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Abstract: Malignant tumors have always been the biggest problem facing human survival, and a huge
number of people die from cancer every year. Therefore, the identification and detection of malignant
tumors have far-reaching significance for human survival and development. Some substances are
abnormally expressed in tumors, such as cyclooxygenase-2 (COX-2), nitroreductase (NTR), pH,
biothiols (GSH, Cys, Hcy), hydrogen sulfide (H2S), hydrogen sulfide (H2O2), hypochlorous acid
(HOCl) and NADH. Consequently, it is of great value to diagnose and treat malignant tumors due
to the identification and detection of these substances. Compared with traditional tumor detection
methods, fluorescence imaging technology has the advantages of an inexpensive cost, fast detection
and high sensitivity. Herein, we mainly introduce the research progress of fluorescent probes for
identifying and detecting abnormally expressed substances in several tumors.

Keywords: fluorescence imaging; tumor identification; small molecule

1. Introduction

Cancer is a form of malignancy. For a long time, human beings have endured a
huge threat from malignant tumors. Therefore, the precise identification and detection
of tumor malignancy and migration at the cellular level, so as to accurately distinguish
between the tumors and the surrounding healthy tissues, is of vital significance for human
survival and development [1–4]. Over many years, more and more research has contributed
to developing methods for detecting tumors to obtain information on the diseased area,
size as well as the severity of the tumor, causing profound changes in the discovery and
treatment of malignant tumors. Currently, some tumor detection technologies include
nuclear magnetic resonance imaging, computed tomography, histopathological diagnosis,
microfluidic technology and others [5–8]. However, the above several methods have
limitations such as large radiation, high cost and complex operation, so it is urgent to
develop a new testing platform to promote the development of the field of tumor testing.

Compared with these methods, fluorescent imaging is an emerging technology, with
the advantages of high sensitivity, low cost, small radiation, fast detection, and good
specificity [9–12]. Fluorescent probes are mainly composed of two parts, a signal unit
and a recognition unit, which can make the detected cells/tissues emit fluorescence when
irradiated by a light source with a specific wavelength, thereby allowing the visualization of
the lesion sites [13]. High-performance near-infrared (NIR) fluorophores have good clinical
application potential because of the advantages of low penetration, low fluorescence back-
ground as well as low damage to biological samples [14,15]. By chemically modifying these
fluorophores, it is possible to develop NIR fluorescent probes with improved performance,
leading to improved photophysical and chemical properties, including higher sensitivity,
better photostability, longer wavelengths, and good specificity. Therefore, fluorescent
probes are extensively applied in the imaging of various diseases.
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The fluorescence regulation mechanisms of fluorescent probes mainly include in-
tramolecular charge transfer (ICT), photo-induced electron transfer (PET), fluorescence
resonance energy transfer (FRET), aggregation-induced emission (AIE), and excited-state
intramolecular proton transfer (ESIPT), etc. ICT, PET, and FRET are commonly used in
the design of fluorescent probes. ICT refers to the intramolecular charge transfer process
that occurs when the probe is irradiated with excitation light. The probe designed based
on the ICT mechanism contains an acceptor (A), a donor (D), and a conjugated structure
connecting A and D. As shown in Figure 1a, when the electron-donating ability of D or the
electron-withdrawing ability of A increases, ∆ELUMO/HOMO decreases, and the fluorescence
spectrum of the probe undergoes a red shift; otherwise, the fluorescence spectrum of the
probe undergoes a blue shift. ICT can be used for the design of ratiometric fluorescent
probes. PET refers to the process by which electrons are transferred from D to A when
irradiated by excitation light. The PET-based probes are similar to ICT, except that A and D
are linked in a non-conjugated structure. There are two types of PET: a-PET (fluorophore
is A) and d-PET (fluorophore is D). As shown in Figure 1b, during the a-PET process, A
is excited, electrons transition from HOMO to LUMO, and the electrons on the HOMO
of D preferentially occupy the HOMO of A. Thus, electrons in the excited state of the
fluorophore are prevented from returning to the ground state, resulting in the quenching of
the fluorescence. After interacting with the analyte, the HOMO of D decreases, the above
process is inhibited, and the fluorescence is activated. In the d-PET process, the LUMO of A
is between the LUMO and HOMO of D, and the electrons of the fluorophore preferentially
transition to the LUMO energy level of A after being activated, so that they cannot return
to the ground state and the fluorescence is quenched. After the interaction with the analyte,
the above process is interrupted and the fluorescence is activated. Most fluorescent probes
of the PET mechanism are reversible. As shown in Figure 1c, the fluorescent probe based on
the FRET mechanism has two fluorophores, one as an energy donor and one as an energy
acceptor. It is worth noting that the emission spectrum of D and the absorption spectrum
of A overlap. The excited state D transfers energy to A through energy resonance, so that
A emits fluorescence with a longer wavelength. FRET is the most commonly used design
mechanism for ratiometric fluorescent probes.

In recent years, several fluorescent probes for tumor imaging were successively devel-
oped [16,17]. However, the number of deaths due to malignant tumors has not decreased
worldwide [18–22], and further research and development of novel probes for tumor
identification and detection is urgent.

In the procedure of tumor growth, proliferation and migration, there will be metabolic
changes different from normal cells. Many studies have shown that the expression of many
substances in tumor cells/tissues is abnormal compared with that in normal cells/tissues.
We can detect the position of tumor cells/tissues and the situation of malignancy based
on the abnormal expression of these substances [23], for example, cyclooxygenase-2 (COX-
2), nitroreductase (NTR), pH, GSH, other biothiols, H2S, H2O2, HOCl and nicotinamide
adenine dinucleotide (NADH). In recent years, fluorescent probe imaging technology has
made significant progress in this regard. In this review, we introduce the progress of
small molecule fluorescent probes for detecting several abnormally expressed substances
in tumors in recent years. We think that such a review would help more researchers
devote themselves to this meaningful research field, so as to develop more substances
for accurate detection, which is expected to enhance its value in clinical applications. We
hope this review can provide a recent research status of small-molecule fluorescent probes
detecting abnormally expressed substances in tumors for researchers in this field, and we
look forward to continuous breakthroughs in this field.
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2. Fluorescent Probe for Detecting Cyclooxygenase-2 (COX-2) Enzymes

Recent studies have found that cyclooxygenase-2 (COX-2) is closely related to the
processes of tumor growth and metastasis [24–26]. Many data have shown that more than
60% of tumors can cause hypoxia [27–31], that COX-2 is highly expressed in tumors but less
in normal cells [32,33], and the amount of COX-2 increases with tumor deterioration [34–38].
Therefore, the detection of COX-2 is of great value for identifying the tumor environment.
At present, many probes have been developed for the detection of COX-2.

In 2015, Peng et al. [39] introduced the first NIR fluorescent probe, Niblue-C6-IMC
(Figure 2a), to localize COX-2 in the Golgi apparatus, which indomethacin (IMC) was linked
to the Nile blue dye using a hexane diamine. The calculated results of Gaussian 09 showed
the existence of PET between Nile blue dye and IMC. Hence, the fluorescence disappeared.
When bound to COX-2, PET was suppressed, consequently, fluorescence was restored. By
Native-PAGE analysis, the data showed that Niblue-C6-IMC can be specifically conjugated
to COX-2. Then, cancer cell lines (HeLa cells; HepG2 cells; MCF-7 cells) and normal cell
lines (COS-7 cells; LO-2 cells; OB cells) were subjected to a confocal fluorescence microscope
(Figure 2b). The results indicated that Niblue-C6-IMC was capable of distinguishing normal
cells from cancer cells. Colocalization experiments showed that the probe could efficiently
mark the Golgi in cancer cells. Further, it could perform fluorescence imaging in tumor
tissues and mice tumor sites. The probe is a powerful tool in the study of cancer procession.

Later, in 2018, Peng and coworkers [40] designed a one- and two-photon fluorescence
probe NP-C6-CXB (Figure 3a). Naphthalimide was chosen as the fluorophore and celecoxib
was chosen as the selection group for COX-2. NP-C6-CXB was in a PET forbidden state
in solution, when interacted with COX-2, the PET recovered with a strong fluorescent
response (Figure 3b). In living cells imaging, compared the fluorescence responses of cancer
cell lines and normal cell lines, Figure 3c found that cancer cell lines (MCF-7 and Hela cells)
fluoresced strongly, while normal cell lines (HL-7702and COS-7 cells) fluoresced weakly.
Further, in the tissue slices imaging (Figure 3d), strong fluorescence was found in tumor
tissue of Balb/c nude mouse, but not observed in normal liver tissue. Subsequent mouse
experiments also proved this. This probe has potential value in identifying tumors.
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Figure 2. (a) Structure of probe Niblue-C6-IMC; (b) Confocal imaging of cancer cell lines (MCF-7
cells; HepG2 cells; HeLa cells) and normal cell lines (COS-7 cells; LO-2 cells; OB cells) staining
with Niblue-C6-IMC. Reproduced with permission from [39]. Copyright 2015 The Royal Society
of Chemistry.
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Figure 3. (a) Structure of probe NP-C6-CXB; (b) Fluorescence spectra of NP-C6-CXB in the presence
of COX-2; (c) Fluorescent images of live cells under excitation of one-photon and two-photon;
(d) Fluorescence imaging of cancer and normal tissues. Reproduced with permission from [40].
Copyright 2018 American Chemical Society.

In 2021, Kim’s research group [41] developed a novel two-photon fluorescent probe
SCX (Figure 4a), which is based on the PBT fluorophore, and IMC was selected as the
targeting group. In the imaging of HeLa cells, the probe emits distinct fluorescence under
excitation at 810 nm. After pretreatment with the COX-2 inhibitor celecoxib in HT-29
and HeLa cells, the fluorescence intensity of both cancer cells was obviously reduced.
Afterward, control experiments with cancer cell lines and normal cell lines (Figure 4b)
were performed. HT-29 (colorectal adenocarcinoma), Huh-7 (hepatocellular carcinoma),
HeLa (epithelioid cervical carcinoma) cells were selected as cancer cell lines, CCD-18Co
(normal colon cells), Chang (normal hepatocytes), Raw264.7 (macrophages) was selected
as the normal cell line. The results demonstrated that the fluorescence intensity of cancer
cell lines and normal cell lines was significantly different. Further, colonic normal and
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tumor tissues were studied (Figure 4c). The results show that in cancerous tissue, SCX
will emit strong fluorescence, and the observation depth can reach at least 100µm, which
is 4.4 times the intensity of normal tissue. The above studies show that the probe has
far-reaching significance for distinguishing normal tissue from cancerous tissue in living
human samples.
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fluorescence images of human colon (c-a) cancer tissues and (c-c) normal tissues. Reproduced with
permission from [41]. Copyright 2020 Elsevier B.V.

In 2022, Marnett and co-workers [42] designed a redox-activatable probe, FQ, which
was used to detect COX-2. FQ was obtained by linking FA to an amino-TEMPO molecule,
which was converted to FQ-H when FQ was reduced (Figure 5a). FQ showed strong
fluorescence after being converted into FQ-H, and then the detection of COX-2 can be
realized. A total of 1483 HNSCC cells with high COX-2 expression were chosen for cell
experiments (Figure 5b). The results showed that strong fluorescence appeared after FQ
was incubated with cells for 3 h. Furthermore, in vivo experiments showed that FQ had
sufficient time to reach the target in vivo, and realized the simultaneous detection of COX-
2 and ROS, which provided certain conditions for in vivo research. FQ overcomes the
limitations of previous COX-2 probes and realizes in vivo and in vitro detection in living
animals, which is of great significance for further clinical research on tumor visualization.
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3. Fluorescent Probe for Detecting Nitroreductase (NTR) Enzymes in Tumor
Cells/Tissues

Hypoxia is characteristic of most advanced tumors. Compared to normal cells, hypoxic
cells exhibit a higher level of reductase, such as nitroreductase (NTR) [27,43–46]. Therefore,
NTR can be used as a feasible substance for tumor detection [47–50]. The degree of hypoxia
in tumors can be monitored by detecting the level of NTR. Until now, traditional methods
for detecting NTR have been reported, for example, the Clark electrode [51], nuclear
magnetic resonance (NMR) [52], and electron paramagnetic resonance (EPR) [53], and so
on. However, the above methods have certain limitations, such as complex instruments
and low resolution [44]. In contrast, fluorescent probe imaging is low cost, high sensitivity,
and simple operation [54–57]. In recent years, many small-molecule fluorescent probes for
NTR have been reported.

In 2013, Qian et al. [58] reported a NIR fluorescence probe (NBP) (Figure 6a), which
was synthesized by Nile Blue fluorophore (NBF) and 4-nitrophenyl chloroformate. Under
hypoxic conditions, the p-nitrobenzyl of NBP was reduced, so as to release NBF. NBP
showed a strong absorption at 525 nm and almost no fluorescence. The fluorophore NBF
showed strong absorption and obvious fluorescence emission at 613 nm and 658 nm,
respectively. The fluorescence intensity at 658 nm was significantly enhanced when NBP
was incubated with NTR. In the confocal imaging of A459 cells, almost no fluorescence was
observed under normoxia, while the fluorescence intensity increased obviously when the
degree of hypoxia deepened. (Figure 6b) The probe has good selectivity, high sensitivity
and low autofluorescence interference, and can be used in tumor diagnosis.

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 37 
 

 

 

 

 

(a) (b) 

Figure 6. (a) Structure of probe NBP; (b) In the confocal imaging of A459 cells at different oxygen 

concentrations. Reproduced with permission from [58]. Copyright 2013 The Royal Society of 

Chemistry. 

Again in 2013, Ma and co-workers [59] described a fluorescent probe 1 (Figure 7a). 

The probe was introduced into 5-nitrofuran for masking, and resorufin was selected as 

the signaling unit. When probe 1 reacted with NTR, resorufin was released. Then, the 

fluorescence of resorufin was recovered (Figure 7b) and it can be seen that a higher level 

of NTR resulted in stronger fluorescence intensity. Confocal images of Hela cells under 

different O2 conditions (Figure 7c) indicated that the probe can monitor the hypoxic state 

of the tumor cells by detecting an endo-NTR. This probe is a potential tool to diagnose 

tumors. 

 

 

(a) (b) 

 

(c) 

 

Figure 7. (a) Detection mechanism of probe 1 for NTR; (b) Fluorescence emission spectra of probe 1 

(b-a) before and (b-b) after reaction with NTR; (c) Confocal fluorescence images of Hela cells under 

different oxygen conditions. Reproduced with permission from [59]. Copyright 2013 American 

Chemical Society. 
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Again in 2013, Ma and co-workers [59] described a fluorescent probe 1 (Figure 7a).
The probe was introduced into 5-nitrofuran for masking, and resorufin was selected
as the signaling unit. When probe 1 reacted with NTR, resorufin was released. Then,
the fluorescence of resorufin was recovered (Figure 7b) and it can be seen that a higher
level of NTR resulted in stronger fluorescence intensity. Confocal images of Hela cells
under different O2 conditions (Figure 7c) indicated that the probe can monitor the hy-
poxic state of the tumor cells by detecting an endo-NTR. This probe is a potential tool to
diagnose tumors.
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Chemical Society.

In 2018, Cheng et al. [60] published a novel off–on fluorescent probe 2 (Figure 8a),
which was composed by decorating 4-Nitrobenzyl chloroformate moiety with naphthal-
imide. When the probe reacted with NTR, the fluorescence was released, and as the level
of NTR increased from 0.1 mg/mL to 0.33 mg/mL, the fluorescence intensity (Figure 8b)
was stronger. As demonstrated in the confocal fluorescence images (Figure 8c) showed
that the probe can be applied to detect the hypoxic state of tumor tissue. This probe has
high selectivity, low cytotoxicity, and good biocompatibility, and can be utilized for the
detection of NTR and imaging of tumor hypoxia.

In the same year, Chen et al. [61] developed a NIR fluorescent probe Cy-NO2 (Figure 9a).
The fluorescence spectrum of Cy-NO2 reacting with NTR was shown in Figure 9b, the
maximum fluorescence emission occurred at 785 nm. Fluorescence imaging of A549 cells
(Figure 9c) showed that Cy-NO2 could detect NTR in tumor cells (Dicoumarin is an NTR
inhibitor). Furthermore, in vivo imaging of the H22 tumor-bearing mouse model (Figure 9d)
showed that Cy-NO2 did not fluoresce in normal mice, but strong fluorescence was detected
in tumor-bearing mice, whereas the fluorescence intensity increased in mice in the presence
of NTR inhibitors smaller. In addition, Cy-NO2 was also used in other mouse hypoxia
models. Cy-NO2 has great research value for tumor hypoxia imaging and imaging of other
hypoxia-related diseases.
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In 2021, Ji and co-workers [62] designed a “turn on” fluorescent probe (T-1), in which
the nitro and trifluoromethyl acted as the electron acceptor, resulting in fluorescence
disappearing. Based on the ICT mechanism, NTR reduced the nitro group on T-1 to an
amino group, and fluorescence appeared (Figure 10a). When the NTR concentration was
0–6 µg/mL, the fluorescence intensity at 459 nm increased linearly (Figure 10b). T-1 and
NTR exhibited stable fluorescence properties in a wide pH range (6–10). As well as confocal
imaging (Figure 10c) showed that when the probe T-1 was incubated with HeLa cells,
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the higher the degree of hypoxia, the stronger the fluorescence. The good membrane
penetration, good stability and high selectivity of T-1 allow a good application prospect in
the detection of NTR in biological systems.
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Figure 10. (a) Detection mechanism of probe T-1 for NTR; (b) Fluorescence spectra changes of
probe T-1 upon addition of different concentrations of NTR; (c) Confocal images of HeLa cells under
different O2 conditions incubated with probe T-1. Reproduced with permission from [62]. Copyright
2021 Elsevier B.V.

In 2022, Lin et al. [63] developed a novel fluorescent probe P1 (Figure 11a). P1
was synthesized based on a two-photon fluorophore P1-OH and NTR recognition site
p-nitrobenzene. In the presence of NTRs, the p-nitrobenzene unit of P1 was reduced to
-OH, at which point P1-OH exhibited fluorescence emission (Figure 11b) at 647 nm due to
the ICT mechanism. HepG2 cells imaging experiments (Figure 11c) showed that after the
addition of the probe the fluorescence was weaker in normoxic conditions and had a strong
red fluorescence under hypoxia. This probe has a low detection limit and low cytotoxicity.
It is of great significance for further identification of cancer cells and tumors.

In 2022, Ge et al. [64] reported an NTR-activatable fluorescent probe (FY) in which
p-nitrobenzyl was selected as the recognition group of NTR, and hemicyanine was selected
as the fluorophore (Figure 12a). Spectral experiments showed that when NTR was added,
the fluorescence intensity of the probe changed significantly (Figure 12b). After a series
of cell experiments, the results showed that the use of methanol fixation can make the
fluorescence signal well preserved, and the fluorescence intensity in A549 cells (cancer cells)
is much stronger than that in HEK293T cells (normal cells) (Figure 12c). In addition, FY was
successfully used to detect NTR in zebrafish and mice tumor tissues, and the fluorescence
signal was found to be more intense under hypoxic conditions. In conclusion, the FY signal
can be fixed to better realize the detection of NTR in tumors, which has reference value for
further research on biological imaging.
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4. Fluorescent Probe for Detecting pH

The pH changes in the cytoplasm and some organelles can reflect the state and
metabolic processes of cells, especially in some diseases [65–68]. Studies have shown that
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one of the features of the environment within malignant tumors is lower pH [65,67,69–72].
Therefore, the degree of tumor malignancy can be distinguished by detecting intracellular
pH. In recent years, due to the low cost, visualization, and high sensitivity [9,73], fluores-
cent probes for visualization of tumor pH have been reported one after another, which is
beneficial to the early diagnosis and treatment of malignant tumors.

In 2017, Sun et al. [74] published a naphthalimide–rhodamine-based fluorescent probe
(RBN). The probe was based on the FRET mechanism (Figure 13a). In neutral and alka-
line environments, RBN emitted fluorescence of naphthalimide; under acidic conditions,
rhodamine was ring-open, so that the fluorescence was transferred to the rhodamine. Fluo-
rescent spectroscopy (Figure 13b) revealed that under acidic conditions, a new fluorescence
response appeared at 577 nm, which was different from that under neutral alkaline condi-
tions. In confocal imaging (Figure 13c), RBN exhibited a strong red fluorescence in HepG-2
cells, but only weakly in normal cells (HL-7702 cells). The probe is able to provide a vital
role in cancer diagnosis and treatment.
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Figure 13. (a) The proposed mechanism of RBN for sensing H+; (b) Fluorescence spectra of RBN
at different pH values; (c) CLSM images of HepG-2 cells and HL-7702 cells incubated with RBN.
Reproduced with permission from [74]. Copyright 2017 Elsevier B.V. on behalf of Chinese Chemical
Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

In 2018, Wong and co-workers [75] reported a two-photon ratiometric fluorescence
probe, BIMC (Figure 14a), which is based on carbazole–benzimidazole. In Figure 14b,
when the pH gradually decreased from 6.80–2.50, the fluorescence intensity at 454 nm
gradually decreased, the emission band was red-shifted to 514 nm, and an iso-emissive
point was formed at 500 nm. The F454nm/F514nm had a good linear relationship in the pH
range of 5.0–3.82. Hela cells imaging experiments indicated that BIMC can be used as a
ratiometric pH probe for cell imaging. Fluorescence imaging of living normal and cancer
tissues (Figure 14c) further confirmed the high promise of BIMC in monitoring changes
in pH in living tissues. BIMC is of great reference value for the study of lysosome-related
pathological and physiological processes.
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In 2019, Wang et al. [76] developed a new dual hepatocyte-targeting fluorescent
probe HPL-1. Figure 15a showed that acid conditions induced internal amide transfer of
the rhotamine from closed loop to open loop, resulting in enhanced fluorescence. Cell
imaging of HPL-1 under weak acid and alkaline conditions (Figure 15b) revealed that
the fluorescence intensity at pH 6.5 was approximately four times that at pH 7.4. Cell
imaging experiments of L02 cells and HepG2 cells (Figure 15c) indicated that the probe
could precisely distinguish cancerous liver cells from normal liver cells. HPL-1 is important
for the precise diagnosis and treatment of hepatocellular carcinoma.
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(c) Fluorescence imaging of HPL-1 in HepG2 cells and L02 cells. Reproduced with permission
from [76]. Copyright 2019 Elsevier B.V.
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In 2021, Yin et al. [77] introduced a new ratiometric fluorescent probe (SN-Lyso)
(Figure 16a), which based on the ICT-FRET dual mechanism and morpholine was used as a
lysosome-targeted moiety. When the pH was changed from 3 to 8, the fluorescence intensity
(Figure 16b) of the probe declined at 597 nm and rose at 550 nm. Cellular imaging of SN-
Lyso showed that in HeLa cells and HepG2 cells, the probe could localize to lysosomes and
the pH of the lysosomes showed a downward trend during autophagy. Moreover, imaging
of the tumor site in mice models (Figure 16c) indicated that the tumor microenvironment
in the mice model was more acidic than in the normal microenvironment. SN-Lyso can
specifically identify tumor cells, which has a certain reference value for studying the
pathological mechanism of lysosomes and visualizing tumor sites.
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Figure 16. (a) Response mechanism of SN-Lyso for pH detection; (b) Fluorescence spectra of SN-
Lyso at different pH values; (c) Fluorescence imaging of the tumor and the normal site in HeLa
tumor-bearing nude mice. Reproduced with permission from [77]. Copyright 2021 Elsevier B.V.

In 2022, Wang et al. [78] synthesized a fluorescent probe (Golgi-hNR) for detecting
pH in the Golgi, which chose a rhodamine derivative as the fluorophore (Figure 17a).
Spectroscopic experiments showed a trend of fluorescence enhancement at 615 nm from
pH = 7.4 to pH = 3.0 (Figure 17b). Golgi-hNR can be selectively localized in the Golgi in
HepG-2, HeLa and A549 cells. As shown in Figure 17c, in pH-dependent experiments,
the red fluorescence gradually decreased with the increase in pH. In subsequent tests, it
was further confirmed that Golgi-hNR can sensitively detect pH changes in the Golgi. In
summary, Golgi-hNR can be used to monitor the pH homeostasis of the Golgi apparatus,
which is of great significance for the study of diseases such as cancer.
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Elsevier B.V.

5. Fluorescent Probe for Detecting Glutathione (GSH)

Glutathione (GSH) plays an antioxidant role in the redox stress response of living
cells, and abnormal GSH content will induce some diseases, such as cancer, Alzheimer’s
disease, heart problems, and so on [79–84]. Compared with normal cells, GSH is highly
expressed in tumor cells for resisting intrinsic oxidative stress [85,86]. GSH as a tumor
marker was confirmed in many studies, so the development of GSH probes for tumor
recognition is important in the early diagnosis and treatment of tumors [87–90]. At present,
many fluorescent probes have been developed to detect GSH in living cells.

In 2014, Urano et al. [82] published a new fluorescent probe (DNs-HMRG) for GSH
(Figure 18a). When the probe reacted with the GSH, the sulfonyl amide bond is rapidly
broken and emitted strong fluorescence. Furthermore, the fluorescence response increases
with increasing GSH in the physiological level range. In confocal imaging (Figure 18b), DNs-
HMRG was co-incubated with SHIN3 cells (GSH-high), and the fluorescence increased,
and the fluorescence was aggregated in lysosomes. However, when DNs-HMR was co-
incubated with HUVEC cells (GSH-low), and the fluorescence intensity was significantly
different. According to intraperitoneal cancer dissemination of SHIN-3 ovarian cancer in a
model mouse, DNs-HMRG can be used to detect the dissemination of tiny cancer nodules
less than 1 mm in diameter in the abdominal cavity. This probe can be a powerful tool for
the study of redox biology.

In 2017, Urano et al. [86] synthesized a FRET-based ratiometric probe, QuicGSH. As
shown in Figure 19a, rhodamine and SiR fluorophore were chosen as the fluorophore and
a suitable scaffold for developing GSH probes, respectively, and TMR was chosen as the
donor. QG0.6 and QG3.0 were synthesized and QG3.0 was used for further study. Further
study found that different cell lines exhibited different fluorescence intensities (Figure 19b),
which were derived from different GSH concentrations. Experiments showed that QG3.0
can be used to visualize and quantitatively detect intracellular GSH levels, which is of great
significance for studying the pathological process of cancer cells.
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Figure 18. (a) Structure of probe DNs-HMRG; (b) (b-1) Time course of fluorescence intensity of
SHIN3 cells and HUVEC cells after adding DNs-HMRG; (b-2) Confocal images of SHIN3 cells and
(b-3) HUVEC cells after adding DNs-HMRG. Reproduced with permission from [82]. Copyright 2014
Elsevier Ltd.
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In 2020, Xu et al. [91] designed a new fluorescent probe, HL (Figure 20a), based on
the “on-off-on” fluorescent switch strategy. When HL was combined with Cu2+, a new
probe Cu2+-2HL was synthesized, which had little effect on the fluorescence emission
with other amino acids and anions, but the fluorescence emission (Figure 20b) at 521 nm
was obviously increased after adding GSH. Confocal microscopy images (Figure 20c) of
MCF-7 cells showed that Cu2+-2HL could sensitively detect endogenous GSH. MCF-7 cells
and HUVEC cells were incubated with Cu2+-2HL and imaged under the same conditions.
This result indicated that the fluorescence intensity of MCF-7 cells was more than two
times stronger than that of HUVEC cells, indicating a more content of GSH in tumor cells.
Cu2+-2HL and HL have low cytotoxicity, which is of great significance for the detection
and recognition of tumors in the life system.

In 2021, Chen and co-workers [92] reported a PET-based fluorescent probe Naph-SS-Fc
(Figure 21a). The probe used a disulfide bond as a connecting group, one end was connected
to a naphthalimide fluorophore, and the other end was connected to a ferrocene unit. When
Naph-SS-Fc reacted with GSH, the disulfide bond was broken, the PET was blocked, and
the fluorescence was enhanced (Figure 21b). Confocal imaging showed that Naph-SS-Fc
could detect GSH levels in living cells. Two normal cells (HUVEC, LO2) and three cancer
cells (SMMC, CT-26 and HepG2) were selected and incubated with the probe, and the
results (Figure 21c) showed that the fluorescence intensity of cancer cells was stronger than
that of normal cells. Naph-SS-Fc has low cytotoxicity, can be used to detect GSH in living
systems, and can distinguish cancer cells from normal cells.
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In 2022, Song et al. [93] developed a novel two-photon fluorescent probe TPEF-GSH
to detect GSH (Figure 22a). As shown in Figure 22b, the fluorescence intensity gradually
increased with the addition of GSH (0–12 mM) at 815 nm. Subsequently, cell experiments
were carried out using HeLa cells; it was found that TPEF-GSH could be used to sensi-
tively detect GSH in cells, and cells with high GSH concentration showed more obvious
fluorescence intensity (Figure 22c). In addition, zebrafish were used as the in vivo imaging
model for a series of studies, the results showed that TPEF-GSH could accurately detect
and quantify GSH in tumors. In conclusion, TPEF-GSH is a novel two-photon probe that
can image and quantify GSH in vivo and in vitro and has a certain value for the study of
two-photon probes in GSH detection in tumors.
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6. Fluorescent Probe for Detecting Other Biothiols

Small molecule biothiols include GSH, Cys, and Hcy, besides GSH, other small-
molecule biothiols also play important roles in cellular operations and signaling [94–98].
The abnormal content of biological thiols in cells may induce some diseases, such as
Alzheimer’s disease, malignant tumor, and cardiovascular disease [99–103]. Therefore, the
development of probes for rapid and efficient detection of biothiols is of great value for the
discovery and therapy of related diseases.

In 2017, Lin et al. [104] synthesized a novel two-photon fluorescent probe ANBI
(Figure 23a). When Cys (0–10 mM) was gradually added to the probe’s PBS solution, the
emission intensity at 590 nm increased linearly (Figure 23b). In Figure 23c, HeLa cells
were observed with strong fluorescence after incubation with ANBI. As a control, when
HeLa cells were incubated with NEM reagent and then incubated with ANBI, the red
fluorescence was weak, indicating that the probe had a strong fluorescence response to
intracellular biothiols. Furthermore, tissue imaging experiments showed that the probe
can be used to image biothiols in liver and tumor tissues. ANBI has a large Stokes shift,
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which is conducive to better fluorescence imaging, and has a certain application value for
the detection of biological thiols in HeLa cells, liver tissue and tumor tissues.
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Figure 23. (a) The structure of probe ANBI; (b) Fluorescence spectra of ANBI with Cys; (c) Fluores-
cence images of HeLa cells. Reproduced with permission from [104]. Copyright 2017 Elsevier Ltd.

In 2019, Li et al. [105] reported a ratiometric fluorescence probe (BTPB) (Figure 24a),
benzothiazole was selected as the fluorescent precursor. After adding biothiols to the probe
solution, the fluorescence at 510 nm appeared to increase gradually. As shown in Figure 24b,
the probe exhibited strong green fluorescence after entering HepG2 cells. After adding
the probe to the HepG2 cells incubated with NEM, it was found that the fluorescence was
weak; after adding the exogenous biothiols, a strong green fluorescence appeared. BTPB
has high selectivity and was successfully used to image biothiols in human hepatoma cells
and zebrafish, which has certain significance for monitoring biological thiol levels in the
cancer cells of organisms.
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In 2021, Li et al. [106] reported a near-infrared fluorescent probe IX (Figure 25a). When
IX reacted with Cys, the fluorophore IX-OH was released. As shown in the fluorescence
spectrum (Figure 25b), probe IX had a weak emission at 743 nm, and after adding Cys, a
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new peak appeared at 770 nm. Fluorescence imaging of HCT116 cells (Figure 25c) showed
that the probe could specifically detect intracellular Cys. Taking the HCT116-xenograft
tumor mice as a biological model, after injection of the probe, the tumor site showed a
fluorescent signal, and the signal gradually increased, while no fluorescent signal was seen
in the control group. The results indicated that Cys was overexpressed in tumors. IX has
low cytotoxicity and high specificity and has research significance for tumor identification
and monitoring.
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In 2022, Kim et al. [107] realized the detection of Cys in the urine of cervical cancer
patients using the previously reported fluorescent probe NPO-B (Figure 26a). In this
work, the healthy control group, urological disorder group and non-urological disorder
group were selected as urine samples. As shown in Figure 26b, healthy urine showed
no fluorescence, and the fluorescence intensity was weak after NPO-B was added to the
urine, while an increase in the fluorescence intensity can be clearly observed after adding
Cys. Further, the diseased group was studied, and the analysis results (Figure 26c) showed
that compared with the healthy group, the fluorescence intensity of the cervical cancer
group increased significantly after adding NPO-B. The urine of cervical cancer patients was
further treated with NEM for comparison and it was found that the fluorescence intensity
decreased significantly compared with the untreated, indicating that NPO-B can be used
to specifically detect Cys in the urine of cervical cancer patients. This is the world’s first
method for diagnosing cervical cancer through in vitro diagnostic technology and has a
wide range of application values for the diagnosis of cervical cancer.
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7. Fluorescent Probe for Detecting Hydrogen Sulfide (H2S)

Hydrogen sulfide (H2S) is a biologically active gas and is considered a gas transmitter,
along with nitric oxide (NO) and carbon monoxide (CO) [108–111]. It has vital functions in
some physiological and pathological processes of biological systems, for example, regulat-
ing neuronal transmission, modulating insulin release, with a reduced metabolic rate and
so on [112–114]. Once the intracellular H2S cannot be maintained at the level within the
physiological range, it will induce diseases such as Alzheimer’s disease, Down syndrome,
and other psychiatric disorders [115,116]. In recent years, many studies have found that
H2S plays a significant role in the growth and proliferation of tumors [117]. H2S is a double-
edged sword, on the one hand, intracellular H2S would induce cell cycle acceleration,
activate the migration of tumor cells and invasion, and enhance tumor angiogenesis; on the
other hand, high levels of H2S are able to control tumor progression and migration and
exert antitumor effects [118–120].

In 2015, Yang et al. [11] reported a two-photon fluorescent probe (TPP-H2S) (Figure 27a).
TPP-H2S introduced the H2S-special recognition group of nitrobenzofurazan in the fluo-
rophore TPF. TPP-H2S reacted with H2S to release the fluorophore TPF. Significantly, the
pure TPP-H2S solution had little fluorescence emission, however, in the presence of H2S,
an approximately 125-fold increase in fluorescence intensity was observed at 490 nm. In
confocal imaging (Figure 27b), fluorescence imaging experiments were carried out in HeLa
cells. HeLa cells treated with TPP-H2S and PMA showed a weak fluorescent response.
However, incubation of Cys-treated cells with TPP-H2S produced a stronger fluorescence
signal. The above results indicated that the probe can detect endogenous H2S. Further,
exogenous experiments showed that the probe has good membrane permeability. Imaging
of H2S in rat organ slices (Figure 27c) revealed that TPP-H2S allowed deep imaging of
H2S in tissues. The same phenomenon (Figure 27d) was observed in other organs of the
mouse. Hence, TPP-H2S provided important implications for the study of the H2S-related
biological and pathological functions.
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Figure 27. (a) Response mechanism of TPP-H2S to H2S; (b) Two-photon confocal microscopy fluo-
rescence images of endo-H2S in living HeLa cells; (c) Two-photon confocal microscopy fluorescence
images of fresh liver slices; (d) Two-photon confocal microscopy fluorescence images of different
viscera slices. Reproduced with permission from [11]. Copyright 2015 Elsevier B.V.

In 2018, Wang et al. [121] proposed a Cyanine-based NIR fluorescent probe, NIR-
H2S (Figure 28a). In the fluorescence spectrum (Figure 28b), NIR-H2S showed obvious
fluorescence emission at 830 nm after adding H2S, and the H2S concentration (0–200 µM)
had a linear relationship with the fluorescence intensity at 830 nm. When NIR-H2S was
incubated with MCF-7 cells, only weak fluorescence was exhibited, and the fluorescence
was significantly enhanced after adding NaHS. D-Cys and MCF-7 cells were incubated
and also fluoresced strongly after adding the probe. The results showed that the probe can
detect both endogenous and exogenous H2S. In a control experiment (Figure 28c) between
the tumor-bearing nude mice (HepG2, MCF-7) and normal nude mice, it was found that
the probe NIR-H2S has the potential to diagnose H2S-related cancers. NIR-H2S plays an
important role in the diagnosis of some malignant tumors.

In 2022, Ye et al. [122] reported a BODIPY-based fluorescent probe, DB2T (Figure 29a).
When H2S was added to the THF/PBS solvent system of the probe, a clear fluorescence
“turn-on” response appeared at 579 nm (Figure 29b). Confocal imaging of HCT116, HepG2,
PC12 and HUH-7D cells showed that DB2T could fluoresce strongly in H2S-enriched cancer
cells. Fluorescence imaging in HCT116-tumor-bearing nude mice (Figure 29c) showed
that DB2T could effectively accumulate in tumor tissues and exhibited relatively strong
fluorescence intensity. DB2T has high selectivity for H2S and low cytotoxicity and can be
applied to the imaging of H2S in tumor cells/tissues, which is of great significance for the
diagnosis and treatment of hydrogen sulfide-related malignant tumors.
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from [121]. Copyright 2018 Elsevier B.V.
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Figure 29. (a) Structure of probe DB2T; (b) fluorescence response of DB2T; (c) In vivo fluorescence
imaging of mice bearing HCT116 tumor as well as the major organs and tumor tissue from mice.
Reproduced with permission from [122]. Copyright 2021 Elsevier Ltd.

In 2022, Li et al. [123] synthesized a NIR fluorescent probe (DCP-H2S) in which 2,4-
dinitrophenyl was used as the recognition group and isophorone-xanthene was used as
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the fluorophore (Figure 30a). The PBS buffer of DCP-H2S showed very weak fluorescence,
and the fluorescence was significantly enhanced after the addition of H2S. Further, 239T,
Caco-2 and CT-26 cells were studied in cell imaging, the results showed that DCP-H2S
can detect exogenous and endogenous H2S and can distinguish normal cells from cancer
cells. In addition, mice imaging was performed. In Figure 30b, DCP-H2S showed weakly
fluorescent in normal mice while strongly fluorescent in tumor-bearing mice. In conclusion,
DCP-H2S can not only monitor H2S in living cells but also distinguish between normal
mice and tumor mice, which will play an important role in cancer diagnosis.
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8. Fluorescent Probe for Detecting Hydrogen Peroxide (H2O2)

Reactive oxygen species (ROS) play an important role in maintaining cellular home-
ostasis and signaling [124–126]. Among them, H2O2 is a kind of ROS and a crucial sub-
stance for inducing apoptosis [127–129]. Studies have found that H2O2 is abnormally
expressed in some diseases, such as tumors, inflammation, Alzheimer’s disease and other
diseases [130–135]. Therefore, the monitoring of H2O2 is of great significance to the di-
agnosis and treatment of this disease. However, the detection of H2O2 presents certain
challenges due to its short presence [136]. With the development of fluorescence technology,
some fluorescent probes for the detection of H2O2 have been proposed in recent years.

In 2018, Wang and co-workers [137] described a fluorescence probe GC-2 (Figure 31a),
which is based on ICT. The probe itself had weak fluorescence, and the fluorescence intensity
at 485 nm (Figure 31b) was significantly enhanced after binding with H2O2 and the intensity
increased with the increase in H2O2 level. As shown in (Figure 31c), when HepG2 cells were
only incubated with GC-2, there was almost no phenomenon, and obvious blue fluorescence
was seen after adding H2O2. Further, HeLa cells were incubated with lipopolysaccharide
(LPS), and a bright fluorescence response was obtained after adding the probe, indicating
that GC-2 can detect endogenous and exogenous H2O2. Based on this, tissue imaging was
further explored, and it was found that GC-2 could image endo-H2O2 in different tumor
tissue slices. GC-2 is low toxic, highly sensitive, and can be used for rapid, stable detection
of H2O2.

In 2022, another group (Zhu et al.) [138] published a novel fluorescent probe (NH-
MT) (Figure 32a), which used boric acid as a receptor, and naphthalimide was used as a
fluorophore to detect exogenous and endogenous H2O2 in living tumor cells. As shown in
(Figure 32b), the fluorescence intensity at 550 nm also increases with the H2O2 level. As
shown in (Figure 32c), there was almost no fluorescence when only NH-MT was incubated,
and the fluorescence was enhanced after adding LPS and H2O2, respectively. Tumor
cell lines (MGC803 and HepG2) and normal cell lines (RAW264.7 and HUVEC) were
incubated with probes and found that the fluorescence intensity of cancer cell lines was
much higher than normal cell lines. NH-MT can target tumor cells and specifically detect
H2O2, providing new ideas for the detection of tumor cells.
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with permission from [138]. Copyright 2021 Elsevier B.V.
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In the same year, Duan et al. [139] constructed a fluorescent probe (BBHP) to detect
H2O2 (Figure 33a). BBHP linked with biotin as a cancer cell targeting unit, based on
the PET mechanism, released the fluorescence of BODIPY after reacting with H2O2, also,
the fluorescence intensity was enhanced with the increase in H2O2 concentration. A549,
MCF-7, and HeLa cells were used for studies due to biotin receptor overexpression, while
biotin receptor-negative RAW264.7 cells were used as controls. Figure 33b showed that
BBHP can sensitively detect H2O2 in HeLa cells (NAC was used to suppress H2O2 level).
Furthermore, Figure 33c demonstrated that BBHP can specifically target cancer cells with
overexpressed biotin receptors. More importantly, BBHP was successfully applied to
differentiate normal and tumor tissues (Figure 33d), providing a powerful tool for future
tumor-specific targeting studies.
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9. Fluorescent Probe for Detecting Hypochlorous Acid (HOCl)

Hypochlorous acid (HClO) is one of the important ROSs in the living system and is
related to many physiological and pathological processes [140,141]. For example, high
expression of HClO can lead to risk diseases such as inflammation, cardiovascular disease,
tumor, and liver damage [142–146]. Several studies have shown that HclO acid may be
abnormally expressed in tumors [147–152]. Therefore, monitoring the changes in HclO
levels is of great significance in the diagnosis of malignant tumors.

In 2021, Zhao and co-workers [153] designed a novel fluorescent probe RSS-HclO
(Figure 34a), which is based on a coumarin–hemicyanine fluorophore. In the fluorescence
spectrum (Figure 34b), with the increase in different concentrations of HClO (0–100 µM),
there was a positive linear relationship with the fluorescence emission intensity at 490 nm.
Confocal imaging of KYSE-30 cells (Figure 34c) revealed that the probe could visualize
HClO in tumors during CTX treatment. Further, in zebrafish imaging, the probe enabled
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discrimination and detection of HClO. RSS-HClO is low cytotoxicity and good specificity
and can be used to detect HClO in tumor cells, which has guiding significance for the
treatment of cancer.
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Figure 34. (a) Mechanism of the RSS-HClO activation by HClO; (b) Fluorescence intensity of RSS-
HClO; (c) Fluorescence images in CTX-treated KYSE-30 cells. Reproduced with permission from [153].
Copyright 2021 Elsevier B.V.

In 2022, Wu et al. [154] reported a turn-on fluorescent probe, REClO-6 (Figure 35a). As
shown in Figure 35b, when HClO was added to the solution of REClO-6, the fluorescence
intensity increased significantly as the concentration of HClO increased from 0 to 50 µM. In
confocal imaging, HeLa cells were selected as the bioassay model, and the results showed
that the probe can be used to detect the exogenous HClO level in cells. In experiments
in mice tumor models (Figure 35c), it was found that REClO-6 was able to emit distinct
fluorescent signals at the tumor site. This probe has the ability to rapidly detect HClO and
can be applied to solid tumor HClO imaging.

In 2022, Li et al. [155] developed a NIR fluorescent probe, TJM (Figure 36a). TJM
emitted strong fluorescence after reacting with HClO, and the fluorescence intensity was
proportional to the concentration of HClO (Figure 36b). The results of HeLa cell imaging
showed that TJM could detect both endogenous and exogenous HClO in living cancer
cells (Figure 36c) (NAC could cause a decrease in HClO). In addition, TJM can be used
to detect HClO in zebrafish. Significantly, TJM was found to be useful for the detection
of HClO in tumor-bearing mice, which showed that HClO was overexpressed in tumor
tissues (Figure 36d). In conclusion, TJM was successfully used to detect HClO in living
cells and mice with lesions such as tumors and has a certain reference value in the study of
HClO-related diseases such as cancers.
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10. Fluorescent Probe for Detecting NADH

Enzymes play an extremely important role in the life processes of complex organisms
and play an increasingly important role in pathophysiology [156–160]. Studies have shown
that abnormal activity of reduced nicotinamide adenine dinucleotide (NADH) and its phos-
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phate NADPH is associated with various diseases, such as diabetes and cancer [161–164].
It is worth noting that NADH is overexpressed in some malignant tumors and thus can be
used as an important substance to distinguish normal cells from malignant cells [165,166].

In 2016, Chang et al. [167] synthesized a boronic acid-containing fluorescent probe
BA-Resa, which was further modified as RA-Resa, for the detection of NADH in living
cells (Figure 37a). The fluorescence response of the latter was more pronounced. OSCC
cells were selected as model cell lines (Figure 37b). Since intracellular NADH levels were
largely affected by glucose concentration, incubation of live cells with glucose and then
with probes showed higher fluorescence intensity than those without incubation with
glucose, and the results showed that the higher the glucose concentration, the stronger the
fluorescence. Equivalent results were shown in human cervical cancer cell lines and CHO
cell lines.
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Figure 37. (a) The structure of probe BA-Resa; (b) Microscopic images of probe RA-Resa in live OSCC
cells. Reproduced with permission from [167]. Copyright 2016 American Chemical Society.

Again in 2016, König et al. [168] designed a novel fluorescent probe 1 (Figure 38a).
In Figure 38b, the probe bound to NAD(P)H, resulting in a clear increase in fluorescence
intensity at 561 nm. In cell experiments, HEK-293 cell lines were selected, and the results
confirmed that the probe has low cytotoxicity and can be applied to the detection of
NAD(P)H in mammalian cells. Imaging in the tumor spheroid model (Figure 38c) showed
that the probe responded significantly to the fluctuation of NAD(P)H in tumor cells.

In 2021, Li and co-workers [169] reported a multifunction probe (Cy-N) in which
cyanine was selected as the fluorophore (Figure 39a). Cy-N had strong fluorescence in the
NIR region (783 nm) after reacting with NAD(P)H, and the fluorescence intensity gradually
increased (NADPH: 0–70 µM) (Figure 39b). Then, in the cell imaging experiments of various
cancer cells (HepG2, HeLa, and 4T1 cells), it was found that Cy-N could detect NAD(P)H in
cancer cells. Furthermore, Figure 39c showed that Cy-N can sensitively monitor the changes
of NAD(P)H level in HCT116 cells (Glc can promote the high expression of NAD(P)H,
and Pyr can reduce NAD(P)H level). More interestingly, Cy-N realized the imaging of
NAD(P)H in tumor-bearing mice (Figure 39d), and after dissection, it was found that
only tumor tissue had fluorescence and there was no signal in normal organs. The same
conclusion was obtained in PA and PTT imaging. In conclusion, Cy-N is a new strategy to
detect NAD(P)H in tumor-bearing mice by dual-modal imaging and realizes tumor PTT
therapy, which has a certain value for future tumor diagnosis and treatment.
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In 2022, Zhang et al. [170] developed a dual-responsive fluorescent probe 3Q-2
(Figure 40a). The probe 3Q-2 exhibited a maximum fluorescence emission at 670 nm,
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and the emission intensity increased with the increase in NADH concentration (Figure 40b).
Fluorescence imaging of 3Q-2 in HT-1080 cells showed that the probe had good membrane
permeability and could detect NAD(P)H in the cytoplasm. In the imaging of PANC-1 cells
(Figure 40c), exogenous NADH, glucose, and pyruvic acid were used to modulate cytosolic
NADH levels, respectively, and the results showed that 3Q-2 could monitor NAD(P)H lev-
els in living cells. The probe enables simultaneous imaging of NAD(P)H and mitochondrial
viscosity, and further reveals changes in NAD(P)H during cancer cell ferroptosis, which is
expected to be further applied in the detection of NAD(P)H in cancer cells.
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11. Conclusions 

In this review, we summarized the research progress of small-molecule fluorescent 

probes for detecting some substances abnormally expressed in tumors in recent years. 

Herein, we start with several different tumor-related substances and briefly introduce the 

molecular structures, spectral properties, and bioimaging of fluorescent probes. Finally, 

we hope that this review can encourage researchers to design more excellent fluorescent 

probes, and provide a certain reference value for the detection of abnormally expressed 

substances in tumors and then distinguish tumors from normal tissues in the future; we 

further hope that this review will have a certain impetus for the clinical diagnosis and 

treatment of tumors in the future. 
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Figure 40. (a) The structure of probe 3Q-2; (b) Photoluminescence spectra of 3Q-2 incubating with
NADH; (c) Confocal imaging of 3Q-2-stained PANC-1 cells. Reproduced with permission from [170].
Copyright 2021 Elsevier B.V.

11. Conclusions

In this review, we summarized the research progress of small-molecule fluorescent
probes for detecting some substances abnormally expressed in tumors in recent years.
Herein, we start with several different tumor-related substances and briefly introduce the
molecular structures, spectral properties, and bioimaging of fluorescent probes. Finally,
we hope that this review can encourage researchers to design more excellent fluorescent
probes, and provide a certain reference value for the detection of abnormally expressed
substances in tumors and then distinguish tumors from normal tissues in the future; we
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further hope that this review will have a certain impetus for the clinical diagnosis and
treatment of tumors in the future.
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