Darby canine kidney (MDCK) permeability (Papp), pKa
(logarithm of acid dissociation constant), and intestinal absorp-
tion or skin penetration, where applicable. Details on the
modeling assumptions used by Gastroplus for intestinal absorp-
tion and skin penetration are provided in Supplementary
Information S1, M1. Models were built for each chemical-expo-
sure scenario following the tiered framework defined in Moxon
et al. (2020). Adult consumers (the focus of the study) were rep-
resented by 60 kg adult female. This was selected as it was con-
sidered conservative both in terms of body weight, and

potential use of cosmetics (SCCS, 2021c). The framework is split
into several levels of increasing complexity and refinement
depending on how the models are parameterized:

• Level 1 (L1): in silico only: chemical specific parameters are

obtained using only in silico predictions
• Level 2 (L2): in silico and in vitro: values for logP, pKa, solubility, he-

patic intrinsic clearance, unbound fraction in plasma, blood:

plasma ratio, and intestinal absorption or skin penetration are

all obtained from in vitro measurements when available. All

other parameters are obtained using in silico predictions.
• Level 3 (L3): in silico, in vitro, and clinical data: similar to L2 chemi-

cal-specific parameters are obtained (where available) from

in vitro measurements. Clinical data are then used to further re-

fine estimates of key parameters through a process of model cali-

bration. The selection of the parameters to be calibrated is based

on sensitivity analysis results and expert judgement. In every

case, the clinical data used in the calibration of a PBK model was

for different exposure scenario other than the one being mod-

eled. For example, when generating the L3 dermal caffeine

Table 1. (continued)

Compound Use Scenario Risk Classification Risk Classification Reasoning Reference

Dermal 0.38% as a fragrance
in body lotion

Low risk Used safely as a fragrance in cos-
metic products. Maximum level
supported by RIFM fragrance in-
gredient safety assessment in
this product type.

Api et al., 2020

Niacinamide Tolerable daily intake (TDI)
12.5 mg/bw/day

Low risk Used safely as a cosmetic ingredi-
ent and vitamin supplement. No
evidence for concern with re-
spect to systemic toxicity from
the available toxicological data,
as concluded by the Scientific
Committee on Food and
Scientific Panel on Dietetic
Products, Nutrition and
Allergies. Niacinamide is a form
of vitamin B3 with a recom-
mended intake of 10–15 mg/day
of niacin equivalent.

Cosmetic Ingredient
Review Expert Panel,
2005; EFSA NDA Panel,
2014; EFSA Panel on
Nutrition, Novel Foods
and Food Allergens,
2022

Norwegian dietary intake
22.2 mg/day

Low risk

0.1% in a hair conditioner Low risk
3% in a body lotion Low risk

Sulforaphane Dietary intake 3.9 mg/day Low risk Long history of sulforaphane con-
sumption in cruciferous vegeta-
bles. However, there is an
uncertainty in the sulforaphane
human exposure due to the vari-
ation of sulforaphane content
across the different vegetables
and its formation from glucora-
phanin depending on how vege-
tables are prepared. The
exposure selected, for which
concentration in humans were
available, was considered repre-
sentative of a high consumption
of broccoli in the U.K. population
(18.5 g/day) and assumed a high
concentration of sulforaphane
in broccoli (37–75 mg per 100 g of
fresh weight).

Hanlon et al., 2009;
Howard et al., 1997

Oral 20 mg 3� daily Low risk No evidence of systemic effects in
patients given this regimen as
part of a clinical trial.

Cipolla et al., 2015
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exposure predictions (see Table 1), the model was first calibrated

against clinical data from a separate caffeine intravenous infu-

sion study (see Supplementary Information S1, T1 for details).

In silico parameter estimates were sourced using ADMET
Predictor (v.9.0). In vitro and clinical data used for the L2 and L3
model parameterizations were sourced from the literature (see
Supplementary Information S1, T1 for references). With pre-
dicted properties, classification was conducted using the ex-
tended clearance classification system, which provides
information about the dominant route of clearance from the
body (Varma et al., 2015). If the dominant clearance mechanism
was predicted to be renal, the kidney clearance rate was deter-
mined by the formula fup � GFR, otherwise kidney clearance
was set to zero. Tissue-to-plasma partitioning coefficients (Kt:p)
was calculated in GastroPlus using the Berezhkovskiy method
(Berezhkovskiy, 2004; Lukacova et al., 2008), assuming chemical
distribution into the tissues is perfusion limited. Dermal admin-
istration was modeled with the mechanistic dermal absorption
module in GastroPlus. A set of diffusion and partitioning coeffi-
cients parameters of the chemical in various skin layers (ie, the
stratum corneum, epidermis, and dermis) was either predicted
based on the input physicochemical properties or fitted against
available ex vivo skin penetration experiments (Li et al., 2022).

PBK simulations were performed at each parameterization
level (L1–L2, and where possible, L3), from which corresponding
Cmax estimates were obtained (see Supplementary Information
S1, T1).

Cmax Uncertainty Quantification
Cmax error distribution model specification. Uncertainty in PBK Cmax

estimates was quantified using an inductive approach, whereby
a Bayesian Cmax error distribution model was used to learn the
distribution of the prediction errors at each PBK level. This was
done using a dataset that comprised exposure scenarios for
which either measured Cmax taken from clinical studies, or PBK
Cmax estimates (or both) were available. The purpose of the
model is that, once conditioned on the available data, it could
then be used to estimate the distribution of the prediction error
of Cmax for new chemicals or exposure scenarios not in the data-
set by assuming the prediction error for a new chemical can be
considered a sample from the distribution of errors observed for
previous chemicals and scenarios. For the purposes of model-
ing, PBK predictions and measured Cmax values are assumed to
be transformed to their base-10 logarithm (ie, log10). The major
assumptions underpinning the Cmax error distribution model
are:

1. The target of the prediction is the population average Cmax.

2. Measured log10(Cmax) values (eg, from a clinical study) are
normally distributed with respect to the true (unobserved)
population average log10(Cmax), with small variance.

3. PBK parameterization L3 predictions are normally distrib-
uted with respect to the true (unobserved) population aver-
age log10(Cmax).

4. PBK parameterization L2 log10 predictions are normally dis-
tributed with respect to the L3 log10 predictions.

5. PBK parameterization L1 log10 predictions are normally dis-
tributed with respect to L2 log10 predictions.

6. The variance between PBK log10 predictions at adjacent lev-
els (eg, L1 and L2) is dependent on the number of shared
parameters between the 2 levels.

7. The distribution of prediction errors at each level is expo-
sure and chemical agnostic, only the parameterization level
(ie, L1, L2, and L3) is assumed to be important.

A consequence of these assumptions is that for 2 different
chemical-exposure scenarios with the same parameteriza-
tion level (eg, L2, with both having 2 parameters informed us-
ing in vitro data, etc.), the variance of the predictive
distributions would be the same (although the mean would
be different).

Model equations. The notation bfclinical
i;j is used to denote the base-

10 logarithm of the measured Cmax value for chemical i under
exposure j, and fi;j denotes the base-10 logarithm of the true
(unobserved) corresponding population average Cmax. From as-
sumption 1, Cmax estimates follow a Gaussian (normal) distribu-
tion with mean fi;j and standard deviation rclinical, so that the
sampling distribution is expressed as:

bfclincial
i;j � Nðfi;j; rclinicalÞ:

From assumption 2, it is assumed that clinical study esti-
mates of the true population-average Cmax are at best to within
an error of 10% (1.1-fold) with probability .95 and at worst an er-
ror to within 2-fold with probability .95, so that a credible range
for rclinical would be [0.0225, 0.155]. The prior distribution for
rclinicalis therefore chosen as

rclincal � InverseGammað4:6; 0:22Þ

to capture this.
From assumption 3, the sampling distribution for a L3 PBK

estimate (the log base 10 value of which is denoted by bfL3
i;j ), con-

ditional on the true population average Cmax is given by

bfL3
i;j � Nðfi;j þ aL3; rL3;popÞ; (1)

where aL3;pop is the standard deviation of the L3 PBK estimate er-
ror and aL3 is included to capture any bias in predictions.

According to assumptions 4 and 6, the variance of the differ-
ence between PBK predictions at adjacent levels is modeled as
an increasing function of the number of parameters with differ-
ent values (if all parameters were shared, the difference is zero).
The sampling distribution of a L2 PBK estimate (denoted by bfL2

i;j ),
conditional on the L3 PBK estimate is modeled as

bfL2
i;j � N bfL3

i;j þ aL2;
rf L2;L3

i;j

bþ f L2;L3
i;j

0
@

1
A;

where f L2;L3
i;j is the fraction of parameters with different values

between L2 and L3, b and r control the rate of growth of the
standard deviation of the difference in predictions as the num-
ber of parameters grows and aL2 encodes any bias between PBK
L2 and L3 predictions.

For the established set of predictions, the maximum propor-
tion of parameters which change values between levels 2 and 3
is 0.38. In the case that we are predicting an unobserved L3 pre-
diction, where the parameters which would be calibrated is un-
known, we set f L2;L3

i;j ¼ 0:5 to maximize the standard deviation
whilst staying reasonably close to the maximum number of
parameters which are modified at L3.
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From assumptions 5 and 6, the same structure is used to
model the sampling distribution of L1 predictions, conditional
on L2 predictions:

bfL1
i;j � N bfL2

i;j þ aL1;
rf L1;L2

i;j

bþ f L1;L2
i;j

0
@

1
A;

where aL1 encodes for any bias between L1 and L2 predictions.
Between levels 1 and 2, typically, a larger proportion of parame-
ters change value than between L2 and L3. Therefore, when it is
unknown how many PBK parameters are informed by in vitro
data at L2, we set f L1;L2

i;j ¼ 1 for the purposes of defining the stan-
dard deviation of an L1 prediction conditional on an L2
prediction.

To complete the model, the following prior distributions are
used to regularize parameter estimates:

ak � HalfNormalð0; 0:5Þ for k 2 fL1; L2;L3g;

rL3;pop � HalfNormalð0; 1Þ ;

r � HalfNormalð0; 1Þ ;

b � HalfNormalð0; 0:5Þ :

Data processing and model fitting. The training set for the Cmax er-
ror distribution model was constructed as follows. PBK Cmax

estimates for all parameterization levels (L1–L3) and clinically
measured Cmax values were obtained (where possible) for a total
of 30 chemical-exposure scenarios listed in Supplementary
Information S1, T2. This set includes the 24 exposure scenarios
listed in Table 1, together with additional exposure scenarios in-
cluded purely for the training of the Bayesian model (they were
not included in the BER analysis due to either lack of bioactivity
data or a suitable risk classification). This includes PBK Cmax for
4 dermal exposures (obtained at parameterization levels L1–L3)
obtained from Li et al. (2022) and 2 exposure scenarios for val-
proic acid. Clinically measured Cmax estimates were only avail-
able for 11 of the scenarios. Overall, for 6 of the 30 exposure
scenarios (those for hexylresorcinol, paraquat, and sulforaph-
ane), L3 PBK model predictions were not possible as suitable
clinical data for model calibration were not available.

The posterior distribution of the model parameters was eval-
uated using Monte Carlo Markov chain algorithms implemented
in the probabilistic programming language Stan (Carpenter
et al., 2017). Missing L3 and measured Cmax values were included
as parameters within the model, the values of which were in-
ferred during the fitting process. Data processing and visualiza-
tion was performed using Python 3.8 with packages PyStan
v2.19, NumPy v1.19, SciPy v1.6, pandas v1.2, and matplotlib v3.3.
The predictive distributions were then generated by drawing
from the posterior distribution.

Model evaluation. The predictive performance of the Cmax error
distribution model was evaluated using a leave-one-exposure-
out strategy, whereby for the 11 exposure scenarios where mea-
sured Cmax was available, the ability of the model to predict
measured Cmax following its removal from the training set was
assessed. This was done for all parameterization levels where a
PBK Cmax estimate was available. To generate a prediction of the
measured Cmax value at level X of the framework (for a given ex-
posure scenario), the corresponding clinically measured Cmax

was removed along with PBK Cmax estimates at levels Xþ 1 and
higher. The model was then retrained on the reduced dataset

and the predictive distribution for the clinically measured Cmax

was compared against the withheld value. This process was re-
peated separately for each chemical-exposure scenario with a
clinically measured Cmax estimate (ie, for each of the PBK esti-
mates for that exposure scenario, at each parameterization
level).

Stage 2: In Vitro Bioactivity Data

Experiments
Materials. Test chemicals were purchased from Sigma-Aldrich
(Dorset, UK), LGC Standards, and Cambridge Bioscience. The
identity and purity were confirmed by 1H-NMR, 13C-NMR, LC-
MS, and HPLC conducted at Selcia Lab. The same batch of chem-
ical was tested across all the bioactivity assays mentioned
below.

Dose confirmation. Based on their physicochemical properties, 7
chemicals were identified as potentially difficult to test, ie, chal-
lenges were anticipated with regards to achieving nominal con-
centration under in vitro assay test conditions due to potential
binding to plastic surfaces, losses due to volatility, or low solu-
bility. Typically, these issues are not considered in in vitro NAM
studies investigating the bioactivity of chemicals, but were con-
sidered here due to the quantitative nature of the data and the
need to ensure PODs can confidently be used in decision-mak-
ing. To confirm the total medium concentration attained under
typical test conditions, bioanalytical methods were developed
at Charles River Laboratories to determine concentrations of bu-
tylated hydroxytoluene, coumarin, doxorubicin, oxybenzone,
paraquat dichloride, sulforaphane, and valproic acid in HepG2
medium (DMEM supplemented with 10% FBS, 25 mg/ml penicil-
lin and 25 mg/ml streptomycin). Mass spectrometric detection of
the test compound was optimized and appropriate chromatog-
raphy conditions derived. Sample plates (separate to the bioac-
tivity assays) were prepared at Cyprotex and stored frozen at
�80�C until transport to Charles River Laboratories for analysis.
Sample preparation was performed by the precipitation of ma-
trix proteins with solvent, followed by centrifugation and analy-
sis of compound recovered in the supernatant by ultra-
performance liquid chromatography—tandem mass spectrome-
try (UPLC-MS/MS).

Concentration range setting. The maximum concentration to be
tested in the cell stress and the transcriptomics platforms were
set for each compound and cell line using an initial cytotoxicity
prescreen using Cellular ATP and LDH release measurements
(see Supplementary Information S1, T3 and Supplementary
Information S2: Cytotoxicity). These results then used to set the
in vitro pharmacological profiling screening concentrations (see
below). For the cell stress and the transcriptomics platforms, a
standardized concentration setting procedure was used which
involved defining the maximum concentration based on the
minimum of either a chemical’s solubility limit or the concen-
tration at which cytotoxicity is observed. The dilution series
used for each chemical was such that the minimum concentra-
tion was approximately 4 orders of magnitude smaller than the
maximum concentration. The cell stress and transcriptomics
platform dilution series for each chemical are given in
Supplementary Information S1, T4.

In vitro pharmacological profiling. The in vitro pharmacological
profiling platform contains 63 targets with known safety
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liabilities that were tested in binding, enzymatic, coactivator re-
cruitment, and luciferase assays. Forty-four of the targets have
been associated with in vivo adverse drug reactions (Bowes et al.,
2012) and they include: 24 G-protein-coupled receptors (GPCRs),
7 enzymes, 2 nuclear receptors, 8 ion channels, and 3 transport-
ers. A further 19 targets implicated in developmental toxicity
were added to the panel based on a literature search (Escher
et al., 2022; OECD, 2020; Wu et al., 2013). They included 15 nu-
clear receptors, 2 enzymes, 1 GPCR, and 1 structural protein. For
the full list of the in vitro pharmacological profiling targets and
associated assays, refer to Supplementary Information S2.

Screening was initially performed using a fixed concentra-
tion of each chemical in 2 replicates. The standard accepted de-
fault concentration for this type of assay is 10 mM (Jenkinson
et al., 2020). However, for 6 of the test chemicals (caffeine, cou-
marin, niacinamide, oxybenzone, paraquat, and valproic acid),
cytotoxicity was only detected at concentrations over 100 mM
(based on the cellular-ATP and LDH release concentration-
response data, as described above). In this case, the screening
assays were repeated at 100 mM to ensure potentially important
safety liabilities were not missed.

Screening assays that showed specific binding of the chemi-
cal greater than 50% relative to the control agonist/antagonist
binding were followed-up through the generation of
concentration-response data. The concentration-response was
carried out at 8 concentrations in 2 technical replicates. The
choice of concentrations was informed by the percent of inhibi-
tion/stimulation from the screening phase so that both plateaus
of the concentration-response curves could be experimentally
observed.

High-throughput transcriptomics. Sequencing high-throughput
transcriptomics was performed using TempO-Seq (BioClavis)
version 2 of the human whole transcriptome panel. HepG2,
MCF7, and HepaRG cells (all in a 2D format, see Supplementary
Information S1, T5) were treated for 24 h with 7 concentrations
of each chemical using 0.5% DMSO as a solvent control (see
Supplementary Information S1, T4).

Following treatment, cells were washed in calcium and
magnesium-free PBS. After removal of all residual PBS, 2�
TempO-Seq lysis buffer (BioSpyder Technologies, proprietary
kit) was diluted to 1� with PBS and added at a volume of 1 ml per
1000 cells with a minimum of 10 ml per well and incubated for
10 min at room temperature. Following lysis, the samples were
frozen at �80�C prior to sequencing.

TempO-Seq analysis was performed as described previously
(Yeakley et al., 2017), with a targeted sequence depth of 200
mapped read counts per transcript including the use of the gen-
eral attenuation panel. Raw count data were produced using the
STAR algorithm (Dobin et al., 2013) and TempO-Seq R software
package.

Cell stress panel. All compounds were tested using the recently
developed cell stress panel (Hatherell et al., 2020). The panel
comprised biomarkers that cover 8 key stress pathways
(Simmons et al., 2009), mitochondrial toxicity, and general cell
health. The panel (Supplementary Information S1, T3) was ex-
panded to include the biomarkers phospho-p53 (DNA damage),
SRXN1 (oxidative stress), and NFAT5 (Osmotic stress) for
broader coverage of the cell stress pathways. In this data set, 3
biological replicates were performed for each assay with 2 tech-
nical replicates per concentration tested along with an in-
creased number of DMSO controls on the plate to control for
within-plate effects when conducting concentration-response

analysis, as described in Hatherell et al. (2020) (see
Supplementary Information S1, M2 for the plate layout). HepG2
cells were treated for 24 h at 8 concentrations (Supplementary
Information S1, T4 and T5).

Point of Departure Estimation
In vitro pharmacological profiling. PODs for the in vitro pharmaco-
logical profiling platform comprised EC50 values (concentration
producing a half-maximal response) and IC50 values (concentra-
tion causing a half-maximal inhibition of the control agonist re-
sponse). These were obtained for all targets for a given chemical
identified during the screening phase (see above). The screening
data for butylated hydroxytoluene, niacinamide, and sulforaph-
ane were negative in all assays and so no in vitro pharmacologi-
cal profiling PODs were obtained for these chemicals. For all
other chemicals, the platform POD was given by the minimum
EC50 or IC50.

The EC50 and IC50 were determined using a Bayesian model
of the concentration-response curves that were modeled using
the Hill equation (Labelle et al., 2019). The priors for IC50 were set
to the median experimental concentration, the slope was set to
1.0 and low and high concentration responses were set to 0%
and 100%, respectively.

BIFROST analysis of high-throughput transcriptomics and cell stress
panel data (global POD). High-throughput transcriptomics and
cell stress panel concentration-response data were analyzed us-
ing a novel Bayesian method. The approach is here-on referred
to as the BIFROST method (Bayesian inference for region of sig-
nal threshold). BIFROST is used to estimate the “global POD,”
which represents an estimate of the minimum effect concentra-
tion across all genes (transcriptomics data) or biomarkers (cell
stress panel), for a given chemical. The method quantifies un-
certainty in the POD as a probability distribution for each bio-
marker or gene analyzed. Up to 100 or so, PODs may be obtained
from the cell stress panel and potentially 1000s of gene-level
PODs may be obtained from the transcriptomics data, per chem-
ical. The BIFROST method uses all individual distributions of
PODs to calculate the global POD. The BIFROST method was first
published for the analysis of cell stress panel data in Hatherell
et al. (2020) and later for the analysis of transcriptomics data in
Reynolds et al. (2020). Briefly, the approach aims to construct a
hierarchical description of the different sources of variance in a
concentration-response dataset. Sources of variance may in-
clude, for example, the effect of a treatment, biological variance,
technical variance, batch effects as well as platform-specific
variance such as sampling variability for reads in the transcrip-
tomics data. These considerations make full specification of the
model specific to a particular experimental design. Full details
of the method as applied to both cell stress panel and transcrip-
tomics data are provided in Supplementary Information S1, M2
and M3, respectively.

BMDExpress2 analysis (BMDL). Raw counts were processed using
the R package DESeq2 (Love et al., 2014) separately per chemical/
cell-line dataset. Probes were filtered to include only those
which had a median count, across all samples, of 5 or above and
samples were filtered to only include those with more than a
sum of 2.5 million counts within the remaining probes and with
a mapped read percentage over 55%. Outliers were removed
where biological replicates had a correlation of <85% and could
identified using principal component analysis.

Data were normalized using the negative binomial distribu-
tion in DESeq2 with model “� VESSEL_ID þ CONCENTRATION”
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where “VESSEL_ID” is given per treatment 384 well plate and is
identified as a strong source of variation between biological rep-
licates, especially in HepaRG cells, and therefore set as a con-
founding factor. Rlog-transformed normalized counts were
used as input into benchmark response (BMR) modeling soft-
ware BMDExpress2 (Phillips et al., 2019) where data were mod-
eled to calculate PODs per chemical/cell-line dataset. Within
BMDExpress2, probes were first filtered for a significant concen-
tration response using a Williams Trend Test with threshold
p< .05 and minimum fold change of 1.5 across concentrations
tested. The data were then modeled using 6 parametric models
(Poly 2, Hill, Power, Exponential 3, 4, and 5, with recommended
default configurations). Benchmark concentration (BMD) values
with upper (BMDU) and lower (BMDL) confidence interval
bounds were determined for each probe based on a BMR factor
of 10% using the model which produced the lowest Akaike in-
formation criterion value. (note here “D” is being used in the
various acronyms instead of “C,” which reflects the fact that the
methodology was originally developed for in vivo dose studies,
even though the transcriptomics data was concentration
based). Pathway enrichment analysis was performed within
BMDExpress2 using probes which had (1) a BMD between 10-
fold less than the lowest tested concentration and the highest
concentration tested; (2) BMD upper to lower ratio less than 40;
and (3) a model fit p value more than .1. Pathways were deemed
to be significantly enriched if pathways had a 2-tailed fishers p
value less than .1, over 2 probes in the input data set were found
in the pathway and 1 or more probes in the pathway passed the
previously listed probe significance criteria. The mean BMDL
was calculated by taking the mean of all significant probe level
BMDLs in the given Reactome pathway. For each chemical-
treated cell line, the lowest pathway mean BMDL was deter-
mined as the POD, and so the POD defined here is the lowest ob-
served concentration that shows significant pathway
perturbation (Farmahin et al., 2017).

Stage 3: Bioactivity Exposure Ratios

BERs were defined as the ratio between the minimum platform
POD (or simply, the minimum POD) and the estimated Cmax dis-
tribution. The set of possible platform PODs from which the
minimum was computed were:

1. The minimum IC50 or EC50 from the in vitro pharmacological
profiling platform (if available).

2. The global POD from the cell stress panel when analyzed
using the BIFROST method.

3. The global POD from the transcriptomics platform (1 for
each cell line), obtained using the BIFROST method.

4. The minimum pathway BMDL from the transcriptomics
platform (1 for each cell line), obtained using BMDExpress2.

The BER distributions were then constructed each chemical-
exposure scenario and associated PBK parameterization level
(L1–L3) as follows. Random samples of the estimated Cmax were
drawn from the posterior the Cmax error distribution model for
the corresponding exposure scenario and PBK level. For each
Cmax sample (denoted Ci), a corresponding BER sample value
(denoted Bi) was calculated as Bi ¼ P=Ci, where P is the mini-
mum platform POD for the relevant chemical. Various statistics
for a given BER distribution (estimated values, credible intervals,
etc.) were then computed from the Bi samples.

When calculating the BER distributions for different subsets
of platform PODs, the distributions were calculated as described

above, the only difference being that minimum platform POD
was instead calculated across the given subset.

Stage 4: Decision-Making Using Bioactivity Exposure
Ratios: Protectiveness and Utility

To decide whether an exposure is low risk or not, based on the
BER distribution, a confidence threshold was first set (pthreshold)
such that an exposure was regarded as low risk if the probability
that the BER >1 exceeded pthreshold (ie, if Prob.(BER> 1) > pthres-

hold). Otherwise, it was regarded as uncertain risk (to reflect the
fact that in reality, the exposure scenario could either be low-
risk or high-risk). Different pthreshold values were explored for
each PBK level. In summary, the following prototype decision
model was considered for the toolbox, so that for a given PBK
level:

1. Classify an exposure as low risk if the probability of the BER
exceeds 1 is above pthreshold.

2. Classify an exposure as uncertain risk if the probability the
BER is greater than 1 is below pthreshold.

Given the decision model described above, the protective-
ness of the toolbox was defined as the proportion of high-risk
exposures classified as uncertain risk (ie, not classified as low
risk), whereas the utility of the toolbox was defined as the pro-
portion of low-risk exposures correctly identified as low risk.
The equations defining these 2 metrics are provided in Figure 2,
stage 4. It is important to note that although definitions for pro-
tectiveness and utility are similar to that of sensitivity and spe-
cificity used with binary classifiers, they are not directly
equivalent. This is because chemical-exposures scenarios not
identified as low risk are identified as uncertain risk (ie, the ex-
posure could be either high or low risk), rather than high risk
(which would be the case if the toolbox was equivalent to a
standard binary classifier).

Data Repository

Raw experimental data for the 3 bioactivity platforms, together
with detailed reports for the high-throughput transcriptomics
and cell stress panel analysis, and a summary of the PBK model
predictions, are provided through the Dryad digital repository,
available at: https://doi.org/10.5061/dryad.fbg79cnx1.

RESULTS

Estimating Benchmark Exposures Using Physiologically Based
Kinetic Models
To exemplify the toolbox evaluation approach outlined in
Figure 2, each stage of the evaluation was performed for the 24
low-risk and high-risk benchmark chemical-exposure scenarios
defined at stage 1 of the evaluation (see Table 1). As part of stage
2, corresponding PBK Cmax estimates needed to be generated for
each scenario. However, to reflect how the toolbox might be
used within a real ab initio risk assessment, consideration was
given to the different information sources that could be used to
parameterize the PBK models. Following Li et al. (2022) and
Moxon et al. (2020), 3 levels of parameterization were identified:
L1 (level 1: parameters are based solely on in silico predictions),
L2 (level 2: parameters are informed through a combination of
in silico predictions and in vitro data), and L3 (level 3: as with L2,
but where clinical data, obtained for an exposure scenario other
than the one being modeled, is used to further refine the esti-
mates of key model parameters). L1 corresponds to an initial
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estimate of the systemic exposure to a chemical within a risk
assessment, whereas L2 and L3 are intended to provide addi-
tional refinements (if required) to the L1 and L2 estimates, re-
spectively. Overall, the intention is that the PBK estimates
become more accurate as the levels are ascended. However, for
a novel chemical, it is unlikely that the clinical data required for
L3 would be available, and so risk assessments would initially
be restricted to L1 and L2. To explore the relative accuracy of the
different parameterization levels, and how this may impact

decision-making, PBK estimates were obtained for each
chemical-exposure scenario in Table 1, together with additional
exposure scenarios from Li et al. (2022) (see Materials and
Methods), at parameterization levels L1, L2, and (where possi-
ble) L3. This was supplemented with corresponding measured
Cmax values from relevant clinical studies (when available).

A complete summary of the PBK model predictions and
measured Cmax values are provided in Supplementary
Information S1, T2 along with accompanying references. The

Figure 3. Overview of the physiologically based kinetic (PBK) model estimates and Cmax error distribution model results. A, Distributions representing the uncertainty

of the population average Cmax, conditional on all available exposure information, for all exposure scenarios used to train the Cmax error distribution model. Thin lines

cover a centered 95% interval and thick lines a 50% interval of the distribution. The distribution variance is smallest when the measured Cmax is available for the expo-

sure scenario (gray points). The variance is largest when only L1 and L2 PBK estimates are available (green and blue, respectively). Background colors indicate the risk

category for each benchmark chemical-exposure scenario assigned at stage 1 (blue—low, orange—high). The 4 dermal exposure scenarios from Li et al. (2022) (used

only for training the Bayesian model) are indicated in gray. B, A comparison between Cmax PBK estimates at different parameterization levels and the corresponding

measured Cmax values (for the 11 exposure scenarios where these values were available), provided in terms of a ratio between estimated and measured Cmax (red

crosses). The shading indicates how far the ratio is from 1 (given by the vertical dashed line). Crosses to the left of the dashed line correspond to Cmax values that were

underpredicted by the PBK models, whereas to crosses to the right correspond to values that were overpredicted.
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results are also summarized in Figure 3A, where the risk catego-
ries assigned to each benchmark chemical-exposure scenario
are also indicated. Overall, the estimated Cmax values range
from 0.004 to 4000mM across all benchmark chemical-exposure
scenarios considered. Here, larger Cmax values tend to be associ-
ated with “high risk” benchmark classifications whilst the lower
exposures are associated with “low risk” benchmark classifica-
tions. Thus, for the benchmark exposures considered in this
work, levels of systemic exposure alone offered a moderate de-
gree of separation between high and low risk exposures in the
absence of any potency information (ie, PODs) from the bioac-
tivity platforms.

The results show that the estimated values of the chemicals
not only differ among different dosing and exposure routes, but
also differ at the 3 PBK levels, showing that different parameter-
izations have a large influence on the outcome. A comparison
between the 11 measured Cmax values that were available and
the corresponding PBK Cmax estimates indicated that the PBK
predictions become more accurate as the parameterization lev-
els are ascended (Figure 3B).

Quantifying Uncertainty in PBK Cmax Model Estimates
Overall, for a novel chemical and exposure scenario (ie, where
no corresponding measured clinical data are available), a
greater degree of uncertainty should be associated with an L1
prediction than an L2 or an L3 prediction. Quantifying the mag-
nitude of these uncertainties remains a challenge, and to this
end a Bayesian Cmax error distribution model was developed
that could provide a probabilistic description of the associated
errors. The approach uses inductive reasoning, wherein the
model is trained on 1 set of data (ie, the PBK Cmax estimates and
clinical measurements in Supplementary Information S1, T2) to
obtain a posterior distribution for each of the Bayesian model
parameters, which are then used to make predictions about the
error associated with PBK Cmax estimates not in the training set.
In practice, the model essentially places a normal distribution
around the base-10 logarithm of the PBK Cmax estimate (ie, so
that the logarithm of the PBK estimate corresponds to the mean
of the distribution), with the variance of the distribution reflect-
ing the error induced at the relevant PBK level, which is learned
via the training set.

After training the model on the data in Supplementary
Information S1, T2, predictive distributions of the population
average Cmax were generated for each exposure scenario
(Figure 3A). The distributions represent a probabilistic estimate
of what the “true” Cmax is based on all available data. The vari-
ance of the distribution for each exposure scenario reflects the
inferred precision of the estimate (ie, the size of the error be-
tween the PBK estimate and the “true” value), with smaller var-
iances indicating more precise estimates. Overall, the precision
associated with a given exposure scenario is dependent on
what the highest PBK level was in the training set. There are 11
exposures for which measured Cmax is available; these have the
most precise Cmax estimates overall. A further 14 exposures
have PBK Cmax estimates at all 3 levels, but no direct measure-
ments of Cmax are available; these estimates are inferred by the
model to be less precise. Finally, there are 5 exposures which
only have PBK estimates at L1 and L2 (ie, all the exposure sce-
narios associated with associated with hexylresorcinol, sulfo-
raphane, and paraquat); these estimates are inferred to be the
least precise overall.

The distributions obtained from the model can be consid-
ered fit for purpose only if they can be demonstrated to be well-
calibrated (Dawid, 1982). For example, if a 95% prediction

interval is generated for many exposure scenarios, that interval
should contain the quantity of interest (eg, the true population
average Cmax value) with a frequency of 95%. Calibration was
assessed using a leave-one-exposure-out strategy (see Materials
and Methods). Rather than predict the population average Cmax

(which is unobserved), predictive distributions were generated
for every measured Cmax value after its removal from the train-
ing data. This was done for each PBK level for all 11 exposure
scenarios where measured Cmax was available (making a total of
32, noting that there was no L3 PBK estimate for the sulforaph-
ane oral exposure scenario). Prediction intervals from these dis-
tributions are presented in Supplementary Information S1, F1.
The 95% prediction interval covers 32/32 (100%) of the measured
values. Fifty percent prediction intervals cover 18/32 (56%) of
the measured values. Overall, these results indicate that the
prediction intervals are largely in agreement with correspond-
ing empirical frequencies, implying that the prediction intervals
provided by the model for a given PBK estimate do reflect rea-
sonably well how likely it is that they do in fact cover the true
clinical Cmax value (ie, 95%, prediction interval should cover the
true value 95% of the time, etc.).

In general, for models that are well-calibrated, narrower pre-
diction intervals indicate more precise estimates. Precision of
the predictions at each PBK parameterization level can be
viewed in the frame of how much the upper interval endpoint
(eg, the 95th percentile), which may serve as an upper bound to
an uncertain estimate, exceeds the measured value. The 95th
percentile of the inferred distribution from L1 PBK estimates
exceeds the measured Cmax as much as 5100-fold with a geo-
metric mean (across the set of all predictions) of 76-fold. At L2,
the 95th percentile exceeds the measured value up to 99-fold
with a geometric mean of 23-fold. At L3, the exceedance is as
much as 9.0-fold with a geometric mean of 4.0-fold. These
results, based on the 11 chemical-exposure scenarios for which
measured Cmax was available, indicated that the PBK estimates
become more precise with higher model parameterization lev-
els, consistent with what could be expected, and that (for this
dataset) the Cmax error distribution model provides a reasonable
quantification of the associated PBK model estimation errors.

Points of Departure Across In Vitro Bioactivity Platforms
An important consideration within the evaluation (Figure 2) is
the biological coverage of the toolbox bioactivity platforms and
understanding whether the associated PODs are sufficiently
protective. Thus, in addition to generating exposure estimates
for each exposure scenario in the evaluation, at stage 2
(Figure 2) corresponding concentration-response data were also
generated using the 3 toolbox bioactivity platforms (cell stress
panel, in vitro pharmacological profiling, and high-throughput
transcriptomics). Typically, studies investigating the bioactivity
of test chemicals in in vitro test systems do not take into consid-
eration the physicochemical properties of the test chemicals
and the possibility that they may be difficult to test within assay
conditions, ie, due to occurrence of plastic or protein binding,
for example. This was a potential concern for 7 of the test chem-
icals (butylated hydroxytoluene, coumarin, doxorubicin, oxy-
benzone, paraquat dichloride, sulforaphane, and valproic acid),
and therefore a separate dose-confirmation study was per-
formed in parallel to determine whether for those test chemical,
the expected nominal concentrations could be achieved under
assay conditions (see Supplementary Information S1, F2). Of
those investigated, valproic acid was the only chemical where
all measured concentrations differed from nominal by more
than 2-fold, indicating potential systematic issues with the
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testing of this particular test substance within the toolbox bio-
activity platforms. Because of this, the bioactivity data for val-
proic acid were not considered further. For all other test
chemicals, individual PODs were obtained for each biomarker
(gene probe count, glutathione content level, etc.) within a bio-
activity platform, resulting in platform PODs for 10 benchmark
chemicals (Figure 4 and Supplementary Information S1, T6).

Estimation of PODs from high-throughput transcriptomics
data is an active area of research and there is considerable de-
bate about the selection of which method or POD definition is
most appropriate for NGRA (Baltazar et al., 2020; Farmahin et al.,
2017; Harrill et al., 2019, 2021; Reynolds et al., 2020). To begin to
explore the potential impact of selecting one approach over an-
other, the transcriptomics data were analyzed using 2 different
methods, BMDExpress2 and BIFROST, resulting in 2 different
POD estimates per transcriptomics dataset. Importantly, the in-
terpretation of the PODs generated by the 2 methods are differ-
ent: the global PODs generated by BIFROST represents the
minimum effect concentration based on individual gene

expression changes (in response to the chemical treatment),
whereas the BMDExpress2 BMDL PODs represent the lowest
concentration at which mechanistic changes occur, inferred by
Reactome pathways, and an estimate of apical endpoints
(Farmahin et al., 2017).

Overall, the various platform PODs varied across datasets by
6 orders of magnitude, from nanomolar to millimolar concen-
trations. The most potent chemical was doxorubicin (a chemo-
therapy drug), with platform PODs starting at �1 nM (obtained
for both the cell stress and HepG2-transcriptomics data),
whereas the least potent chemical was niacinamide (which is
typically used as an ingredient in consumer products), with
platform PODs starting at �26 mM (obtained for the HepG2 and
MCF-7 transcriptomics data). For most chemicals (7 out of 10),
the smallest PODs tended to come from the transcriptomics
platform when analyzed using BIFROST, except caffeine and
hexylresorcinol (the smallest PODs were obtained using the
in vitro pharmacological profiling platform) and doxorubicin
(obtained using cell stress panel). The BMDL-based

Figure 4. Overview of platform PODs (in vitro pharmacological profiling—IPP, cell stress panel, and high-throughput transcriptomics—HTTr) obtained using the toolbox

for each of benchmark chemicals. High-throughput transcriptomics data were generated for 3 cell lines (MCF7, HepaRG, HepG2) and analyzed using 2 different meth-

ods (BMDexpress and BIFROST), resulting 6 transcriptomics platform PODs per chemical. Positive controls for the transcriptomics platform (Tunicamycin and

Trichostatin A) are also included.
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transcriptomics platform PODs obtained using BMDExpress2
tended to be several orders of magnitude larger than the global
PODs obtained using BIFROST (due to averaging over several
gene level BMDLs), reflecting the fact that higher concentrations
are needed to trigger coordinated biological pathway responses.
Overall, these results were as expected, because the transcrip-
tomics platform had been included in the toolbox to provide a
broad coverage of effects that may not be detected using in vitro
pharmacological profiling and the cell stress platform and so
was expected to lead to more conservative (and therefore pro-
tective) POD estimates, at least when considering the transcrip-
tomics global PODs obtained using BIFROST.

To understand the extent to which the biological perturba-
tions observed using in vitro pharmacological profiling and the
cell stress platforms were reflective of the assays capturing
known biological mechanisms, a comparison between the ob-
served responses from the 2 platforms and the known biological
effects was performed for all 10 chemicals (see Supplementary
Information S1, sections T7, F3, and F4 and Supplementary
Information S2).

For most of the chemicals (9/10), the cell stress and in vitro
pharmacological profiling platforms provided coverage of at
least one of their known modes of action (pharmacological or
toxicological). For in vitro pharmacological profiling, the lowest
global PODs for hexylresorcinol, caffeine, and rosiglitazone
were all associated with known biological targets of those
chemicals (cyclooxygenase inhibition, adenosine 2A antago-
nism, and PPAR-gamma agonism, respectively). Other specific
targets were also identified for other chemicals (paraquat, cou-
marin, and doxorubicin), even though these were not among
the lowest effects detected. In particular, this was only possible
for coumarin and paraquat because the initial screening con-
centration for the in vitro pharmacological profiling had been
modified from the standard 10 mM to a higher concentration of
100 mM, to take into consideration chemicals with relatively low
potency in the assay. Using a lower screening concentration
would have resulted in these effects being missed. However,
not all known targets for every chemical were detected using
the panel: for example, carbonic anhydrase II effects have been
reported elsewhere for coumarin (Maresca et al., 2009; Maresca
and Supuran, 2010), but were not detected in this work.

The cell stress panel was designed to characterize 10 major
pathways (including mitochondrial toxicity and oxidative
stress) involved in homeostatic processes and was shown to
correctly identify chemicals which perturb 1 or more of these
pathways (Hatherell et al., 2020). Across the chemicals tested in
this work, various known cell stress effects were detected using
the panel. For example, sulforaphane is a soft electrophile that
is a common component of various foods and has widely been
hypothesized to exert antioxidant effects through upregulation
of NRF2. Consistent with this, sulforaphane was found to cause
an upregulation of GSH content and oxidative stress at subcyto-
toxic concentrations. Similarly, subcytotoxic effects on mito-
chondrial respiration (ie, measured using the extracellular flux
assay) were observed for chemicals associated with mitochon-
drial toxicity such as rosiglitazone (Hu et al., 2015) and paraquat
(Baltazar et al., 2014; Huang et al., 2016).

The cell stress panel was only recently developed, and so ad-
ditional attention was given to investigating reproducibility of
the panel when generated at the same laboratory in 2 indepen-
dent studies. Cell stress panel data for 6 of the chemicals used
in the (Hatherell et al., 2020) study (coumarin, caffeine, doxoru-
bicin, niacinamide, rosiglitazone, and sulforaphane) were there-
fore repeated a second time in this study. Overall, results were

comparable. In particular, the global POD generated via the
BIFROST method (rather than the PODs of individual bio-
markers) is a key output of the cell stress panel because it is
used to estimate the BER. A comparison between this for each
of the repeated chemicals is provided in Supplementary
Information S1, F5. PODs for the higher potency chemicals
(doxorubicin, rosiglitazone, and sulforaphane) were within 2-
fold of each other. Global PODs for the lower potency chemicals
(caffeine, coumarin, and niacinamide) were less concordant,
ranging from 3.5 to 12-fold apart, and were lower than those
obtained in Hatherell et al. (2020). The reasons for this are 2-fold:
(1) the modification of the experimental design because the
work reported in Hatherell et al. (2020) to correct for plate effects
(see Materials and Methods) has resulted in increased sensitiv-
ity to detect weaker magnitude responses and (2) testing to
higher concentrations of chemicals compared with the initial
work reported in Hatherell et al. (2020) allows for more confi-
dence in hits because a larger response is generally observed at
concentrations greater than the minimum effect concentration.

Together, these results indicated that although the cell
stress and in vitro pharmacological profiling panels could be
used to detect various known modes of toxicity, the transcrip-
tomics platform data analyzed using BIFROST (compared with
the PODs obtained using BMDExpress2) typically provided the
most conservative POD estimate across the different in vitro
assays.

Estimating the Bioactivity Exposure Ratio Using New Approach
Methodologies
At stage 3 of the evaluation (Figure 2), BER distributions were
obtained for all the benchmark chemical-exposure scenarios,
using the distributions from the Cmax error distribution model
and the minimum POD (see Materials and Methods). As such,
the BER distributions provide a probabilistic description of what
the true BER is, given the uncertainty in the PBK Cmax estimates.
As a first step in benchmarking, the toolbox data against histori-
cal safety decisions, the BER distributions were compared with
the risk classifications assigned at stage 1 to each the bench-
mark chemical-exposure scenario (Figure 5). Here, exposure sce-
narios are ranked by the median estimated BER, from smallest
to largest along the y-axis, and color-coded according to their
assigned risk-categories (see Table 1). BER credible ranges are
plotted along the x-axis (with the relative width of these ranges
being driven by the Cmax error distribution model and are the
same as in Figure 3). Of note, a BER< 1 indicates the plasma
Cmax is above the minimum POD measured across the bioactiv-
ity platforms. Based on this ranking, the first 6 exposure scenar-
ios in Figure 5 were all high-risk benchmark chemical-exposure
scenario (see Table 1) and all have a median BER less than 1,
whereas the last 13 were all low-risk benchmark chemical-
exposure scenarios and have a median BER between 0.1 and
10,000. The expected correlation (point-biserial) between the
BER and assigned benchmark risk categories (ie, obtained at
stage 1) is �0.73 with a centered 95% interval from �0.77 to
�0.67 (here, the correlation is negative indicating high-risk
exposures are associated with lower BERs). Overall, the BERs for
some low risk scenarios (eg, ones associated with caffeine, sul-
foraphane, niacinamide, or oxybenzone) overlap with BERs as-
sociated with high-risk scenarios (eg, from exposure to the
drugs rosiglitazone and doxorubicin). Overall, this was as
expected, because not all in vivo bioactivity will necessarily lead
to adverse effects. For example, the POD driving the BER for caf-
feine corresponds to the adenosine A2A receptor, its main tar-
get, and so the caffeine oral drink exposure (which was
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classified as low risk) is expected to have a BER< 1, reflecting
the fact that there is an activity threshold below which A2A re-
ceptor activity is not expected to cause adverse health effects.

Decision Models and Quantifying Protectiveness and Utility
Overall, the results presented in Figure 5 indicated that the BER
obtained from the toolbox may be used to correctly identify
many of the low-risk benchmark chemical-exposure scenarios
whilst being protective against the high-risk ones, provided a
suitable decision model was used. The final stage of the evalua-
tion approach involves assessing the utility and protectiveness
of the toolbox for a given decision model. The utility reflects the
proportion of low-risk benchmark chemical scenarios correctly

identified as such using the toolbox data and decision model
(see below), whereas the protectiveness is the proportion of
high-risk scenarios not identified as low risk (and are instead
identified as uncertain risk).

The decision model used in this work is based on the idea of
setting a threshold value on the BER, such that chemical-
exposure scenarios with a true BER value >1 (ie, Prob.(BER> 1))
are identified as low risk (ie, reflecting the case where Cmax is
below the minimum POD), whereas exposure scenarios with a
true BER< 1 are identified as uncertain risk (ie, could in reality
be either low or high risk). To understand how this decision
model could be implemented with the BER distributions, which
provide a probabilistic description of what the true BER value is,

Figure 5. Centered 50% and 95% credible intervals summarizing the distribution of the bioactivity exposure ratio (BER) when using all available predicted Cmax esti-

mates. Background colors indicate the assigned risk category for each benchmark chemical-exposure scenario assigned at stage 1 (blue—low, yellow—high). The verti-

cal dashed line indicates a BER equal to 1.

Table 2. Probability That the BER >1 for 3 Exposure Scenarios for Caffeine for All 3 PBK Parameterization Levels

Chemical Route Exposure Level Risk Prob. BER> 1 BER 2.5th
Quantile

BER 50th
Quantile

BER 97.5th
Quantile

Caffeine Dermal Shampoo, 0.2% L1 Low 1.00 17 1700 180 000
Caffeine Dermal Shampoo, 0.2% L2 Low 1.00 8.6 200 4400
Caffeine Dermal Shampoo, 0.2% L3 Low 1.00 80 290 1100
Caffeine Oral Food and drink, 400 mg/day L1 Low .42 0.0057 0.63 63
Caffeine Oral Food and drink, 400 mg/day L2 Low .08 0.0050 0.11 2.6
Caffeine Oral Food and drink, 400 mg/day L3 Low .01 0.054 0.20 0.77
Caffeine Oral Overdose, 10 g L1 High .06 0.00022 0.024 2.5
Caffeine Oral Overdose, 10 g L2 High .00 0.00038 0.0083 0.19
Caffeine Oral Overdose, 10 g L3 High .00 0.0020 0.0080 0.032

In the “Prob. BER>1” column, BER probabilities vary from 1 (indicating high certainty that the BER exceeds 1) to 0, indicating high certainty that they do not exceed 1.

Probabilities close to .5, indicating high uncertainty with respect to which side of one the BER falls.
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given the uncertainty in the Cmax PBK estimates, BER distribu-
tions were generated for each exposure scenario and PBK level
(L1–L3). Using these, Prob.(BER> 1) was then calculated for each
chemical-exposure scenario. Examples based on 3 of the caf-
feine benchmark exposure scenarios are given in Table 2 (see
Supplementary Information, Section M4 for the results for all 24
benchmark chemical-exposure scenarios). Here, it can be seen
that Prob.(BER> 1) is close to 1 for the low-risk caffeine sham-
poo (0.2%) dermal exposure scenario (Table 2, rows 1–3) at all 3
PBK levels (L1–L3). Conversely, for the high-risk caffeine oral
overdose exposure scenario (Table 2, rows 7–9), Prob.(BER> 1) is
close to zero for all 3 PBK levels.

In general, Prob.(BER> 1) was small for all the high-risk
benchmark chemical-exposure scenarios included in the study,
at all PBK levels, indicating that using BER value of 1 may pro-
vide a high degree of protectiveness (ie, so that none of the
high-risk benchmark exposure scenarios are identified as low
risk). However, Prob.(BER> 1) was not large for all the low-risk
benchmark scenarios, reflecting the fact that some of these
may be identified as uncertain risk when using the toolbox. For
example, the low-risk caffeine food and drink exposure scenario
(Table 2, rows 4–6), Prob.(BER> 1) was 0.42 when using the L1
prediction, reflecting the uncertainty of whether the true
population-average Cmax exceeds the minimum POD. However,
at higher PBK levels, Prob.(BER> 1) was far lower at L2 and L3
(0.08 and 0.01, respectively), indicating increased certainty that
the true population average Cmax is greater than the minimum
POD. As discussed above, this prediction is consistent with the
mode of action of caffeine at normal levels of consumption.

Although the BER> 1 probabilities in Table 2 may be used by
a risk assessor to guide the overall decision-making process, a
threshold value on Prob.(BER >1) needs to be assigned to com-
plete the decision model. This threshold on the probability,
denoted pthreshold, can be regarded as a measure of the confi-
dence required to identify an exposure as low risk (ie, that BER
>1), and as such we refer to it as a “confidence threshold” here-
after. To explore this systematically, empirical estimates of the
protectiveness and utility of the toolbox were obtained for each
PBK level (Supplementary Information S1, F6). For the bench-
mark exposure scenarios considered in this work, full protec-
tiveness could be achieved at every PBK level if the decision was
to accept a confidence threshold (pthreshold) of as little as .25.
Higher confidence thresholds maintain full protectiveness but
cause a decrease in utility.

The fact that the Cmax error distribution model essentially
places a normal distribution about the base-10 logarithm of PBK
Cmax estimates leads to a useful mathematical property of the
BER distributions. First, it means that BERs are also normally
distributed on a log10 axis, so that the geometric mean of the
distribution is equal to the BER point estimate (ie, the ratio be-
tween the PBK Cmax estimate and the minimum POD). Second, it
means that requiring that Prob.(BER> 1) > pthreshold is equivalent
to requiring that the BER point estimate is above a certain
threshold value. This threshold value is henceforth called the
“threshold BER.” In general, the variance of a BER distributions
depend on which PBK level the distribution corresponds to (see,
eg, Supplementary Information S1, F7). This, in turn, means
that the threshold BER will also vary by PBK level. For example,
from a risk assessment perspective, a reasonable confidence
threshold at each PBK level would be 95% (ie, pthreshold ¼ .95)
(see Supplementary Information S1, F7, red curves). At L1, this is
equivalent to requiring that the BER point estimate exceeds a
threshold BER of 35; at L2, that it exceeds a threshold BER of 7.1;
at L3, that it exceeds a threshold BER of 2.5.

A potentially undesirable feature of any decision model is
that if a “low risk” decision at PBK parameterization L1 is reclas-
sified at L2 or L3, ie, as the PBK model is refined further through
additional data. This could happen when Cmax is underesti-
mated at L1, causing it potentially to appear as low risk, but at
higher PBK levels the estimate of Cmax becomes more accurate,
increasing to be closer to its true value, thereby leading to a
change in the risk classification. To ensure that “low risk” deci-
sions are unlikely to change when moving from 1 PBK level to
the next, more stringent confidence thresholds (or, equiva-
lently, threshold BER values) need to be used at lower PBK levels
than at higher ones. Intuitively, this is because lower PBK levels
use more uncertain forms of parameterization (eg, in silico ver-
sus in vitro data sources).

The confidence thresholds required at each PBK level to en-
sure that the probability of overturning a “low risk” decision is
no more than .1 was calculated (see Supplementary
Information S1, M5 for full details of the calculation). The confi-
dence thresholds were calculated by starting at the highest PBK
level (L3) and setting the confidence threshold needed to deter-
mine whether an exposure is low risk. Here, we chose pthreshold

¼ .95 (as above), ie, 95% of the BER distribution for a given expo-
sure needs to be greater than 1 to be considered low risk. Next,
the confidence threshold needed at L2 was calculated. The vari-
ance of the BER distributions at L2 is greater than at L3, and
therefore a larger confidence threshold (pthreshold ¼ .97) is re-
quired to ensure low risk decisions at L2 are retained with high
probability at L3. In other words, a greater proportion of the BER
distribution needs to be >1 at L2 (97%) than at L3 (95%) due to
the lower accuracy of L2 PBK models. Similarly, at L1, which has
an even higher variance in the BER distribution, the confidence
threshold needs to be pthreshold ¼ .98.

Finally, requiring 95% (ie, pthreshold ¼ .95) of the L3 BER distri-
bution >1 is equivalent to a threshold BER of 2.5 (blue curve,
Supplementary Information S1, F7), as before. Similarly, the 97%
requirement (pthreshold ¼ .97) at L2 is equivalent to requiring a
threshold BER of 11 (blue curve, Supplementary Information S1,
F7); at L1, the 98% requirement (pthreshold ¼ .98) corresponds to a
threshold BER of 110 (blue curve, Supplementary Information
S1, F7). A summary of the resulting decision model is provided
in Table 3.

Based on this analysis, the prototype decision model was de-
fined as follows:

1. Conclude low risk at PBK L1 if the BER point estimate >110;
ie, equivalently if the probability that BER >1 exceeds the
confidence threshold (pthreshold) of .98.

2. Conclude low risk at PBK L2 if the BER point estimate >11;
ie, equivalently if the probability that BER >1 exceeds the
confidence threshold (pthreshold) of .97.

3. Conclude low risk at PBK L3 if the BER point estimate >2.5;
ie, equivalently if the probability that BER >1 exceeds the
confidence threshold (pthreshold) of .95.

The outcome of applying this decision model to the toolbox
data for the 24 benchmark chemical-exposure scenarios is illus-
trated in Figure 6. Exposure scenarios within the blue-shaded
region are identified as low risk, whereas ones outside this re-
gion are considered uncertain risk. The empirical utility and
protectiveness conditional on this decision model is reported in
Table 3. Although utility of the toolbox increases with the PBK
level being used, it can be seen that the requirement of consis-
tent decision-making means that many of the low-risk expo-
sures will be identified as uncertain risk at L1 and L2 (low risk
exposures outside of the blue region in Figure 6).
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Basing the decision criteria on the BER point estimates pro-
vides a more pragmatic way to determine whether an exposure
is low risk or not, as it no longer requires information about the
BER distribution which was obtained using the (Bayesian) Cmax

error distribution model. Overall, the threshold BER values can
be viewed as equivalent to traditional safety factors used in risk
assessment, although the key difference is that they were de-
rived in a data-driven manner using the toolbox.

Impact of Choosing Different Bioactivity Platforms on Toolbox
Performance
To explore the relative contribution of the different bioactivity
platforms on the toolbox and workflow outputs, the BER distri-
butions (and associated protectiveness and utility metrics) were
recalculated using various platform POD subsets, as summa-
rized in Supplementary Information S1, T8.

Basing the BER on in vitro pharmacological profiling PODs
alone did not offer full protectiveness across all PBK levels.
Similarly, BMDexpress-derived PODs from transcriptomics data
also failed to protect against at least 1 high-risk exposure for ev-
ery combination of cell type and PBK parameterization level.
Only PODs obtained with the BIFROST method (used to analyze
the transcriptomics and cell stress panel data) offered full pro-
tectiveness against all the high-risk benchmark exposure sce-
narios. Maximal utility and protectiveness (of 92% and 100%,
respectively) was attained (at PBK parameterization L3) when
basing the BER either on only the cell stress panel or only the
HepaRG transcriptomics data.

The size of the data being used in this analysis is relatively
small, and so it is not possible to determine which combination
of bioactivity platforms provides optimal levels of protective-
ness and utility. However, this analysis illustrates how the pro-
tectiveness and utility metrics can be used to explore the
relative impact of choosing 1 set of bioactivity platforms over
another (ie, for inclusion in the toolbox) in terms of resulting
safety decisions.

DISCUSSION

Within NGRA, there is an ongoing need to determine whether
NAMs can be used to make safety decisions that are protective
of human health. Recently, we demonstrated how this could be
done using a hypothetical case study in which coumarin was
used as an ingredient in various consumer products (Baltazar
et al., 2020). A key aspect of that work was that a BER estimate
(or margin of safety) obtained using NAMs (in vitro assays, PBK
models, etc.) was combined with other toxicity data (eg, in silico
predictions) to make safety decisions. However, it remains
unclear the extent to which the tools and approaches used in
that work could be applied more generally to assure systemic
safety for wider range of chemical-exposure scenarios. At pre-
sent, approaches designed to build confidence in NAMs are typi-
cally focused on hazard identification rather than their use in
risk assessment, and in many cases involve validating the
in vitro results against animal endpoint data. Moreover, in line
with the principles of NGRA (Dent et al., 2018), a key objective is
to be protective of human health, rather than necessarily pre-
dictive of various adverse effects in animals. This distinction is
particularly important in the context of systemic toxicity, where
a broad range of potential adverse outcomes must be covered,
many of which are often not fully characterized in terms of
mechanism of action or adverse outcome pathways.

To address the above considerations, we propose here a sys-
temic safety toolbox and workflow (Figure 1) based on the early-

tier assays and models used in the (Baltazar et al., 2020) study, to-
gether with an approach for evaluating how protective and useful
it is (Figure 2). A key principle of the approach is benchmarking
NAM data against existent safety decisions made using tradi-
tional methods, where the various tools (in silico and in vitro) are
used together and assessed in the context of their intended use,
ie, risk assessment. As such, this work provides an important ba-
sis for a full evaluation, to be conducted subsequently.

As a first step in establishing a toolbox for assessing a sys-
temic safety, various pragmatic choices were made in its com-
position. Potential limitations include: (1) the biological
coverage of the cell models and assays used in the 3 bioactivity
platforms (including the metabolic competence of the cells); (2)
PODs were estimated in terms of nominal concentration, and
aspects important to in vitro to in vivo extrapolation, eg, the free
concentration, were not explicitly considered. The dosing issues
we found with valproic acid indicate that, for certain chemicals,
it may be desirable to monitor exposures within the same
in vitro systems used to generate PODs; (3) Cmax was used as a
metric to quantify exposure levels, which may not always be
appropriate (eg, in cases when the exposure duration is impor-
tant, in which case other metrics such as area under the curve
or the steady-state concentration should also be considered); (4)
population variability, either in terms of interindividual toxico-
kinetics or toxicodynamics (ie, PODs), which may be important
when considering sensitive subpopulations or age groups other
than adult, were not considered; (5) the concentration-response
data were generated at a single timepoint (24 h). However, the
overall concept of this work is to test the hypothesis that the
toolbox and associated workflow is sufficiently protective. As
such, testing, for example, the biological coverage of the cell
assays and the choice of the 24-h timepoint and use of popula-
tion average Cmax, is part of the evaluation. Furthermore, the
learnings from the full evaluation can be used to identify which
of these limitations are critical to the overall protectiveness and
utility of the toolbox, so that improvements are introduced in
an iterative manner (see Figure 7A). A summary of the current
version of the toolbox and potential improvements is provided
in Figure 7B. Finally, the results presented in Supplementary
Information S1, T8 illustrate how the utility and protectiveness
metrics can be used to assess the relative impact on safety deci-
sion-making of using 1 NAM over another, something that until
now has been lacking.

Overall, depending on the PBK model parameterization level
used to estimate Cmax, up to 69% of the low-risk benchmark ex-
posure scenarios can be identified as such with the toolbox us-
ing the decision model defined in Table 3, whilst being
protective against all the high-risk ones. The decision model is
based on the probability of whether the BER exceeds 1, with the
distribution reflecting uncertainty in the PBK estimates (quanti-
fied using the Cmax error distribution model). This approach is
reasonable, provided the PODs obtained from the bioactivity
platforms are sufficiently protective and Cmax is a conservative
representation of the exposure. We demonstrated how the dif-
ferent decision points could either be based on different confi-
dence threshold on whether the BER exceeds 1, or equivalently
on different safety thresholds of the BER point estimate (see
Table 3). This latter set of thresholds are analogous to tradi-
tional safety factors, except they were derived using a Bayesian
statistical model, rather than being based on historical prece-
dent and experience (Renwick, 1993). Importantly, from a
decision-making perspective, only the PBK Cmax estimate and
minimum POD are required to determine whether an exposure
is low risk or not, forgoing the need to explicitly consider the
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Bayesian statistical model, thereby vastly simplifying the ap-
proach. However, it should be stressed that the decision model
is specific to the toolbox as described in Figure 1, including the

in vitro cell models and assays, the computational models used
to analyze the data or generate the exposure estimates. If for ex-
ample the high-throughput transcriptomics data were analyzed

Table 3. Summary of Prototype Decision Model

PBK Level Threshold BER
Required for

Exposure to Be
Identified as Low

Risk

Confidence Threshold (pthreshold)
Required for

Exposure Scenario to
Be Identified as Low Risk

Probability of
Overturning Low-

Risk Decision at Next
PBK Level

Empirical Utility Empirical Protectiveness

1 110 .98 .1 3/18 (17%) 6/6 (100%)
2 11 .97 .1 6/18 (33%) 6/6 (100%)
3 2.5 .95 — 9/13 (69%) 5/5 (100%)

Figure 6. Chemical-exposure scenarios with a BER point estimate outside the blue-shaded region would be identified as “uncertain” risk under this decision model.

The gray-dashed line corresponds to BER¼1.
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only using BMDexpress, and not BIFROST, the decision model
would need to be altered accordingly. Furthermore, the Cmax er-
ror distribution model presented in the work was evaluated
against 11 chemical-exposure scenarios where measured Cmax

was available, and it will be important to assess how well the
model performs using a wider range of chemicals and exposure
routes. In general, the use of Bayesian statistical models in toxi-
cology have been explored in a variety of contexts (see, eg, Chiu
et al., 2017; Lazic et al., 2018; Maertens et al., 2022; Reynolds et al.,
2019, 2020; Wambaugh et al., 2019; Williams et al., 2020) and
could be readily extended to capture other sources of uncer-
tainty associated with the toolbox (eg, variability between

replicates of an in vitro experiment conducted in separate labs
or on different occasions, etc.), provided the necessary experi-
mental data are available.

Several of the low-risk benchmark exposures could only be
identified as uncertain risk using the toolbox, reflecting poten-
tial for the relevant chemicals triggering bioactivity at those
exposures. For example, caffeine intake from the normal con-
sumption of beverages (up to 400 mg caffeine/day) was pre-
dicted to be bioactive (BER< 1) and therefore was not identified
as low risk using the toolbox. This is perhaps not surprising,
given that caffeine is a psychoactive drug, and normal con-
sumption of caffeinated drinks does lead to systemic

Figure 7. A, Summary of the iterative approach for evaluating and then refining the toolbox beyond the current version (ie, version 1). B, Overview of current toolbox

version and potential improvements for future iterations. Abbreviations: iPSC, induced pluripotent stem cell; AUC, area under curve; CSS, steady-state concentration;

BER, bioactivity exposure ratio; CMED, Cmax error distribution; PBK, physiologically based kinetic; HTTr, high-throughput transcriptomics; CSP, cell stress panel; IPP,

in vitro pharmacological profiling; POD, point of departure.
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bioactivity. When first assigning benchmark risk categories, we
categorized this exposure as “low risk,” because although some
individuals are sensitive to low levels of caffeine, 50 mg is
widely considered safe for the general adult population without
the need to apply any risk-benefit considerations. For this rea-
son, it was challenging to assign an appropriate risk category to
this chemical-exposure scenario. First, this highlights impor-
tance of capturing population variability (both in terms of bioki-
netics and biodynamics) in future iterations of the toolbox (ie,
because, for some small fraction of the population, normal caf-
feine consumption could be considered “high risk” from a con-
sumer goods perspective). One way to address this could be to
use the approach set out in WHO (2018), which provide
chemical-agnostic distributions that capture the uncertainty as-
sociated with interindividual differences in sensitivity across a
population. These could be further refined using Bayesian mod-
els that quantify the population variability both in terms of
PODs (eg, using primary cells or induced pluripotent stem cell
models from multiple donors) (Blanchette et al., 2022; Chiu et al.,
2017) or internal exposure levels (eg, using Bayesian PBK mod-
els) (Krauss et al., 2013; Wambaugh et al., 2019). Second, the pre-
diction by the toolbox that normal caffeine consumption will
result in systemic bioactivity reinforces that this toolbox needs
to be used as part of a tiered approach to safety assessment. In
practice, for chemical exposures identified as uncertain risk us-
ing the toolbox, the decision of whether or not to continue refin-
ing the risk assessment using higher tier tools may depend both
on the biological effects detected using the toolbox (ie, whether
the perturbation of a particular pathway could be indicative of
an adverse effect or an adaptive response) and the size of the
BER (contrast, eg, the median BER for the chemotherapy drug
doxorubicin, which is �0.001, with the median BER for the nor-
mal consumption of caffeine, which is �0.1). Higher tier tools
that could be used to investigate whether systemic bioactivity
predicted by the toolbox could indeed result in adverse effects
(either by refining the bioactivity characterization or the expo-
sure estimates) include microphysiological systems (Ewart et al.,
2018; Peterson et al., 2020), use of primary-derived cell models
and other bespoke assays for investigating specific biological
processes (eg, aligned to specific adverse outcome pathways
[Carusi et al., 2018; Villeneuve et al., 2014]), including transport
(Bajaj et al., 2020) or metabolism of the test chemical (Miranda
et al., 2021).

The results obtained for the small set of benchmark
chemical-exposure scenarios in Table 1 have given us sufficient
confidence to move on to the full evaluation. The benchmark
chemical-exposure scenarios to be used in the full evaluation
must cover a wide range of different mechanisms, potencies,
and exposure scenarios whilst limiting the appearance of
extremes or biases in the final set of benchmarks. For example,
if the evaluation consisted solely of either highly potent chemi-
cals like doxorubicin, or those that are relatively inert like cou-
marin or niacinamide, one could obtain almost perfect
separation between low-risk and high-risk exposures based on
the BER, but this would not be representative of the wider
chemical-exposure space that consumer safety occupies. Given
the limitations discussed above, it is quite possible that “version
1” of the toolbox (as defined in this work), using the proposed
decision model in Table 3, will not be protective for all the high-
risk benchmark chemical-exposure scenarios that will be used
in the full evaluation. Defining a priori the exact number of
chemicals or exposure scenarios needed to complete the evalu-
ation and finalize the decision model is currently not possible
given the lack of available data. However, using the iterative

approach defined above (see Figure 7A), the data generated in
the full evaluation can be used to update and refine the decision
model where necessary, provided whatever hypothesized
improvements are then tested with another independent data-
set. Through this process, it is anticipated that a “final” toolbox
and decision model can be attained, although this may require
several iterations.

Overall, the decision model summarized in Table 3 is signifi-
cantly less stringent than that recently proposed by Health
Canada. There, it was suggested that, for screening assessments
conducted under the Canadian Environmental Protection Act,
1999, ToxCast data and high throughput toxicokinetics (see
egPaul Friedman et al., 2020; Pearce et al., 2017, ) may be used as
a line of evidence to support a decision of not toxic when the
BER >1000 (Health Canada, 2021). The use of this relatively large
BER may reflect the current lack of consensus on how to deal
with uncertainty when using NAMs for decision-making.
However, it is envisaged that the approach outlined in this
work, based on the use of predefined benchmarks, data-driven
hypothesis generation, and systematic testing, can help build
such a consensus and ensure that NAMs can confidently be
used to make safety decisions.

CONCLUSIONS

A core toolbox of NAMs (in vitro and computational) and associ-
ated workflow was developed that, in an initial evaluation, can
be used to provide BERs which appeared to enable protective
systemic safety decisions to be made without using any animal
data. This work will enable a full evaluation of the performance
of the toolbox to assess its protectiveness and utility across a
broader range of chemical-exposure scenarios. Furthermore,
this pilot study has identified important limitations of the
NAMs used, which can be addressed in future iterations of the
toolbox.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.
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