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Abstract: Decoding natural hand movements is of interest for human–computer interaction and may
constitute a helpful tool in the diagnosis of motor diseases and rehabilitation monitoring. However,
the accurate measurement of complex hand movements and the decoding of dynamic movement
data remains challenging. Here, we introduce two algorithms, one based on support vector machine
(SVM) classification combined with dynamic time warping, and the other based on a long short-term
memory (LSTM) neural network, which were designed to discriminate small differences in defined
sequences of hand movements. We recorded hand movement data from 17 younger and 17 older
adults using an exoskeletal data glove while they were performing six different movement tasks.
Accuracy rates in decoding the different movement types were similarly high for SVM and LSTM
in across-subject classification, but, for within-subject classification, SVM outperformed LSTM. The
SVM-based approach, therefore, appears particularly promising for the development of movement
decoding tools, in particular if the goal is to generalize across age groups, for example for detecting
specific motor disorders or tracking their progress over time.

Keywords: stroke; motor disorders; neurodegeneration; motor system; quantification; data glove

1. Introduction

The decoding of natural hand movements may constitute a helpful tool in the diagno-
sis and tracking of motor diseases. Motor diseases in which the hand is affected include, for
example, stroke, Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), where
there is a general lack of quantification of behavioral disease characteristics [1]. A major
challenge in decoding natural hand movements and their potential change in conditions of
disease is that the movements are both dynamic and idiosyncratic. Alignment of common
temporally matching features is, therefore, difficult, because individuals show slightly
different hand movement patterns and hand dynamics. Furthermore, hand geometry, as
well as age, might have an influence on the recorded characteristics, which could make
generalization across different individuals difficult. Thus, person-independent detection of
underlying characteristic hand movement patterns is challenging. On the other hand, indi-
vidual differences could provide meaningful information on underlying and undetected
disorders, as well as developmental changes through the individual lifespan, and may
provide new ways to study the neural mechanisms that underlie natural hand movements
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in humans. In this respect, the challenge is to implement an algorithm that disregards
idiosyncratic characteristics, such as hand size and other individual attributes, such as age,
but detects small differences in the movement pattern.

Another unsolved question concerns how far decoding algorithms can detect common
hand movement features across different age groups. Individual age is a strong predictor
of motor cortex architecture and sensorimotor behavioral decline, and massively influences
a range of sensory and motor tasks [2,3]. However, to use the decoding of hand kinematic
features in a clinical or applied context, it is of critical importance to be able to generate
models that are independent of individual hand features, as well as individual age. Only
if such generalization is successful can algorithms be used to identify and track specific
disease-related features over time and in clinical contexts.

Several devices exist that are suitable for tracking movements of the hand, fingers, or
finger segments. These include visual-based tracking devices, data gloves with bending
sensors, exoskeleton gloves, and inertial measurement units (IMUs). Finger tracking
using camera-based data is a technique that has the great advantage that it does not
require contact with any device. In early work, hand models were introduced to improve
gesture detection [4,5]. In recent years the development of image-based hand tracking
has made tremendous progress. For example, the Leap Motion Controller (UltraLeap,
Mountain View, CA, USA) is a commercially available stereo camera which comes with
developer software implementing a skeletal hand model [6]. Machine learning has led
to the development of robust open-source methods that can track hand positions using
2D images, e.g., DeepLabCut (github.com/DeepLabCut, accessed on 7 August 2022) [7],
InterHand2.6M (github.com/facebookresearch/InterHand2.6M, accessed on 7 August
2022) and MediaPipe (google.github.io/mediapipe, accessed on 7 August 2022). The
disadvantage of camera-based methods for continuous finger tracking, especially when the
manipulation of objects is involved, is that occlusions would lead to missing or inaccurate
data of the occluded tracking points and determination of accurate finger joint angles
would be challenging. An overview of additional commercial devices for hand movement
tracking is given by Caeiro-Rodríguez et al. [8]. Most of these devices are designed for
use in virtual reality (VR) environments, as well as for human–computer interaction, and
thus are not necessarily suited for accurate recording of complex hand kinematics in
non-VR applications. Nevertheless, several applications of such devices, other than VR
control, have been proposed, such as sign language recognition [9–11], hand function
evaluation [12], surgical skill analysis [13], teaching robots with grasp movements [14], and
hand rehabilitation [15,16]. In the present study, we used a recently developed exoskeleton
glove (SenseGlove DK1.3, Delft, The Netherlands), which measures angular position of
its joints, and which is suitable for accurate tracking of single fingers during complex
hand movements.

Here, we introduce two approaches that we expected to be suitable to decode a
dynamic but well-defined sequence of single-finger gripping movements. In the first
approach, we employed dynamic time warping (DTW) and support vector machine (SVM)
classification to recognize types of hand movement sequences. Both DTW and SVM are
established algorithms that can be sophisticatedly combined. In the second approach, we
employed long short-term memory (LSTM) units. LSTM units are suited to appropriately
analyze long time lags and should therefore be suitable to decode hand movements with
varying time length from trial to trial and across individuals. LSTM was first introduced
to handle the problem of vanishing or exploding gradients caused by vanilla recurrent
neural network (RNN) models in solving sequencing model tasks [17]. Since the inception
of LSTMs, they have gained popularity, not only for appropriately analyzing sequences,
but also in time series [18], dynamic modeling, speech recognition [19] and other complex
decoding tasks [20,21].

By applying these algorithms to the analyses of highly similar hand movements in
two age groups of individuals, we show that our approaches reveal reliable results in
the decoding of hand movement types and are robust in terms of generalizability across
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individuals and age groups. With our analyses, we demonstrate that SVM combined with
DTW is preferable compared to LSTM because it is more accurate with small datasets
and comparably accurate with large datasets, while it is computationally much more
efficient. The decoding of highly similar hand movements in healthy younger and older
individuals serves as a proof-of-concept study and suggests a promising method for
developing diagnostic tools for motor disorders, or to develop algorithms to successfully
track disease progress or healing success at home.

2. Materials and Methods
2.1. Participants

We recruited two groups of healthy participants, older adults (N = 17; 10 female
and 7 male, mean age 72.2 ± 4.8 years ranging from 62 to 80 years) and younger adults
(N = 17; 10 female and 7 male, mean age 27.0 ± 4.3 years, ranging from 22 to 37 years).
All participants reported intact upper limb motor abilities and intact tactile perception of
the hand and were naïve regarding the purpose of the study. They were paid for their
participation and gave written informed consent. The study was conducted in accordance
with the principles of the Declaration of Helsinki and was approved by the Otto-von-
Guericke University Magdeburg Research Ethics Committee (Germany).

2.2. Experimental Approach

Participants were asked to perform sequences of predefined hand movements using
their dominant right hand while wearing an exoskeleton data glove (see
Figure 1A and Supplementary Video S1 for an overview of all movements). They per-
formed six different sequences of hand movements, all representing a different form of
pinch-grip: a fingertip touching task, a clothes-peg task, two forms of a Rubik’s cube task,
and two forms of a small Rubik’s cube task. In the fingertip touching task, participants were
asked to touch the tip of the thumb (D1) with each of the fingertips in consecutive order,
i.e., index finger (D2), middle finger (D3), ring finger (D4), little finger (D5), as shown in
Figure 1B. After each fingertip contact, the five fingers were extended as much as possible
by the participants. In the clothes-peg task, participants were required to pick up single
clothes pegs with two fingers (D1 + D2, D1 + D3, D1 + D4, D1 + D5) from one specified
position on a board and place them on another specified position on the same board. The
exact location of each clothes peg was marked on the right and left sides of the board so that
participants were aware of the start and ending locations of the movement. The direction of
the hand movement while holding the clothes peg, from right to left or vice versa, switched
from sequence to sequence.

In the two Rubik’s cube tasks, participants were asked to rotate a 5.7 by 5.7 cm Rubik’s
cube, mounted on a support, by 90◦, with the palm directed downward and above the cube
(see Figure 1A). Again, as for the other tasks, the rotation was made in sequence using
D1 together with D2, D3, D4, D5 at a time. This task was performed clockwise (cw) and
counterclockwise (ccw), mimicking the closing and opening of a jar.

Finally, participants were asked to perform the same task again but with a smaller
Rubik’s cube (2.1 by 2.1 cm), here with the hand operating from the right side instead of
from above the cube as in the previous Rubik’s cube task. Cw and ccw movements were
performed again, this time mimicking the closing and opening of a bottle.

Participants performed the fingertip touching task at a given pace of 2 s where flexion
and extension was triggered by an acoustic click cue which was presented every second. In
the rest of the tasks, participants performed the movements at their own pace.

After execution of one sequence of four finger movements (D2 to D5), the hand was
placed flat and static on an in-house resting pad which detected the placement of the hand.
The next sequence started when the hand released the resting pad, sending a trigger signal
to the recording computer. See Supplementary Materials Video S1 for a video showing all
different movement types.
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Figure 1. Movement tasks. (A) Four different tasks were performed requiring precision grips of the
index, middle, ring and little fingers. Note that the Rubik’s cube and small Rubik’s cube tasks were
performed twice, i.e., clockwise and counterclockwise (see also Supplementary Video S1). (B) One
trial comprised a sequence of grips of each of these fingers performed self-paced (except the fingertip
touching whose movements were triggered every 2 s by an acoustic signal). In the image showing
the rest position, the exoskeleton data glove’s joints of the index finger are exemplarily annotated
(abduction sensor J0 and finger flexion sensors J1–J3).

The above-outlined tasks were chosen to be fast and easy to instruct, to involve every-
day objects, and to involve different muscle groups of the hand, making them potentially
suitable for clinical application.

The experiment consisted of 300 trials divided into five runs. Each trial consisted of
the four sequenced finger movements. Each run consisted of six blocks, each consisting
of 10 repetitions of a given movement task, which was identical across participants, in
the following order: clothes-peg task, fingertip touching, Rubik’s cube cw, Rubik’s cube
ccw, small Rubik’s cube cw, and small Rubik’s cube ccw, resulting in a total of 60 trials per
run. At the start of each block, a practice trial was included to familiarize participants with
the required movement. Familiarization trials were not analyzed. Before the experiment
started, we recorded five calibration postures for one second each, including a flat hand
and a fist, to assess the minimum and maximum angles recordable at each sensor with
respect to the individual montage of the exoskeleton glove. A recording session took about
2.5 h per participant, including calibration.

We took a photograph of each participant’s hand which was placed on a reference
surface. The photographs were used to determine the hand geometry of each participant at
22 reference points. We used the total length of the hand, measured as the distance from
the wrist to the most distal point of the middle finger, as a variable to perform analyses on
hand size as described below.

2.3. Data Recording and Preprocessing

We recorded the movement of the fingers using an exoskeleton data glove (SenseGlove
DK1.3; senseglove.com, see Figure 1B), which was equipped with four rotation sensors per
finger (one abduction sensor, J0, and three finger flexion sensors, J1–J3, see Figure 1B) and a
9-DOF inertial measurement unit (IMU).

The raw sensor data were streamed to MATLAB (Release 2019a, The MathWorks,
Inc., Natick, MA, USA) running on an HP ZBook Intel i7-8565U for recording and further
processing. In our analysis, we involved 15 flexion sensors (J1–J3 of D1–D5) to investigate
the degree of single finger flexion. The rotation sensors of the exoskeleton represent the
joint angle of finger joints only indirectly. The transformation from device angles to finger



Sensors 2022, 22, 6101 5 of 12

joint angles is not trivial and depends on many variables, such as individual hand geometry
and precise placement of the device. To circumvent this challenge, we first normalized the
data such that the minimum value of a sensor as obtained during calibration postures was
corrected to zero (flat hand) and the maximum value was corrected to one (full flexion of all
fingers). Second, we analyzed movement data, i.e., the temporal derivative of the glove’s
joint angles, which is largely independent of hand geometry, in contrast to posture data.

The glove data were sampled at 100 Hz. We applied a moving average filter of 100 ms
width to remove noise. Since natural hand movements are of low frequency, we down-
sampled the signals to 16 Hz to reduce the feature space for the learning algorithm and the
associated computational costs.

2.4. Decoding Algorithms

Each preprocessed time series of angular velocity, reflecting movement sequences of
fingers D2 to D5, was considered a trial, and we aimed at classifying this trial according to
the movement type. To this end, we made use of and compared two different decoding
algorithms. The first algorithm uses support vector machine (SVM) classification which
requires the data to be represented in a unique feature space. To transform the dynamic
signals into a unique feature space, we used dynamic time warping (DTW) to adjust the
time series. The second algorithm makes use of an LSTM recurrent neural network which
is suited to directly learn temporal dependencies in time series of varying lengths.

We applied within-subject analyses using the data of individual participants and
across-subject analyses aiming at predicting the movement type in an unseen participant.
In within-subject analyses, we applied leave-one-run-out cross-validation, i.e., all trials
corresponding to one run were left out for classification while the classifier was trained
on the remaining runs. In across-subject analyses, we performed leave-one-subject-out
cross-validation, i.e., all trials of an individual participant were left out for classification
while the classifier was trained only on trials of all other participants. This latter analysis
tests for the generalization ability of the approach since no data of the to-be-classified
participant is involved in the learning phase. We also applied two-fold cross-validation in
which we trained and tested on data of two different subsets of participants to demonstrate
that the task prediction also generalizes across different hand sizes and age groups. We
performed the two-fold cross-validation using three different approaches. In the first
approach, we selected two subsets where both hand size and age were matched (matched
split). In the second approach, one group of participants was selected by hand size, the
17 smallest in one group and the 17 largest in the other group (hand size-grouped split).
Finally, in the third approach, the two groups were selected by age, i.e., 17 younger adults
and 17 elderly adults (age-grouped split). Note that, by splitting the data into only two
subsets, the training set size is decreased, and the testing set size is increased compared to
the leave-one-subject-out approach described above.

We calculated the decoding accuracy (DA) achieved with each cross-validation to
evaluate our results. We determined a significance level by permuting the labeling of
movement tasks, i.e., we assigned the classifier labels corresponding to each task randomly
to each trial. We applied the analysis as with the original labeling and repeated the
randomization 1000 times with randomly labeled data. This resulted in 1000 DAs. We
determined the 95% confidence interval (CI) of this DA distribution by calculating the 2.5th
and 97.5th percentile and setting the upper CI limit as the significance threshold.

2.4.1. Support Vector Machine Combined with Dynamic Time Warping

Single movements were executed at different time points, with differences in accelera-
tions, decelerations, and durations. This resulted in different lengths of the entire movement
sequence across repetitions and participants. To perform support vector machine-based
classification, we first needed to align trials in time. To this aim, we applied dynamic time
warping (DTW) as implemented in MATLAB’s Signal Processing Toolbox. While DTW
calculates a similarity measure between signals, it generates a warping path, which we used
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to realign the time series. To sample the time series to a constant length, we first determined
the most representative time series template across tasks and participants. Time series were
then sampled to the same length as the template and realigned to have a minimum sum of
Euclidean distance to the template using DTW.

Let Xi ∈ Rt×c be a set of time series representing a trial where t is the number of
samples and c is the number of channels. To find a representative template, we performed
DTW between trial i and trial i + n

2 (i = 1, . . . , n
2 − 1) where n is the number of all trials in

the training set. This represents only a small subset of all available pairwise combinations
but, to reduce computational costs, we considered it sufficient to find a representative
time series that was not an outlier. For each pairing, we calculated a score si = ρi(1− di)
where ρi is the correlation coefficient calculated between the ith aligned trial pairing and
di is the sum of Euclidean distances as revealed by the DTW algorithm but normalized
such that max

i
di = 1. We selected the first trial of the pair that provided the maximum

score si as a template T. Next, we calculated the DTW between each trial Xi and the
selected template trial T (see Figure 2). The warping paths that minimize the sum of
Euclidean distance between the signals include repetitions of time points in either time
series. To resample the time series Xi to the length of the template time series T, data
points that resulted from consecutive repetitions in T were averaged in Xi. This approach
synchronized the four single movements of a trial and transferred the time points to a
feature space of constant size which is required for training an SVM. Here, we applied linear
SVM classification in a one-vs-rest framework to discriminate between different classes.
For SVM training, no parameter optimization was performed but the default box constraint
parameter C, as suggested by Joachims [22], and used in the SVMlight implementation
(cs.cornell.edu/people/tj/svm_light, accessed on 7 August 2022), was used:

C = n

(
n

∑
i

xixi

)−1

(1)

where xi is the vector form of the feature matrix Xi and n is the number of training samples.
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Figure 2. Signal synchronization utilizing dynamic time warping (DTW). For simplicity, we show
only J2 angular velocities of fingers D1–D5 for two exemplary trials of the small Rubik’s cube task
(cw), one longer and one shorter than the template trial. The resulting time series are sampled to
the length of the template and have a minimum sum of Euclidean distance to the template. As the
vertical dotted lines in each plot show, the different segments of the signals are asynchronous before
DTW and are synchronous after DTW.

cs.cornell.edu/people/tj/svm_light
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2.4.2. Long Short-Term Memory Neural Network

In contrast to support vector machines, neural networks involving LSTM units can
analyze dynamic data without padding or altering the length. They have proved to be
very effective in learning long-term dependencies in the input sequences. An LSTM unit is
composed of one or several self-connected memory cells, an input gate, an output gate and
a forget gate. The gates perform multiplicative operations to control the flow of information.
The input gate regulates the amount of cell state information to be involved in the network.
Similarly, the forget gate specifies information to forget and information to be kept in the
cell state. Finally, the output gate specifies the information to be sent to the next hidden
state. See Graves [23] for a comprehensive background review of LSTM units.

In this study, we have employed two stacked bi-directional LSTM (Bi-LSTM) layers,
followed by one hidden layer with 30 neurons, followed by a ReLU (rectified linear unit)
activation function. The final layer contained six neurons with softmax as an activation
function to permit the classification of six different classes. Figure 3B depicts the block
diagram of the architecture used. Bi-LSTM was employed since it contains two hidden
states at each point in time, one hidden state to process information in a forward direction
(from past to future), and another in a backward direction (from future to past), unlike
common LSTM. Its advantage is that at any instance it preserves information from both
past and future. Stacked Bi-LSTM layers were followed by layer normalization and a ReLU
block, which encoded the dynamic hand movement data as follows: Let X ∈ RN×t be the
dynamically time-varying data of N time series. B denotes the stacked Bi-LSTM unit with
layer normalization and ReLU blocks. The output vector E is defined as

E = B(X) (2)

and is passed to the decoder network, which contains a series of hidden layers followed by
ReLU activations. The information from the encoder is decoded using the hidden layers
and the probabilities of the hand movement types are predicted using the final classification
layer. The hidden layers H assign a probability P to each of the movement types. Then the
final classification output y is obtained using the argmax function:

P = H(E) (3)

y = argmax(P) (4)
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We implemented the algorithm using MATLAB R2021a (Deep Learning Toolbox), and
the GPU of an NVIDIA GeForce RTX 3060 Ti was employed for training. The models were
trained for 64 epochs with a mini-batch size of 16. Cross-entropy loss was used as a loss
function and Adam optimizer was used for optimization of the loss function with a learning
rate of 0.001. We performed model optimization by a grid search approach varying the
parameters: number of epochs, mini-batch-size and number of hidden units. This approach
resulted in the optimal parameter set as reported above.

In order to test whether DTW would improve the performance of LSTM, we also
performed the analyses using time-warped time series as we did with the SVM approach.

3. Results

We tested whether the SVM and LSTM classifiers were able to predict the six different
movement types within the same participants (within-subject approach) and across differ-
ent participants (across-subject approach). Our analyses revealed that the SVM classifier
predicted the six different movement types on a single trial basis with high reliability,
achieving a within-subject average DA of 99.4% (SE: 0.1) and an across-subject DA of 96.5%
(SE: 0.9). In contrast, LSTM classification resulted in a lower within-subject DA of 86.4%
(SE: 1.9) on average, but the across-subject DA was similar to that of the SVM classification
(96.5% (SE: 0.9)). The sensitivity of single movement tasks is shown in Table 1. Although
LSTM is assumed to learn dependencies in dynamic time series, we also combined DTW
with LSTM and found that within-subject DA (94.9% (SE: 0.6)) was significantly higher
compared to LSTM alone but statistically significantly lower compared to SVM. In con-
trast, across-subject analysis achieved no statistically different DA (95.9% (SE: 0.7)), neither
compared to LSTM alone nor to SVM.

Table 1. Sensitivity of single classes.

Movement Task

Within-Subject
Average DA [%] (SE)

Across-Subject
DA [%] (SE)

SVM LSTM SVM LSTM

fingertip touching 99.9 (0.1) 91.3 (2.5) 99.2 (0.4) 99.3 (0.3)
clothes-peg 99.9 (0.1) 92.5 (1.8) 98.1 (0.7) 99.1 (0.3)

Rubik’s cube cw 98.6 (0.6) 83.7 (3.3) 96.5 (2.2) 96.5 (1.6)
Rubik’s cube ccw 98.4 (0.5) 83.8 (2.5) 95.0 (2.3) 93.8 (2.1)

small Rubik’s cube cw 99.9 (0.1) 79.2 (2.5) 94.1 (2.9) 96.1 (2.8)
small Rubik’s cube ccw 99.8 (0.1) 88.2 (2.1) 96.2 (1.6) 94.2 (2.3)

Permutation tests revealed a chance level DA of 16.6% (CI: 15.9–17.4%) for SVM
classification and a chance level DA of 16.2% (CI:15.7–16.7%) for LSTM classification, which
are close to the theoretical guessing level of a six-class problem (16.7%) and demonstrates
that the classifiers were not biased. The relatively high DA of the across-subject classification
suggests that the classifiers generalize across different participants.

We then investigated the generalizability of our approaches using a two-fold CV
considering three cases: (I) matched in age and hand size (matched split), (II) split according
to small and large hands (hand size-grouped), and (III) split into young and elderly (age-
grouped). The DA of the CV using the matched split decreased only slightly (SVM: 96.2%
(SE: 0.8), LSTM: 94.9% (SE: 0.8)), showing that training on 17 participants already led to
highly reliable accuracy. Importantly, compared to the matched split, the hand size-grouped
split (SVM: 95.8% (SE: 1.0), LSTM: 93.1% (SE: 1.1)) and the age-grouped split (SVM: 94.3%
(SE: 1.0), LSTM: 92.6% (SE: 1.0)) did not lead to significantly different DAs as obtained with
a Wilcoxon signed-rank test (Bonferroni corrected p-values >0.05). This indicates that the
classifiers were independent of hand geometry and age-related differences in movement
behavior. More precisely, despite the fact that age-related changes in finger movements
have been reported using similar movements as used here (e.g., [24]), the classifiers can
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detect movements of older adults, although only data from younger adults were used for
classifier training and vice versa. The results of all CVs are shown in Figure 4.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 12 
 

 

Permutation tests revealed a chance level DA of 16.6% (CI: 15.9–17.4%) for SVM clas-

sification and a chance level DA of 16.2% (CI:15.7–16.7%) for LSTM classification, which 

are close to the theoretical guessing level of a six-class problem (16.7%) and demonstrates 

that the classifiers were not biased. The relatively high DA of the across-subject classifica-

tion suggests that the classifiers generalize across different participants. 

We then investigated the generalizability of our approaches using a two-fold CV con-

sidering three cases: (I) matched in age and hand size (matched split), (II) split according 

to small and large hands (hand size-grouped), and (III) split into young and elderly (age-

grouped). The DA of the CV using the matched split decreased only slightly (SVM: 96.2% 

(SE: 0.8), LSTM: 94.9% (SE: 0.8)), showing that training on 17 participants already led to 

highly reliable accuracy. Importantly, compared to the matched split, the hand size-

grouped split (SVM: 95.8% (SE: 1.0), LSTM: 93.1% (SE: 1.1)) and the age-grouped split (SVM: 

94.3% (SE: 1.0), LSTM: 92.6% (SE: 1.0)) did not lead to significantly different DAs as obtained 

with a Wilcoxon signed-rank test (Bonferroni corrected p-values >0.05). This indicates that 

the classifiers were independent of hand geometry and age-related differences in movement 

behavior. More precisely, despite the fact that age-related changes in finger movements 

have been reported using similar movements as used here (e.g., [24]), the classifiers can de-

tect movements of older adults, although only data from younger adults were used for clas-

sifier training and vice versa. The results of all CVs are shown in Figure 4. 

 

Figure 4. Classifier performance in differently grouped subsets to be left out in the cross-validation 

(CV). In within-subject CV, SVM performs considerably better than LSTM. Compared to across-

subject analysis (leave-one-subject-out CV), both SVM and LSTM classification results are only 

slightly affected by a smaller amount of training when using two-fold CV (regardless of the group-

ing characteristics, i.e., matched hand size or age). In addition, grouping participants in two hand 

size groups and two age groups revealed similar DAs compared to two hand size/age-matched 

groups using the same amount of training data. Note that the chance level is at 16.6%. 

4. Discussion 

There is ongoing development of tools, such as data gloves, that allow the capture of 

dynamic movements in real life. However, there has been limited information to date on 

how to analyze and decode such data, in particular when the aim is to generalize infor-

mation across individuals. We introduce here two different approaches to discriminate 

dynamic sequences of finger grip movements in younger and older adults, that were 

tracked using an exoskeleton data glove. The six different finger movements involved dif-

ferent everyday movements required when opening a jar or a bottle, for example. The 

movements were reliably decoded by both algorithms and showed high generalizability, 

not only within participants, but also across participants and across different groups split 

by hand size and age. Accuracy rates in decoding the different movement types were simi-

larly high for SVM and LSTM in across-subject classification, but, for within-subject classi-

fication, SVM outperformed LSTM. The SVM-based approach, therefore, appears particu-

larly promising for the development of tools that make use of decoding hand movements, 

for example, for detecting specific motor disorders or tracking their progress over time. 

Figure 4. Classifier performance in differently grouped subsets to be left out in the cross-validation
(CV). In within-subject CV, SVM performs considerably better than LSTM. Compared to across-
subject analysis (leave-one-subject-out CV), both SVM and LSTM classification results are only
slightly affected by a smaller amount of training when using two-fold CV (regardless of the grouping
characteristics, i.e., matched hand size or age). In addition, grouping participants in two hand size
groups and two age groups revealed similar DAs compared to two hand size/age-matched groups
using the same amount of training data. Note that the chance level is at 16.6%.

4. Discussion

There is ongoing development of tools, such as data gloves, that allow the capture
of dynamic movements in real life. However, there has been limited information to date
on how to analyze and decode such data, in particular when the aim is to generalize
information across individuals. We introduce here two different approaches to discriminate
dynamic sequences of finger grip movements in younger and older adults, that were
tracked using an exoskeleton data glove. The six different finger movements involved
different everyday movements required when opening a jar or a bottle, for example. The
movements were reliably decoded by both algorithms and showed high generalizability,
not only within participants, but also across participants and across different groups split
by hand size and age. Accuracy rates in decoding the different movement types were
similarly high for SVM and LSTM in across-subject classification, but, for within-subject
classification, SVM outperformed LSTM. The SVM-based approach, therefore, appears
particularly promising for the development of tools that make use of decoding hand
movements, for example, for detecting specific motor disorders or tracking their progress
over time.

First, we used SVM classification as a state-of-the-art classifier method designed to
perform classification tasks in high-dimensional feature space. For this classification, it
was necessary to adjust the time series data to the same number of samples such that the
movement events were aligned in time. To achieve this, we applied the DTW algorithm,
which has been successfully used in many applications, such as driving pattern recogni-
tion [25], gesture recognition [26], and aligning motor neural activity [27]. Second, we used
an LSTM neural network, where the LSTM architecture was designed to make predictions
directly from dynamic time series and, therefore, DTW was not required. Remarkably,
both approaches, i.e., SVM and LSTM, decoded the movement sequences with compara-
ble accuracy when the models were trained on data of different participants and tested
on data of unseen participants. In contrast, SVM showed superior performance when
data within single participants were classified. Furthermore, the DA of LSTM showed a
greater decrease than that of SVM when only half of the participants were involved in
teaching the models. These results are consistent with the assumption that LSTM, as a
deep neural network algorithm, has its strength when trained with higher amounts of
data [28], whereas SVM is known to perform well even when the number of features is
much higher than the number of training samples [29]. We also compared the effect of
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performing DTW before training the LSTM model and found that LSTM benefitted from
DTW only in within-subject analyses, i.e., when the number of training samples was low.
Given that LSTM requires a great deal of computation time for model training compared
to SVM, and SVM performs better with small training sets, we consider the approach of
combining DTW and linear SVM to be more suitable for the proposed classification task
and for future use in experimental or clinical settings where similar amounts of data and
participants are used. Another argument for using SVMs is that they do not necessarily
require model optimization, as is common with deep neural networks. Here, we performed
a heuristic grid search approach to optimize the LSTM model which did not guarantee that
the optimal model was found [30]. However, it is also likely that SVM parameters were
not optimal.

The dynamic time warping approach has the advantage that delayed signals are syn-
chronized. After that, distinctions in spatial features of time-matched movement trajectories
can be detected by the decoder. However, time-warping also implies that temporal differ-
ences in movements, which might be characteristic of the intended movement classes, are
cancelled out between trials. In contrast, temporal variations across fingers would not be
removed. This disadvantage should be considered if such differences are key features in the
signals to be classified, for example, when the duration of a movement is the key feature.

Age-related changes in hand kinematics can be remarkable. They include more rigid
and slower movements, as well as reduced flexibility and precision in movement execution,
in older compared to younger adults [31]. In addition, there are differences in peripheral
factors, such as hand flexibility, tactile sensitivity, and skin friction that usually result in
a different pattern of hand movements in older compared to younger adults [24]. It was,
therefore, an open question whether the classifiers used here would be able to generate a
model that would be detected independent of the obvious differences in hand kinematic
features that exist between younger and older adults. If this were successful, this would
imply that future approaches could use our proposed algorithms to detect disease-related
changes independent of the individual age of the participant. Here, we show that the
proposed algorithms generalized across different hand sizes and age groups when the
classifiers were trained to discriminate different hand movement types. To detect disease-
related changes in specific muscle groups, one would train the classifier to detect differences
in healthy controls and patients using only one movement type performed by both groups.
We hypothesize that the generalization across age groups and hand sizes would be similar
in this setting.

Taken together, the algorithms presented here were evaluated on a set of similar move-
ment sequences as a proof-of-concept study. In some motor disorders, small differences in
the ability to perform natural hand movements might constitute a crucial marker for a more
or less severe disorder, and the ability to track motor abilities over time may constitute a
new way of using digital technology for tracking disease or rehabilitation progress. Given
that such differences are difficult to detect by subjective observation, as is mostly done in
clinical settings, a technical acquisition and algorithmic differentiation of hand movements
could also support an earlier diagnosis of motor disorders. Future work may build on
the presented algorithms to discriminate those characteristic differences and develop a
workflow as a diagnostic tool.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22166101/s1, Video S1: Movement tasks.

Author Contributions: Conceptualization, C.R., S.S., E.K. and E.A.; methodology, C.R., L.K., R.V.M.,
A.K., E.K. and E.A.; software, C.R. and L.K.; formal analysis, C.R., L.K., E.K. and E.A.; investigation,
L.K.; resources, S.S., E.K. and E.A.; data curation, C.R. and L.K.; writing—original draft preparation,
C.R.; writing—review and editing, L.K., A.K., S.S., E.K. and E.A.; visualization, C.R. and L.K.;
supervision, C.R., S.S., E.K. and E.A.; project administration, C.R., S.S., E.K. and E.A.; funding
acquisition, C.R., S.S., E.K. and E.A. All authors have read and agreed to the published version of
the manuscript.

https://www.mdpi.com/article/10.3390/s22166101/s1
https://www.mdpi.com/article/10.3390/s22166101/s1


Sensors 2022, 22, 6101 11 of 12

Funding: This research was funded by the federal state of Saxony-Anhalt and the “European Regional
Development Fund” (ERDF 2014–2020), Project: Center for Behavioral Brain Sciences (CBBS), FKZ:
ZS/2016/04/78113 and ZS/2016/04/78120, and by the German Research Foundation SFB-1436,
TPC03 and TPZ02, project-ID 425899996.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Ethics Committee of Otto-von-Guericke University
Magdeburg, Germany (protocol code 16/17 approval date 29 December 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are openly available in the open science
repository for research data and publications of the Otto-von-Guericke University at
10.24352/UB.OVGU-2022-080.

Acknowledgments: We thank Jörn Kaufmann for his support in the computational setting for the
deep learning tasks.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Northall, A.; Mukhopadhyay, B.; Weber, M.; Petri, S.; Prudlo, J.; Vielhaber, S.; Schreiber, S.; Kuehn, E. An Automated Tongue

Tracker for Quantifying Bulbar Function in ALS. Front. Neurol. 2022, 13, 838191. [CrossRef] [PubMed]
2. Mattay, V.S.; Fera, F.; Tessitore, A.; Hariri, A.R.; Das, S.; Callicott, J.H.; Weinberger, D.R. Neurophysiological Correlates of

Age-Related Changes in Human Motor Function. Neurology 2002, 58, 630–635. [CrossRef] [PubMed]
3. Van Beek, N.; Stegeman, D.F.; Jonkers, I.; de Korte, C.L.; Veeger, D.J.; Maas, H. Single Finger Movements in the Aging Hand:

Changes in Finger Independence, Muscle Activation Patterns and Tendon Displacement in Older Adults. Exp. Brain Res. 2019,
237, 1141–1154. [CrossRef]

4. Wu, Y.; Lin, J.Y.; Huang, T.S. Capturing Natural Hand Articulation. In Proceedings of the Eighth IEEE International Conference
on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 426–432. [CrossRef]

5. Utsumi, A.; Ohya, J. Multiple-Hand-Gesture Tracking Using Multiple Cameras. In Proceedings of the 1999 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, USA, 23–25 June 1999; Volume 1, pp. 473–478.
[CrossRef]

6. Bachmann, D.; Weichert, F.; Rinkenauer, G. Review of Three-Dimensional Human-Computer Interaction with Focus on the Leap
Motion Controller. Sensors 2018, 18, 2194. [CrossRef] [PubMed]

7. Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless Pose Estimation
of User-Defined Body Parts with Deep Learning. Nat. Neurosci. 2018, 21, 1281–1289. [CrossRef]

8. Caeiro-Rodríguez, M.; Otero-González, I.; Mikic-fonte, F.A.; Llamas-Nistal, M. A Systematic Review of Commercial Smart Gloves:
Current Status and Applications. Sensors 2021, 21, 2667. [CrossRef] [PubMed]

9. Ong, S.C.W.; Ranganath, S. Automatic Sign Language Analysis: A Survey and the Future beyond Lexical Meaning. IEEE Trans.
Pattern Anal. Mach. Intell. 2005, 27, 873–891. [CrossRef] [PubMed]

10. Oz, C.; Leu, M.C. American Sign Language Word Recognition with a Sensory Glove Using Artificial Neural Networks. Eng. Appl.
Artif. Intell. 2011, 24, 1204–1213. [CrossRef]

11. Ahmed, M.A.; Zaidan, B.B.; Zaidan, A.A.; Salih, M.M.; Lakulu, M.M.B. A Review on Systems-Based Sensory Gloves for Sign
Language Recognition State of the Art between 2007 and 2017. Sensors 2018, 18, 2208. [CrossRef] [PubMed]

12. Hsiao, P.C.; Yang, S.Y.; Lin, B.S.; Lee, I.J.; Chou, W. Data Glove Embedded with 9-Axis IMU and Force Sensing Sensors for
Evaluation of Hand Function. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 4631–4634. [CrossRef]

13. Zhou, X.H.; Bian, G.B.; Xie, X.L.; Hou, Z.G. An HMM-Based Recognition Framework for Endovascular Manipulations. In
Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Jeju, Korea, 11–15 July 2017; pp. 3393–3396. [CrossRef]

14. Bernardin, K.; Ogawara, K.; Ikeuchi, K.; Dillmann, R. A Sensor Fusion Approach for Recognizing Continuous Human Grasping
Sequences Using Hidden Markov Models. IEEE Trans. Robot. 2005, 21, 47–57. [CrossRef]

15. Adamovich, S.V.; Merians, A.S.; Boian, R.; Lewis, J.A.; Tremaine, M.; Burdea, G.S.; Recce, M.; Poizner, H. A Virtual Reality Based
Exercise System for Hand Rehabilitation. Presence 2005, 14, 161–174. [CrossRef]

16. Dimbwadyo-Terrer, I.; Trincado-Alonso, F.; de los Reyes-Guzmán, A.; Aznar, M.A.; Alcubilla, C.; Pérez-Nombela, S.; del Ama-
Espinosa, A.; Polonio-López, B.; Gil-Agudo, Á. Upper Limb Rehabilitation after Spinal Cord Injury: A Treatment Based on a Data
Glove and an Immersive Virtual Reality Environment. Disabil. Rehabil. Assist. Technol. 2016, 11, 462–467. [CrossRef]

17. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

http://doi.org/10.3389/fneur.2022.838191
http://www.ncbi.nlm.nih.gov/pubmed/35280269
http://doi.org/10.1212/WNL.58.4.630
http://www.ncbi.nlm.nih.gov/pubmed/11865144
http://doi.org/10.1007/s00221-019-05487-1
http://doi.org/10.1109/iccv.2001.937656
http://doi.org/10.1109/cvpr.1999.786980
http://doi.org/10.3390/s18072194
http://www.ncbi.nlm.nih.gov/pubmed/29986517
http://doi.org/10.1038/s41593-018-0209-y
http://doi.org/10.3390/s21082667
http://www.ncbi.nlm.nih.gov/pubmed/33920101
http://doi.org/10.1109/TPAMI.2005.112
http://www.ncbi.nlm.nih.gov/pubmed/15943420
http://doi.org/10.1016/j.engappai.2011.06.015
http://doi.org/10.3390/s18072208
http://www.ncbi.nlm.nih.gov/pubmed/29987266
http://doi.org/10.1109/EMBC.2015.7319426
http://doi.org/10.1109/EMBC.2017.8037584
http://doi.org/10.1109/TRO.2004.833816
http://doi.org/10.1162/1054746053966996
http://doi.org/10.3109/17483107.2015.1027293
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276


Sensors 2022, 22, 6101 12 of 12

18. Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access
2017, 6, 1662–1669. [CrossRef]

19. Graves, A.; Mohamed, A.; Hinton, G. Speech Recognition with Deep Recurrent Neural Networks. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 6645–6649. [CrossRef]

20. Graves, A.; Schmidhuber, J. Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks. In Proceedings
of the Advances in Neural Information Processing Systems 21 (NIPS 2008), Vancouver, BC, Canada, 8–11 December 2008;
pp. 545–552.

21. Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.Y.; Liu, J. LSTM Network: A Deep Learning Approach for Short-Term Traffic Forecast. IET
Intell. Transp. Syst. 2017, 11, 68–75. [CrossRef]

22. Joachims, T. Learning to Classify Text Using Support Vector Machines; Springer: New York, NY, USA, 2002. [CrossRef]
23. Graves, A. Long Short-Term Memory. In Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational

Intelligence; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [CrossRef]
24. Liu, P.; Chrysidou, A.; Doehler, J.; Hebart, M.N.; Wolbers, T.; Kuehn, E. The Organizational Principles of De-Differentiated

Topographic Maps in Somatosensory Cortex. eLife 2021, 10, e60090. [CrossRef] [PubMed]
25. Johnson, D.A.; Trivedi, M.M. Driving Style Recognition Using a Smartphone as a Sensor Platform. In Proceedings of the 2011

14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011;
pp. 1609–1615. [CrossRef]

26. Liu, J.; Zhong, L.; Wickramasuriya, J.; Vasudevan, V. UWave: Accelerometer-Based Personalized Gesture Recognition and Its
Applications. Pervasive Mob. Comput. 2009, 5, 657–675. [CrossRef]

27. Willett, F.R.; Avansino, D.T.; Hochberg, L.R.; Henderson, J.M.; Shenoy, K.V. High-Performance Brain-to-Text Communication via
Handwriting. Nature 2021, 593, 249–254. [CrossRef]

28. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.S.; Asari, V.K.
A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [CrossRef]

29. Bishop, C.M. Pattern Recognition and Machine Learning; Jordan, M., Kleinberg, J., Schölkopf, B., Eds.; Springer: New York, NY,
USA, 2006.

30. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
31. Gulde, P.; Hermsdörfer, J. Both Hands at Work: The Effect of Aging on Upper-Limb Kinematics in a Multi-Step Activity of Daily

Living. Exp. Brain Res. 2017, 235, 1337–1348. [CrossRef] [PubMed]

http://doi.org/10.1109/ACCESS.2017.2779939
http://doi.org/10.1109/ICASSP.2013.6638947
http://doi.org/10.1049/iet-its.2016.0208
http://doi.org/10.1007/978-1-4615-0907-3
http://doi.org/10.1007/978-3-642-24797-2_4
http://doi.org/10.7554/eLife.60090
http://www.ncbi.nlm.nih.gov/pubmed/34003108
http://doi.org/10.1109/ITSC.2011.6083078
http://doi.org/10.1016/j.pmcj.2009.07.007
http://doi.org/10.1038/s41586-021-03506-2
http://doi.org/10.3390/electronics8030292
http://doi.org/10.1007/s00221-017-4897-4
http://www.ncbi.nlm.nih.gov/pubmed/28210758

	Introduction 
	Materials and Methods 
	Participants 
	Experimental Approach 
	Data Recording and Preprocessing 
	Decoding Algorithms 
	Support Vector Machine Combined with Dynamic Time Warping 
	Long Short-Term Memory Neural Network 


	Results 
	Discussion 
	References

