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Abstract
The KAI1/CD82 gene inhibits the metastasis of most tumors and is remarkably 
correlated with tumor invasion and prognosis. Cell metabolism dysregulation is 
an important cause of tumor occurrence, development, and metastasis. As one of 
the important characteristics of tumors, cell metabolism dysregulation is 
attracting increasing research attention. Phospholipids are an indispensable 
substance in the metabolism in various tumor cells. Phospholipid metabolites 
have become important cell signaling molecules. The pathological role of 
lysophosphatidic acid (LPA) in tumors was identified in the early 1990s. 
Currently, LPA inhibitors have entered clinical trials but are not yet used in 
clinical treatment. Autotaxin (ATX) has lysophospholipase D (lysoPLD) activity 
and can regulate LPA levels in vivo. The LPA receptor family and ATX/lysoPLD 
are abnormally expressed in various gastrointestinal tumors. According to our 
recent pre-experimental results, KAI1/CD82 might inhibit the migration and 
metastasis of cancer cells by regulating the ATX-LPA axis. However, no relevant 
research has been reported. Clarifying the mechanism of ATX-LPA in the 
inhibition of cancer metastasis by KAI1/CD82 will provide an important 
theoretical basis for targeted cancer therapy. In this paper, the molecular compos-
itions of the KAI1/CD82 gene and the ATX-LPA axis, their physiological functions 
in tumors, and their roles in gastrointestinal cancers and target therapy are 
reviewed.
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Core Tip: The KAI1/CD82 gene inhibits the metastasis of most tumors and is significantly correlated with 
their invasion and prognosis. According to our recent pre-experimental results, we speculated that 
KAI1/CD82 might inhibit the migration and metastasis of cancer cells by regulating autotaxin (ATX)-
lysophosphatidic acid (LPA) axis. However, no relevant research has been reported. To clarify the 
mechanism of ATX-LPA in KAI1/CD82 inhibition of cancer metastasis will provide an important 
theoretical basis for targeted cancer therapy, and further research is necessary. In this paper, the molecular 
composition of the KAI1/CD82 gene and ATX-LPA axis, their physiological functions in tumors, and their 
roles in gastrointestinal cancers and target therapy are reviewed.
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INTRODUCTION
The KAI1/CD82 gene is an important tumor suppressor gene. As a metastasis-related suppressor gene 
of prostate cancer discovered by Dong et al[1] in 1995, KAI1/CD82 is located on human chromosome 
11p11.2 and consists of l0 exons and 9 introns with a length of about 80 kb. The protein encoded by this 
gene is composed of 267 amino acids residues and has a relative molecular weight of 29600 Da. 
KAI1/CD82 is a member of the transmembrane 4 superfamily (TM4SF). TM4SF proteins promote the 
interactions between cells and the extracellular matrix, enhance the cohesion between tumor cells, 
reduce phagocytosis and invasion, and inhibit tumor cell metastasis. Cell dysmetabolism is an 
important cause of tumor occurrence, development, and metastasis. As one of the hallmarks of cancer, 
cell dysmetabolism has increasingly attracted the attention of researchers in recent years. Phospholipid 
is an indispensable substance in cell metabolism and participates in the metabolism of various tumor 
cells. Phospholipid metabolites have become important cell signaling molecules. Lysophosphatidic acid 
(LPA) is secreted by platelets, fibroblasts, cancer cells, and fat cells and is a multifunctional “phos-
pholipid messenger”. In tumor tissues, LPA induces intracellular signal transduction by binding G 
protein-coupled LPA receptors (LPARs) on the cell surface and regulates tumor cell proliferation, 
adhesion, migration, and invasion. Autotaxin (ATX) is a key enzyme catalyzing LPA synthesis. 
Clarifying the role and molecular mechanism of ATX-LPA and LPARs in cancer invasion and metastasis 
is necessary. According to our previous experimental results and recent pre-experimental results, as 
well as current reports on ATX-LPA, KAI1/CD82 might inhibit the cancer cell migration and metastasis 
by regulating the ATX-LPA axis. The abnormal metabolism of the ATX-LPA axis may be associated 
with the high metastasis characteristics of cancer. The ATX-LPA axis and their receptors may serve as 
molecular markers for cancer metastasis and prognosis. Clarifying the mechanism of the ATX-LPA axis 
in the inhibition of cancer metastasis by KAI1/CD82 will provide an important theoretical basis for 
targeted cancer therapy and further research.

MOLECULAR COMPOSITION OF THE KAI1/CD82 GENE AND THE ATX-LPA AXIS
Molecular composition of KAI1/CD82
KAI1 (named after Anticancer Kang Ai) is a tumor-suppressor gene first discovered by Dong et al[1] in 
1995 on chromosome 11 of rabbit AT6.1 metastatic prostate cancer cells. Later, researchers confirmed 
that KAI1 has the same structure as the CD82 gene; therefore, it was named KAI1/CD82. The 5’-end 
promoter region of the KAI1/CD82 gene is 735 bp long and rich in CpG island with nine transcription 
factor-specific protein SPI binding sites, five AP2 binding sites, and tcF-1, Myb, and MEP.1 binding sites, 
which suggests that the gene is regulated by multiple mechanisms[2,3]. KAI1/CD82 is located on the 
cell membrane and is a member of TM4SF, which comprises four conservative hydrophobic 
transmembrane domains (TM1–TM4) and one extracellular glycosyl-based binding site. This structure 
indicates that KAI1/CD82, like other TM4SF members, can affect plasma membrane molecular 
rearrangement, cell aggregation, adhesion, and migration, and other physiological and pathological 
activities through various mechanisms, as well as inhibit the migration and metastasis of various 
malignant tumors[4].

Molecular composition of the ATX-LPA axis
ATX is a secretory glycoprotein called autocrine motility factor. ATX was first identified in A2058 
melanoma cells and induces cell migration through the pertussis toxin G protein[5]. ATX has phosphod-
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iesterase activity[6], and LPA is catalyzed by lysophosphatidylcholine (LPC)[7]. LPA is a multifunc-
tional “phospholipid messenger” secreted by platelets, fibroblasts, adipocytes, and cancer cells. 
Although LPA is the simplest phospholipid, it is not a simple biomolecule. LPA has six G-protein-
coupled receptors that mediate several physiological and pathological processes, including embryo-
genesis, wound healing, chronic inflammation, cancer progression, and treatment tolerance[8]. In tumor 
tissues, LPA binds to LPARs on the cell surface to induce intracellular signal transduction, which in turn 
regulates tumor cell proliferation, adhesion, migration, and invasion[7]. At present, ATX-LPA target 
inhibitors are not yet used as a therapeutic measure clinically, and the therapeutic effects of LPA 
monoclonal antibodies, LPAR antagonists, and ATX inhibitors are still being explored.

ATX is also called extracellular pyrophosphatase/phosphodiesterase (ENPP)2 because of its 47%-55% 
homology with pc-1/NPP1 and B-10/NPP3 amino acid sequences in the ENPP family. ATX is a 
multidomain protein[9], and lysophospholipase D (lysoPLD) catalyzes LPA formation[10]. ATX has a 
slightly U-shaped hydrophobic pocket in the catalytic region, which tends to contain unsaturated 
substrates, such as unsaturated fatty acids[11], and all five selective splicing isomers have catalytic 
activity[12,13]. Therefore, its affinity with LPC is strong. Although LPA can be produced by other 
processes, such as phospholipase A2, Ca2+-independent phospholipase A2, and phosphatidate[14-16], 
ATX is still the main pathway of extracellular LPA generation.

Serum contains 2-20 μm LPA, and its metabolites extensively affect biological activities inside and 
outside cells[17]. LPA is one of the smallest glycerophosphatides and comprises three domains: 
Phosphate head, linker, and lipophilic terminal. The function of the phosphoric head is to activate the 
receptor; the lipophilic terminal sequence determines its biological activity; and the head and tail are 
linked by acyl, alkyl, or alkenyl groups[18]. Its free hydroxyl and phosphate groups make LPA more 
soluble in water than long-chain phospholipids, which likely contributes to its biological activities. The 
family of lipid phosphate phosphohydrolases (LPPs) dephosphorylates LPA[19,20].

LPARs are divided into two subfamilies: LPA1-3 receptors belonging to the endothelial cell differen-
tiation gene (Edg) family, and LPA4-6 receptors belonging to the purine (P2Y) receptor family[9,21]. LPA1 
(Edg2) has 50%-60% amino acid homology with LPA2 (Edg4) and LPA3 (Edg7). LPA1 and LPA2 need to 
pass through the Gi/O, Gq/11, and G12/13 signaling pathways, whereas LPA3 passes only through the Gi/O 
and Gq/11 signaling pathways[22]. The function of Gi/O is to stimulate mitotic division through the Ras-
Raf-MAPK signaling pathway and promote tumor cell survival through the PI3K-Akt signaling 
pathway[23,24]. LPA4 (P2Y9/GPR23), LPA5 (GPR92), and LPA6 (P2Y5) have 35%-55% amino acid 
homology. LPA4 acts through the Gs, Gi/O, Gq/11, and G12/13 signaling pathways and is the only LPAR that 
activates adenosine cyclase and leads to cyclic adenosine monophosphate elevation. LPA5 plays a role 
through the Gq/11 and G12/13 signaling pathways, whereas LPA6 plays a role through the G12/13 activation 
of the Rho signaling pathways[22]. The effect of LPARs on tumors depends on the G protein signaling 
pathway that it activates[25].

PHYSIOLOGICAL FUNCTIONS OF THE KAI1/CD82 GENE AND THE ATX-LPA-LPP AXIS 
IN CANCERS
Inhibition of the KAI1/CD82 gene in cancers
Low KAI1 expression accelerates tumor invasion and metastasis[26]. In 2017, a meta-analysis involving 
31 studies showed that high KAI1 expression is significantly associated with overall survival (OS) 
[hazard ratio (HR) = 0.56, 95% confidence interval (CI): 0.47-0.67] and disease-free/relapse-
free/progression-free survival (PFS) (HR = 0.42, 95%CI: 0.30-0.59) in patients with cancer. In addition, 
they performed a subgroup analysis showing that KAI1/CD82 is associated with a good prognosis in 
patients with cancer. KAI1/CD82 may be a promising biomarker for predicting the prognosis of 
patients with malignant tumors, and its biological function has important research value for this topic
[27]. The Human Protein Atlas is an outstanding initiative associated to the Human Proteome Project, 
which has made available valuable information about the functional and pathological aspects of about 
17000 proteins. In particular, they are able to propose scores that suggest the prognostic value of 
proteins in diseases based on the expression levels of these proteins in healthy and diseased tissues. 
Considering that only 31 studies were included in the meta-analysis, more studies may be needed in the 
future to verify whether KAI1 can be used as a prognostic factor. KAI1/CD82 may inhibit cell 
metastasis and migration through two pathways. The first is that KAI1/CD82 inhibits cell migration as 
an initiating signal. However, the possibility of this pathway is low because of the simple structure of 
KAI1/CD82 and the lack of corresponding enzymes in the cytoplasm. However, evidence also indicates 
that KAI1/CD82 may be an initiating signal[28,29]. KAI1/CD82 is crosslinked with monoclonal 
antibody to induce morphological changes and signal transduction[30]. Integrins are also essential for 
cell adhesion and migration, and KAI1/CD82 is associated with several integrins, including α3β1, α4β1, 
α5β1, α6β1, and αLβ2[31-35], which may also be one of the pathways through which KAI1/CD82 inhibits 
tumor. Epidermal growth factor receptor (EGFR) is a member of the ErbB family. In tumor tissues, the 
receptors and ligand of the ErbB pathway are overproduced and overactivated. Odintsova et al[36] 
found that KAI1/CD82 is correlated with EGFR, ErbB2, and ErbB3 and inhibits the endocytosis of the 
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EGF signaling pathway and EGFR. KAI1/CD82 redistributes molecules on the cell membrane surface; 
KAI1/CD82 overexpression results in the redistribution and aggregation of urokinase-type 
plasminogen activator receptor (uPAR) into a stable α5β1 complex. Moreover, KAI1/CD82 overex-
pression also results in the redistribution of EGFR and gangliosides in the plasma membrane. However, 
whether the redistribution of these substances is related to KAI1/CD82 tumor inhibition remains 
unknown[37].

Physiological function of the ATX-LPA-LPP axis in cancers
LPA signals can be roughly divided into three parts, namely, ATX, LPARs, and LPP of extracellular LPA
[38,39]. ATX has lysoPLD activity and promotes LPA generation in blood[40,41]. Many tumor cells 
secrete ATX[42], LPAR expression is higher on tumor cell surfaces than on normal cells, and LPP 
expression is lower in tumor cells than in normal cells. Understanding the metabolic pathway of the 
ATX-LPA-LPP axis in the tumor microenvironment (TME) is important to study its target therapy 
(Figure 1).

The TME is produced by tumor cells, such as neuroblastoma[43], glioblastoma[44], liver cancer[45], B-
cell lymphoma[46], melanoma[47], kidney cancer[48], thyroid cancer[49], breast cancer, and non-small 
cell lung cancer[50], as well as stromal cells such as fibroblasts and adipocytes[51-53]. How to regulate 
ATX expression remains unclear. ENPP overexpression may be one of the reasons for ATX upregulation 
in cancer tissues[54]. The Cancer Genome Atlas shows that ENPP overexpression is present in serous 
ovarian cystadenocarcinoma (about 33%) and invasive breast carcinoma (about 20%). The ENPP2 gene is 
overexpressed in hepatocellular carcinoma (HCC; about 20%), lung adenocarcinoma (about 11%), 
bladder transitional cell carcinoma (about 10%), and head and neck squamous cell carcinoma (about 
10%)[13]. Moreover, ATX is involved in the physiological wound-healing response, and ATX levels are 
increased in some inflammatory diseases[55]. Park et al[56] found that the levels of interleukin (IL)-4, IL-
5, and ATX increase in patients with asthma who received bronchoalveolar lavage fluid when 
stimulated by allergens. ATX induces pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-
α and IL-1β[57,58], NOD receptor family (NLRP3), ATM kinase, ATR protein kinase, and nuclear 
transcription factor-kappa B (NF-κB)[59]. At present, although ATX research has made some progress, 
the overall understanding remains limited.

LPA is present in intracellular and extracellular fluids (blood, ascites, follicular fluid, saliva, etc.)[56]. 
In 1989, van Corven et al[60] found that LPA may be involved in cell diffusion and migration. Two years 
later, Merchant et al[61] found increased LPA levels in malignant colon tumor tissues. LPA may be a 
simple lipid, but it is involved in all aspects of tumor development; it stimulates proliferative signals
[62], prevents growth inhibition and resists apoptosis[63,64], regulates telomerase[64], promotes 
vascular endothelial growth factor (VEGF)-A and VEGF-C, and induces angiogenesis[65-67]. LPA 
induces the gene instability caused by reactive oxygen species and stimulates the production of inflam-
matory factors, such as COX-2, IL, and TNF-α[68,69]. LPA activates at least three signaling pathways: (1) 
Promotes phosphoinositol hydrolysis and therefore activates protein kinase C (PKC) and Ca2+ 
mobilization; (2) Promotes the release of guanosine triphosphate (GTP); and (3) Inhibits adenylate 
cyclase activity. In recent years, the activation of the downstream signaling Ras pathway may promote 
LPA fibrogenesis[70]. Moreover, MAK-related kinase, as an effector of RhoC, regulates LPA-induced 
cell invasion through myosin, extracellular signal-regulated kinase (ERK), and P38[71], whereas LPA 
induces the G12/13-Rhoa-Rock signaling pathway to mediate focal adhesion kinase autophos-
phorylation and promote tumor cell migration[72]. Furthermore, Lee et al[73] found that LPA interacts 
with T lymphocytes, B lymphocytes, acidic granulocytes, neutrophils, macrophages, mast cells, 
dendritic cells, and natural killer cells in the immune system and blood. Currently, no clinical treatment 
for LPA target is available, and the study of TME’s molecular mechanism is helpful to guide clinical 
treatment.

LPA is hydrolyzed and inactivated by LPPs. Studies have found that LPP1 and LPP3 are reduced in 
various tumor tissues[74]. LPPs activate ERK signaling by thrombin; induce LPP1 and LPP2 overex-
pression; and attenuate cell migration, cell differentiation, and angiogenesis[75]. Pilquil et al[76] found 
that increased LPP1 expression weakens PLD activation, which is an intermediate substance necessary 
for LPA to stimulate cell migration. LPP1 also weakens fibroblast migration. Tanyi et al[77] found that 
LPP3 reduces cell apoptosis, decreases the migration ability of transfected LPP3 cells, and slows down 
tumor growth in vivo and in vitro.

Comparative analysis of LPAR-mediated signals in tumors
LPA1: LPA1 is the most widely expressed Edg LPAR in tissues[69]. LPA signaling through LPA1 
regulates a variety of malignant properties in cancer cells[78]. Murph et al[79] found that LPA1 downreg-
ulates the tumor suppressor gene p53 and weakens its inhibitory effect. Marshall et al[80] found that the 
tumor-suppressor gene Nm23 could inhibit LPA1 expression. Additionally, Stadler et al[81] found that 
LPA1 is a signaling receptor downstream of fibroblast growth factor receptor 4 (FGFR4) that promotes 
cell transformation of cells into fibroblasts, which are one of the main components of TME matrix. LPA1 
preferentially binds to Gα Q proteins in tumors to activate PKC. PKC is involved in many cellular 
processes, including proliferation and metastasis. Valdés-Rives et al[82] found that when the LPA1/PKC
α signaling pathway is blocked, the number of cells is reduced; this finding suggests a correlation 
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Figure 1 Autotaxin-lysophosphatidic acid axis plays a key role in the pathophysiology of tumor cells. A: The anabolism and catabolism of tumor 
extracellular lysophosphatidic acid (LPA). Autotaxin/lysophospholipase D catalyzes the generation of LPA from lysophosphatidylcholine (LPC), and lipid phosphate 
phosphohydrolases promotes LPC hydrolysis; B: LPA activates multiple pathological processes in tumor cells by binding GPRs (lysophosphatidic acid receptors) to 
promote tumor occurrence and development. LPC: Lysophosphatidylcholine; LPA: Lysophosphatidic acid; ATX: Autotaxin; Edg: Endothelial cell differentiation gene; 
LPPs: Lipid phosphate phosphohydrolases; LysoPLD: Lysophospholipase D.

between LPA1 and PKCα in glioblastoma multiforme growth. Stadler et al[81] found that patients with 
high expression of the LPA1 receptor for R388 FGFR4 phenotype are more likely to develop cancer. Lin 
et al[83] found that LPA1 signaling mediates tumor lymphangiogenesis by promoting calreticulin 
expression in prostate cancer. Elevated LPA1 receptors also contribute to cancer development.

LPA2: LPA2 is elevated in tumor tissue[84]. Studies showed that LPA2 is associated with many human 
tumors, and the binding of LPA2 with its ligand, LPA, can activate the LPA signaling pathway and 
promote cell proliferation and malignant transformation. For example, the high expression level of the 
LPA2 receptor in breast cancer suggests a poor prognosis[85]. The high expression of LPA2 mRNA in 
HCC is related to the low differentiation of cancer cells[86], and the high expression of LPA2 receptor in 
colon cancer cells promotes the acquisition of drug resistance and the failure of anticancer drugs[87]. 
LPA2-mediated signaling plays an important role in the enhancement of the chemoresistance of A375 
cells treated with anticancer drugs[78]. Ren et al[88] transfected SGC-7901 gastric cancer (GC) cells with 
LPA2 expression vector and found that the expression of E-cadherin gradually decreases and the 
expression of vimentin gradually increases with the increase in LPA2 level. These findings suggest that 
LPA2 is involved in the epithelial-mesenchymal transition (EMT) process of GC cells. GC cells with 
increased LPA2 level are likely to metastasize. Dong et al[89] believed that an effective drug that can 
inhibit LPA2 gene expression, inhibit GC cell proliferation, and promote apoptosis might be a potential 
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new target for GC treatment. Xu et al[90] found that thyroid receptor interacting protein 6 activates LPA2 
and its downstream signal and therefore promotes cell adhesion and migration. The carcinogenic 
mechanism of LPA2 is still unknown, and most studies have focused on the LPA stimulation of the 
expression of cytokines, such as IL-6, VEGF, hypoxia-inducible factor 1α, C-MyC, cyclin D1, Kruppel-
like factor 5, and COX-2. Moreover, Na+/H+ regulatory factor 2 (NHERF-2) may enhance LPA2 gene 
expression and other LPA-induced cellular processes[91].

LPA3: Research found that LPA3 promotes cancer cell proliferation and metastasis. Zhao et al[92] found 
that the high expression of the LPA3 protein is considerably correlated with the occurrence and 
recurrence of epithelial ovarian cancer. Hayashi et al[93] and Kitayoshi et al[94] found that LPA3 inhibits 
tumor cell migration. Sun et al[95] found that LPA3 overexpression is associated with lymph node 
metastasis and the loss of the expression of estrogen receptor, progesterone receptor, and human 
EGFR2. Studies found that LPA3 may be related to the activation of the YAP protein in breast cancer and 
that LPA3 overexpression may promote the activation of YAP protein and the proliferation and 
metastasis of breast cancer cells. Fang et al[96] found that LPA3 affects B cell lymphoma (Bcl)-2 and Bax 
expression; therefore, it affects the Bcl-2/Bax ratio, inhibits the apoptosis of ovarian cancer cells, and 
promotes the development of ovarian cancer. The vasodilator-stimulated phospho-protein 
phosphorylation induced by LPA receptor is a key mediator of migration initiation. LPA3 plays a role in 
cellular motility and may contribute to cell invasion and metastasis[97].

LPA4-6: LPA4 may be involved in the invasion and metastasis of breast cancer cells, and the migration 
and invasion ability may involve the regulation of MMP2 and MMP9 protein expression. Takara et al[98] 
found that LPA4 is involved in the formation of vascular networks. LPA4 activation induces the 
subcellular binding of circumferential actin and enhances the linear adhesion of vascular-endothelial 
cadherin in endothelial cells. Studies found that LPA5 knockout cells show high motor activity. The 
gelatinase spectrum shows that LPA5 inhibits the activation of MMP2. LPA5 also inhibits the cellular 
motility of endothelial cells, which is correlated to the expression level of the VEGF gene[99]. However, 
Tsujino et al[100] found no mutation in the LPA5 gene in colon cancer cells DLD1, SW480, HCT116, 
CACO-2, SW48, and LoVo. LPA6-mediated tube formation, which reflects the stabilization of barrier 
integrity, was confirmed by in vitro angiogenesis assay. By contrast, LPA6-mediated protective actions 
are associated with the activation of Src and Rap1 and attenuated by the abrogation of their activities
[101]. A considerable correlation between LPA6 and PIM-3 expression levels is also observed in patients 
with HCC. Furthermore, the biological roles of LPA4-6 remain unknown[102,103].

THE KAI1/CD82 GENE AND ATX–LPA AXIS IN GASTROINTESTINAL CANCERS
KAI1/CD82 in pancreatic cancer
Pancreatic cancer (PC) is the seventh most common cancer worldwide and causes more than 300000 
deaths a year[104]. The 5-year survival rate of PC is only 3%-5%. In the early stages of PC, it directly 
invades peripancreatic tissues or metastasizes to organs near and far via lymphatic and/or blood 
vessels. More than 80% of patients with PC are initially diagnosed at advanced stages, lose the chance of 
surgical treatment, and have poor radiotherapy and chemotherapy effects. In 1996, Guo et al[105] found 
that the expression of KAI1/CD82 mRNA in early pancreatic tumors (I and II) is significantly higher than 
that in advanced tumors (III and IV) with lymph node metastasis or distant metastasis (P < 0.01), and 
the KAI1 mRNA level in poorly differentiated tumors is significantly higher than that in moderately 
differentiated or well-differentiated tumors (P < 0.05). Friess et al[106] and Xu et al[107] also found 
similar results. Subsequent studies have shown that low KAI1/CD82 level is associated with the 
inhibition of PC cell invasion and metastasis, and the KAIl/CD82 gene may control PC cell metastasis by 
inhibiting cancer cell invasion and motor function[108-111].

KAIl/CD82 protein, a member of TM4SF, has been accepted for its inhibitory effect on tumor 
metastasis; the mechanism of this effect has not yet been clearly explained, but it may be related to its 
localization on the cell membrane, extensive glycosylation, and cell-cell and cell-extracellular matrix 
interactions. Mashimo et al[112] found that the loss of p53 leads to the downregulation of the KAI1/CD82 
gene and promotes cancer metastasis. KAI1 may inhibit the metastasis of the PC cells PANC-1 and 
Miapaca-2, caused by hepatocyte growth factor (HGF) by downregulating sphingosine kinase (SphK) 
expression. After they were infected with the KAI1 gene, the PANC-1 and Miapaca-2 cells induced by 
HGF had decreased invasive ability in the Boyden chamber assay. KAI1 overexpression in cells leads to 
the deactivation of SphK and a decreased level of intracellular sphingosine-1-phosphate[108]. Liu et al
[108] found that KAI1/CD82 induces the downregulation of VEGF-C expression through the 
Src/STAT3 signaling pathway, which may also inhibit the lymph node metastasis of PC. Wu et al[111] 
found that KAI1 induces the expression of the autophagy proteins LC3 and Beclin1, and further 
confirmed that KAI1 could induce autophagy in the human PC cell line MiAPACA-2 and therefore 
promote cell apoptosis and inhibit proliferation. EMT plays an important role in the pathogenesis of PC. 
KAI1 reverses the expression of EMT-related factors, such as Snail, Vimentin, MMP2, and MMP9 (P < 
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0.05), and inhibits PC cell metastasis and invasion. In conclusion, KAI1 may be a new potential 
therapeutic target for PC in the future.

KAI1/CD82 in HCC
HCC is a common malignant tumor with the second highest mortality rate in China. Rapid intrahepatic 
and extrahepatic metastases lead to poor prognosis[113]. Zhang et al[114] found that the combined 
detection of KAI1 and VEGF can greatly improve the diagnostic efficiency for HCC. Mu et al[115] found 
that KAI1/CD82 suppresses the HGF-induced migration of hepatoma cells via SphK1 downregulation. 
HGF induces hepatoma cell migration through cellular SphK1 activation. The adenovirus-mediated 
gene transfer of KAI1 downregulates SphK1 expression and suppresses the HGF-induced migration of 
SMMC-7721 human HCC cells. Guo et al[116] found that the wTP53 fusion gene and JunB inhibit tumor 
cell invasiveness and promote tumor cell apoptosis by regulating KAI1/CD82 expression. Si et al[117] 
and Yang et al[118] found that changing KAI1 expression could alter the migration and invasion ability 
of MHCC97-H in HCC cells. Xu et al[119] found that KAI1 is negatively correlated with tumor grade, 
venous invasion, lymph node metastasis, intrahepatic metastasis, and TNM stage and positively 
correlated with patients’ OS. KAI1/CD82 may also play an important role in HCC metastasis and 
prognosis.

KAI1/CD82 in GC
GC is one of the most common malignant tumors. Although GC-related morbidity has shown a 
downward trend in recent years, the mortality rate remains high[120,121]. KAI1 has been studied to 
identify novel therapeutic targets[122-126]. Ilhan et al[122] and Knoener et al[123] found that 
KAI1/CD82 is negative in all tissues with distant metastasis or tissues in stage IV GC with statistical 
significance (P < 0.05). KAI1 inhibits tumor growth and metastasis and is a prognostic factor for patients 
with GC. Hinoda et al[124] found that the positive rate of KAI1/CD82 in patients with stages Ia-IIIa GC 
is 16.6% (8/48), and all patients with stages IIIb-IVb GC are negative for KAI1/CD82 (0%, 0/25; P = 
0.05). KAI1/CD82 is highly expressed in normal gastric epithelial cells. In GC, KAI1/CD82 expression 
decreases with increased tumor differentiation, tumor invasion depth, and lymph node metastasis[127,
128]. Guan et al[129] found that reduced KAI1/CD82 expression promotes lymph node metastasis and 
liver metastasis in patients with GC. The detection of KAI1/CD82 mRNA expression level can be used as 
a prognostic index for patients with GC.

KAI1/CD82 in colorectal cancer
Colorectal cancer (CRC) is a common malignant tumor, and metastasis is the main cause of its poor 
prognosis. KAI1 may affect cellular connectivity and may be related to its metastasis. KAI1 may be a 
new therapeutic target for CRC[130,131]. KAI1 mRNA and protein are increased in early CRC tumors, 
decreased in late CRC tumors, and no longer expressed in distant metastasis[132]. Integrin-α3 and 
TAp73 regulate CRC invasion and metastasis by regulating KAI1 transcription[133,134].

ATX-LPA in PC
The expression of ATX in PC remains unclear, and its molecular biological mechanism has not yet been 
reported. Ryder et al[135] and Nakai et al[136] found that ATX expression is increased in PC tissues, but 
it is more increased in chronic pancreatitis or pancreatic cysts than in PC. Quan et al[137] found that 
TNF-α, NF-κB, Wnt/β-catenin pathway, V-Jun, EGF, and B-FGF are all activated or abnormally 
expressed in PC tissues, which may provide a direction for future research on mechanisms. LPA 
activates downstream signaling pathways, such as PI3K/AKT, RAS/ERK, Rho, and Hippo, and 
promotes PC cell proliferation, migration, and invasion[138,139]. Additionally, LPA is remarkably 
increased in the serum and ascites[140,141], which suggests that ATX activity is elevated in patients 
with PC.

ATX catalyzes LPA synthesis from LPC and exerts biological effects through the receptors LPA1-6. 
Fukushima et al[142] found that the invasion ability of PANC-R9 cells is 15 times that of PANC-1 cells, 
LPA1 expression in PANC-R9 cells is remarkably higher than that in PANC-1 cells, and LPA3 is 
decreased. Kato et al[143] also found that LPA1 and LPA3 play opposite roles in PC cell migration. 
Tsujiuchi et al[144], Komachi et al[145], and Yamada et al[146] found that LPA1 induces PC cell 
migration. Liao et al[141] and Yoshikawa et al[147] found that LPA2 may induce PC cell migration by 
enhancing the proto-oncogene K-RAS pathway. However, Komachi et al[145] found that LPA2 may 
inhibit PC cell migration through the conjugated G12/13/Rho signaling pathway. Ishii et al[148] 
conducted a cell activity assay after LPARs were knocked out from PANC-1 cells (PANC-SH4, PANC-
SH5, and PANC-SH6 cells). They found that PANC-SH4 and PANC-SH5 enhance cell migration ability, 
whereas PANC-SH6 inhibits cell migration. Currently, few studies have been conducted on the 
molecular biology of LPAR and PC, and further research is needed.

ATX-LPA axis in HCC
The main risk factors for HCC are hepatitis virus infection; alcohol consumption; and metabolic 
disorders, such as obesity, diabetes, and non-alcoholic fatty liver disease[149]. The abnormal expression 
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of the ATX-LPA axis may cause liver metabolism disorder and induce steatohepatitis and liver cancer
[150,151]. The ATX-LPA axis is currently considered one of the most promising signaling pathways in 
liver cancer[152]. Watanabe et al[153] found elevated ATX and LPA levels in hepatic fibrosis tissues. 
Memet et al[149] found that high expression of ATX in HCC is an independent prognostic factor (HR = 
13.70, 95%CI: 3.26-57.62, P = 0.0004), and high expression of ATX (+3) also increases the risk of death by 
eight-fold. Wu et al[154] found that ATX is significantly elevated in Hep3B and Huh7 cells. Park et al
[155] found that LPA1 is significantly elevated in liver cancer. LPA3 may be highly expressed in HCC 
tissues through the lPA3-GI-ERK signaling pathway[156]. Enooku et al[86] found that increased LPA2 
mRNA level may be associated with the low differentiation degree of HCC. Okabe et al[157] found that 
LPA3 induces the invasion of rabbit RH7777 hepatoma cells. LPA6 is not expressed in normal tissues but 
is expressed in liver cancer tissues. Zheng et al[158] found that nuclear receptor coactivator 3 induces the 
acetylation of histone 3-LYS-27 at the LPA6 site after HGF treatment and inhibits LPA6 transcription. 
High LPA6 expression promotes HCC proliferation. Lippolis et al[159] found that high LPA6 expression 
promotes the development of HCC with poor prognosis. Gnocchi et al[160] and Mazzocca et al[161] 
found that LPA6 may be an important therapeutic target for HCC, although LPA6 overexpression 
promotes HCC cell growth.

ATX-LPA axis in GC
The role of ATX-LPA axis in GC invasion and metastasis remains to be explored. Zeng et al[162] found 
that LPA is increased in GC tissue samples with peritoneal metastasis (P = 0.046) and is significantly 
increased in ascites (P < 0.001). Serum LPA decreases after chemotherapy (P = 0.028). PFS and OS are 
significantly decreased in an ascites LPA > 24000 ng/mL group (P < 0.001). Ramachandran et al[163] 
and Shida et al[164] found that LPA upregulates SphK1 through the ERK1 signaling pathway. Kim et al
[165] found that LPA can induce uPAR to stimulate the downstream signaling pathways, rho-family 
GTPase, JNK, AP-1, and NF-κB. Budnik[18] found that LPA upregulates human epidermal growth 
factor receptor 2 expression in GC cells and promotes GC cell invasion. LPA promotes cell proliferation, 
but the molecular biological mechanism between LPA and GC still needs further exploration, and LPA 
may become a new target for GC treatment.

ATX-LPA in CRC
CRC is the fourth leading cause of cancer deaths in the world[166]. Kazama et al[167] found that ATX 
overexpression is associated with tumor angiogenesis in the early stage of colon cancer. LPA may 
stimulate the proliferation and migration of CRC cells through the EGFR pathway. It may also promote 
hcT-116 colon cancer cell migration by regulating the cell cycle through the rho-Rock and STAT3 
pathways. Whether LPA1 stimulates colon cancer cell proliferation remains controversial. A study found 
that HCT116 and LS174T cells with LPA1 knockout do not affect the spread of cancer cells[168], and 
DLD cancer cells are affected when they spread[169,170]. LPA2 promotes the spread and migration of 
colon cancer by regulating the NHERF-2 pathway[171,172]; therefore, LPA2 may be one of the 
therapeutic targets for CRC in the future[173]. Shida et al[174] found that LPA3 mRNA is micro-
expressed in normal and tumor tissues. Fukui et al[175] found that the expression levels of VEGF-A and 
VEGF-C are increased in HCT-SH3-3 cells with LPA3 knockout, and LPA3 inhibits the metastasis of 
HCT116 colon cancer cells. Takahashi et al[176] found that LPA4 and LPA6 inhibit the activities of DLD1 
and HCT116 colon cancer cells. Studies on ATX-LPA axis target inhibitors and colon malignancies are 
still few and require further exploration.

KAI1/CD82 AND ATX-LPA AXIS TARGET THERAPY
KAI1/CD82 target therapy
Most studies have shown that KAI1/CD82 inhibits tumor metastasis and migration, but knowledge 
about KAI1/CD82 antibody reagents is still lacking. Custer et al[177] found that the KAI1 polyclonal 
antibody produced by rabbits is expressed similarly in normal tissues of mice and humans and could 
specifically detect mouse KAI1/CD82 protein. KAI1/CD82 is a novel tumor therapeutic target, and 
more KAI1/CD82 antibodies are expected to be developed in the future[178,179].

ATX inhibitors
ATX inhibitors decrease serum LPA levels by more than 95%[180]. Oral ATX inhibitors have better 
bioavailability owing to their low hydrophobicity and slow degradation in vivo[181]. PF-8380 is the first 
ATX inhibitor to permanently reduce LPA levels in vivo. Bhave et al[182] and Schleicher et al[183] found 
that PF-8380 reduces lPA-induced inflammation and delays tumor growth for more than 20 d in a 
mouse model of glioblastoma multiforme. Tang et al[184] found that the inhibition of GLPG1690 on ATX 
enhances the efficacy of chemoradiotherapy in mouse breast cancer models. ONO-8430506 is also a 
highly effective ATX inhibitor, and the oral administration of 30 mg/kg ONO-8430506 effectively 
reduces serum ATX and LPA levels in rats[185]. ONO-8430506 in combination with adriamycin delays 
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the growth time of orthotopic 4T1 breast tumors in 60% Balb/C mice by about 10 d and reduces the 
growth time of 70% tumors by about 17 d[186,187]. Cholera toxin treatment increases the expression of 
the anti-inflammatory cytokines IL-4 and IL-10 and inhibits ATX mRNA[188], and the knockdown of 
ATX mRNA inhibits the growth of Hep3B and Huh7 hepatoma cells[189]. Gupte et al[190] found that 
ATX inhibitors, such as 4-pentadecylbenzylphosphonic acid, reduce plasma LPA levels by 50%. Plasma 
LPA in ATX-KO mice lacking dominant heterozygosity is reduced by 50%. ATX inhibitors have not 
shown remarkable side effects to date.

LPA monoclonal antibody and LPA receptor antagonist
Antibody interventional therapy is superior to traditional therapy, and its antibody bioavailability and 
receptor binding are longer than other therapies[191]. Goldshmit et al[192] found that monoclonal 
antibody B3 can reduce inflammation and glial cell death and improve neuronal function. Monoclonal 
antibody B3, also known as lpathomab, reduces IL-6 expression and the lesion area and has improved 
function in a mouse model of traumatic brain injury[193].

Many LPA receptor antagonists have been found, but few work in vivo. LPA receptor antagonists are 
divided into lipid and small-molecule inhibitors, which are derived from fibrosis model studies[194]. 
BrP-LPA, a pan-LPAR antagonist, was used to treat breast MDA-MB-231 cancer cells[195]. Through 
LPAR2, BrP-LPA may also sensitize vascular endothelial cells in mouse GL-261 glioma cells to improve 
malignant glioma response to radiation therapy[183]. LPA accelerates pulmonary fibrosis through 
LPA1, and the LPA1 antagonist AM966 can inhibit bleomycin-induced idiopathic pulmonary fibrosis. 
Zhao et al[196] found that Ki16425 (LPA1 and LPA3 antagonist) and ono7300243 (LPA1 antagonist) 
completely block LPA-induced actions. Recently, lysophospholipid GPCR genes have been used to 
develop receptor subtype-selective agonists and antagonists. The discovery of FTY720, a novel immune 
modulator, along with other chemical tools, has provided a means of elucidating the functions of each 
lysophospholipid GPCR on an organ and the whole body level[197]. In some cancers, targeting LPAR5 is 
considered a good option against cancer development[87,198]. LPAR5 antagonist TCLPA5 attenuates the 
proliferation and migration of thyroid carcinoma cells[199]. In addition, the loss of LPA5 in mouse B16-
F10 melanoma results in fewer lung metastases[200], which suggests that the drug inhibition of LPA5 
can also control melanoma-mediated metastasis. MP-LPA analogs exhibit an unanticipated pattern of 
partial agonist/antagonist activity for the LPA G protein-coupled receptor family and the intracellular 
LPA receptor peroxisome proliferator-activated receptors-γ[201]. Currently, all are based on LPA1, 
LPA2, or LPA1/3 dual antagonists[194]. However, the development of PAN-LPA receptor antagonists 
may be a more effective approach owing to the complexity of LPAR signals[202].

CONCLUSION
This paper systematically reviews the physiological functions of the KAI1/CD82 gene and the ATX-LPA 
axis in tumors, as well as their roles in digestive system tumors and targeted therapies. The results 
demonstrate that KAI1/CD82 is indeed an important inhibitor of tumor metastasis. Further elucidation 
of the molecular mechanism and regulatory network of KAI1/CD82 and the inhibition of tumor 
metastasis is needed to discover the molecular markers of pancreatic tumor metastasis, adopt effective 
strategies to treat PC and prevent PC metastasis, and provide a new approach for the diagnosis and 
treatment of patients with refractory PC. Although the ATX-LPA axis is considered an important target 
of cancer, its clinical application is still faced with obstacles. LPA is degraded quickly in the body, and 
many other factors, such as diet, smoking, and alcohol consumption, can affect the detection results. 
Other lipids may also generate LPA during extraction, storage, and detection. Therefore, many technical 
problems need to be overcome in LPA detection. In recent years, clinical trials on the ATX-LPA axis 
have begun. LPA monoclonal antibodies, LPA receptor antagonists, and ATX inhibitors may become 
feasible treatment measures. Moreover, ATX-LPA axis-targeted therapy may affect the efficacy of 
existing chemical drugs. Therefore, an in-depth exploration of specific biomarkers related to LPA 
activity should be conducted to track disease progression during LPA treatment and ensure the rational 
application of drugs.
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