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ABSTRACT: Paleoproteomics, the study of ancient proteins, is a rapidly growing field at the
intersection of molecular biology, paleontology, archaeology, paleoecology, and history.
Paleoproteomics research leverages the longevity and diversity of proteins to explore
fundamental questions about the past. While its origins predate the characterization of DNA,
it was only with the advent of soft ionization mass spectrometry that the study of ancient
proteins became truly feasible. Technological gains over the past 20 years have allowed
increasing opportunities to better understand preservation, degradation, and recovery of the
rich bioarchive of ancient proteins found in the archaeological and paleontological records.
Growing from a handful of studies in the 1990s on individual highly abundant ancient
proteins, paleoproteomics today is an expanding field with diverse applications ranging from
the taxonomic identification of highly fragmented bones and shells and the phylogenetic
resolution of extinct species to the exploration of past cuisines from dental calculus and
pottery food crusts and the characterization of past diseases. More broadly, these studies have
opened new doors in understanding past human−animal interactions, the reconstruction of
past environments and environmental changes, the expansion of the hominin fossil record through large scale screening of
nondiagnostic bone fragments, and the phylogenetic resolution of the vertebrate fossil record. Even with these advances, much of the
ancient proteomic record still remains unexplored. Here we provide an overview of the history of the field, a summary of the major
methods and applications currently in use, and a critical evaluation of current challenges. We conclude by looking to the future, for
which innovative solutions and emerging technology will play an important role in enabling us to access the still unexplored “dark”
proteome, allowing for a fuller understanding of the role ancient proteins can play in the interpretation of the past.
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1. INTRODUCTION
The study of ancient proteins is at once a very old and a very
young field. First explored in the 1930s1 and later formulated
as “paleobiochemistry” in the 1950s,2 the early history of
ancient protein research is deeply rooted in the fields of
chemistry, anthropology, and geology. However, it was only
following the application of soft ionization mass spectrometry
in the early 2000s3 that the study of ancient protein sequences
became truly feasible, developing into the field known as
paleoproteomics today.
Ancient protein research is now advancing at a rapid pace,

and its application includes the study of a wide range of
archaeological, historical, and paleontological remains and
materials.4−7 Often compared to its sister field of paleoge-
nomics, paleoproteomics is not yet as developed in scale or
scope, but its demonstrated success in retrieving biomolecular
sequence data from samples beyond the limit of ancient DNA
(aDNA) and its ability to characterize specific tissues and
biological processes make it particularly valuable and give it
enhanced interpretive nuance.
To probe past life using biomolecules, in the time scale of

millions of years, proteins are likely to be our best resource.
Proteins are found in almost all biological tissues, and before
the age of plastics they also made up a large proportion of the
material culture produced by human societies around the
world. Proteins persist long beyond their biological function,
becoming foods, textiles, building materials, paints, and glues.
The remnants of these past materials and activities have
become incorporated into the historical and archaeological
records, just as the remains of humans, animals, and plants
have become integrated into the bio- and geosphere, where
they can remain accessible into deep time.
Although proteins decay, nitrogen recycling is not

completely efficient, and in protected environments (e.g.,

bones, teeth, eggshell) proteins can persist for millions of years
or more. Protein fragments are recognizable in fossils (e.g.,
seeds, bone), worked biological remains, (e.g., wood, textiles,
archaeological and art historical artifacts), as residues on
cooking vessels, and also entrapped within soils and sediments.
There is more protein nitrogen in this “dead pool” than there is
in all the living cells on earth.8 Encoded by DNA, proteins pack
the same amount of sequence information into approximately
one-sixth the number of atoms. For example, a 50 bp fragment
of DNA (30.4 kDa) has a larger mass than many intact
proteins, including β-lactoglobulin (18.4 kDa), hemoglobin
(15.9 kDa), and amelogenin (24.1 kDa). Protein folding and
aggregation further protect proteins from chemical attack and
facilitate entrapment. With fewer atoms, fewer chemical bonds,
and a more compact structure, proteins consequently fall apart
more slowly than DNA. However, the greater range of reactive
species and our limited ability to recover direct information
about their state of decay mean that ancient proteins stretch
the limits of our understanding of decay processes and
diagenetic modification. Yet the results are hardly esoteric, as
modifications associated with ancient proteins have relevance
for understanding aging and diseased tissues, and are induced
during the production and consumption of protein-containing
materials and foods.
In this review, we discuss the history of paleoproteomics, the

revolutionary change brought about by mass spectrometry, and
the methods and applications currently in use. We further
detail the main challenges facing ancient protein research today
and offer perspectives on future directions in the field.
1.1. Proteins as a Bioarchive of the Past

Proteins are long-lived biomolecules capable of surviving over
millions of years.9,10 They routinely outlast even the oldest
surviving DNA,11−14 and their full longevity has yet to be
determined.15−17 Although proteins do not persist into deep
time as long as lipids,18 their sequence diversity makes them
more informative, and consequently proteins represent one of
our most valuable bioarchives of the past.
The longevity and biological utility of proteins derive in

large part from their structure. Proteins are large biomolecules
built from linear sequences of amino acids folded into complex
three-dimensional forms. The 20 standard amino acids, each
formed around a central carbon, contain a carboxyl group and
an amino group, which form the peptide bonds linking the
amino acids together into proteins, and an R group, which
varies between amino acids and imparts distinct chemical
properties. R groups are chemically diverse, consisting of
positively charged, negatively charged, polar, and nonpolar
groups that can be small, large, or structurally constrained. The
sequence of amino acids making up the primary protein
structure is encoded by DNA, which is then transcribed to
RNA and translated into proteins using trinucleotide codon
sequences for each amino acid. Because proteins are derived
from the genetic code, individual proteins preserve part of the
heritable genetic signal of an organism, and therefore, protein
sequences can be used to make taxonomic identifications and
reconstruct phylogenies.19−21

After protein synthesis, additional post-translational mod-
ifications (PTMs) can be made to the amino acids, changing
their chemical properties.22,23 Protein splicing, autoprocessing,
conjugation, and other forms of modification further expand
the biochemical complexity of proteins.24,25 This biochemical
diversity makes proteins substantially more complex than other
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biomolecules, such as lipids or DNA, and it drives the folding
of the linear primary amino acid chains into more complex
secondary, tertiary, and quaternary structures, which form the
basis of the diverse structural and functional roles of proteins.
During life, proteins are regularly degraded after their

functional or structural roles are complete in order to recycle
the amino acids for the creation of new proteins. While the
average protein lifespan for mammals is only 1−2 days,26 the
longevity of a specific protein sequence ranges from minutes
(e.g., transcription factors27 and immune ligands28) to the
entire lifetime of the organism (e.g., enamel29 and eye lens
proteins30). In addition, secreted proteins, such as hair keratins
and silk proteins, form the basis of nonliving tissues and
structures that can persist for centuries or more after the death
of the organism.31,32 Although proteins contain less genetic
information than DNA (due to both codon redundancy and
the absence of noncoding sequences), they are typically orders
of magnitude more abundant, with many copies of a protein
being made for every genome. Moreover, the tissue-specific
expression of some proteins provides additional information
about a given sample (e.g., milk vs muscle; leaf vs seed) that
cannot be obtained from the genome alone.
The goal of paleoproteomics is to recover, identify, and

study these proteins long after their natural lifespan, and
typically after they have been extensively modified by
taphonomic forces over centuries, millennia, or even millions
of years as they transition from the biosphere to the
lithosphere. The longevity of proteins, coupled with their
biological ubiquity and diversity, makes them ideal subjects for
exploring the deep and recent past, and as such they represent
one of our most powerful tools for reconstructing biological
and cultural history.
1.2. Origins of Paleoproteomics

The idea of using proteins to study deep time is not new.
Almost 20 years before the discovery of the structure of
DNA33 and the formulation of the theoretical framework of the
Central Dogma that defines the relationships between DNA,
RNA, and proteins,34,35 chemists were trying to use antisera to
detect proteins in mummies and skeletons for the purpose of
anthropological blood typing.1,36,37 Interest in ancient proteins

fell away during the war years, but was revitalized in the 1950s
by geophysicists working in government laboratories whose
interests had shifted from bomb-making to deep time
“paleobiochemistry”. During the 1970s and 1980s, interest in
immunological assays returned, followed by attempts to
sequence ancient proteins using Edman degradation in the
1990s and eventually mass spectrometry during the 21st
century (Table 1).
1.2.1. Paleobiochemistry. It is rare for any discipline to

have its genesis at a single institution, yet Phil Abelson (Box 1)
and the members of the Geophysical Laboratory at the
Carnegie Institution of Washington, which he led from 1953 to
1971, accomplished just that. In the postwar years, they were
“f ree to do fundamental research unhampered by the pressures
that attend work in industry and government or by the teaching
load that of ten handicaps the university scholar”,38 and their time
was heavily invested in pioneering the study of amino acids and
proteins in deep time. The publication of Abelson’s article
“Paleobiochemistry: organic constituents of fossils”2 is
generally considered to mark the beginning of ancient protein
studies, and in just over 1000 words he outlines a vision for
what has become the field of paleoproteomics. Innovations in
the detection, separation, and quantification of amino acids by
members of the Geophysical Laboratory, as well as the
characterization of their chirality and isotopic abundance,
drove research to explore ancient proteins and their
mechanisms of survival, decay, and isotopic fractionation
over the next two decades. Much of this early research is
detailed in the book Biogeochemistry of Amino Acids.39

One of the major outcomes of this early phase of work was
the development of amino acid racemization (AAR) geo-
chronology as a tool for the comparative dating of fossils,40 a
project initiated by Abelson and his protege Ed Hare (Box 1).
However, this method, which examines the chiral conversion
of L-amino acids into D-amino acids (either peptide-bound or
free),41 became mired in controversy following the radio-
carbon redating42 of skeletons previously analyzed by AAR that
had placed the arrival of humans in North America before the
last glacial maximum.43 Although subsequent taphonomic and
technical challenges further slowed the development of AAR as
a relative dating technique,44,45 recent methodological

Table 1. Comparison of Instruments and Approaches Used in Ancient Protein Studies

Immunological assays
Edman

sequencing MALDI-TOF MALDI-TOF/TOF LC−MS/MS
First use on ancient proteins 1937,1,a 1980,608,b

198458,c
199065 20003 200574 2006,89,d 201191,e

Good for complex samples? YES NO To some extent To some extent YES
Good for samples without
reliable composition?

To some extent NO NO NO YES

Can get sequence data? NO YES NO YES YES
Can target specific proteins YES NO NO NO To some extent
Proteins detected in one
analysis

1−5 1 1−20 1−20 100+

Feasibility for ancient samples ++ + +++++ +++++ +++++
Reproducibility + ++ ++++ +++ +++
Relative price per sample $$-$$$$ $$$$$ $ $$ $$$$f

Analysis time per sample +++ +++++ ++ ++++ ++++
Sample types analyzed Any sample type Single

peptides
Sample with a few
dominant proteins

Sample with a few
dominant proteins

Any sample type

Examples Hemoglobin, albumin,
pathogens, silk

Osteocalcin Collagen, keratins, silk,
shell

Collagen, keratins, silk,
shell

Proteomes of bone, enamel, dental
calculus, artist materials

aUse of antisera. bUse of radioimmunoassay. cUse of ELISA. dUse of LC−MS/MS to identify individual ancient proteins. eUse of LC−MS/MS to
characterize an ancient proteome of >100 proteins. fDepends on immunoassay design and whether antibodies are commercially available.
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improvements and an improved understanding of biomineral
diagenesis are leading to a renewed interest in the
approach,46,47 which shows particular promise for dating
materials that are low in organic matter, are subject to large

14C reservoir effects, or are beyond the limit of radiocarbon
dating.46,48,49

1.2.2. Diagenesis, Contamination, and a Return to
Immunology. Despite the early successes of the Geophysical
Laboratory in recovering amino acids from fossils for the study
of chemical evolution, work by Ralph Wyckoff (Box 1) and
others in the 1960s made it clear that fossil proteins were
highly degraded and exhibited altered amino acid profiles.50−54

As such, they were generally unsuitable for inferring phylogeny.
The absence of measurable hydroxyproline in most dinosaur
bones also led Wyckoff to question the origin of the fossil-
derived proteins and whether they could have resulted from
the recent activity of soil microorganisms.53

In light of the diagenetic variability of fossil amino acids, and
lacking the ability to sequence proteins directly, researchers in
the 1970s and 1980s returned to immunological techniques. In
1974, Elisabeth de Vrind-de Jong (nee de Jong), Peter
Westbroek and colleagues used antibodies to detect the
apparent survival of epitopes in 70 Ma fossil cephalopods by
immunodiffusion,55 and Jerry Lowenstein and colleagues
investigated the immunological similarity of ancient mam-
moths, bison, and humans to modern elephants, cattle, and
humans, respectively.56 They were able to correctly infer the
systematic position of the mammoth and Tasmanian wolf
using radioimmunoassay (RIA) techniques.57 In an attempt to
yield more meaningful immunological results for taxonomic
systematics, an enzyme-linked immunosorbent assay (ELISA)
was developed for fossil shells,58 then later for fossil bones and
teeth,59,60 but results were difficult to replicate, and by the
1990s and 2000s immunological approaches became increas-
ingly dogged by concerns about contamination and cross-
reactivity,61−63 as well as a lack of understanding regarding
which proteins were being immunologically detected (see also
ref 64).
1.2.3. Protein Sequencing. The first successful recovery

of an ancient protein sequence was made by Lila Huq65 using
Edman degradation sequencing of osteocalcin from the bone
of a moa (Pachyornis elephantopus), an extinct flightless bird.
This achievement was particularly remarkable, as one of the
authors of this review (M.C.) will testify, because this
technology is extremely ill suited to ancient proteins. Because
only a single peptide can be sequenced at a time, proteins must
be isolated, digested, and purified in sufficient quantity (100
pmol) prior to analysis. Moreover, the sequencing reaction will
not initiate if the reactive amino terminus is modified (e.g., by
pyroglutamate), and derivatization stalls in the presence of
non-α-amino acids (such as isoaspartic acid, the primary
product of asparagine deamidation and aspartic acid
racemization). In addition, because yields fall with each
successive hour-long derivation cycle, the method is slow
and limited to sequences of approximately 30−50 amino acids
with high accuracy.66,67 Even today, Edman sequencing is
expensive and laborious, requiring a full day or more to
sequence a single peptide using automated instruments (Table
1), although massively parallel sequencing is now being
developed as a tool for single molecule sequencing.68 Since
its initial demonstration, Edman sequencing has been rarely
applied to ancient proteins, but was notably used to confirm
the sequence of an osteocalcin peptide identified in an early
application of matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-TOF MS) from a 42 ka
horse bone.69 In the wake of the frustration surrounding
Edman degradation, it was Peggy Ostrom and colleagues3 who

Box 1. Early Pioneers in Paleoproteomics

Phil Abelson, who headed the Geophysical Laboratory at the
Carnegie Institute, Washington, DC., from 1953 to 1971 was
the first to identify amino acids in invertebrate and vertebrate
fossils. A nuclear physicist who worked on the Manhattan
Project, his pioneering work on the “paleobiochemistry” of
Oligocene clams and other fossils in the 1950s2,581−583 marks
the beginning of ancient protein studies. Ed Hare spent
almost all of his career in the Geophysical Laboratory and
wrote one of the earliest Ph.D. theses on the subject of ancient
proteins, focusing on the amino acid profiles of modern and
fossil mussels.584 His specialty was the chirality of fossil amino
acids,40,585−588 which led to the development of the
chronometric technique of amino acid racemization dat-
ing.589−591 Tom Hoering was the third member of the
pioneering team based in the Geophysical Laboratory. A
chemist, he specialized in mass spectroscopy and was an early
pioneer of isotopic studies of organic matter592,593 but also
conducted key early experiments into the diagenesis of
proteins.594 A major impact of the trio of Abelson, Hare, and
Hoering was the talent that they drew to the laboratory, who
then shaped the study of amino acids and isotopes in the
coming decades by scientists including Richard Mitterer,
Marylin Fogel, Noreen Tuross, Mike Engle, John Wehmiller,
Giff Miller, Steve Macko, Glenn Goodfriend and John
Hedges.
Ralph Wyckoff was the first to seriously study amino acid

decay and contamination in fossils. A skilled chemist and
microscopist, Wyckoff began his career in the field of X-ray
crystallography and later contributed to electron microscopy
and vaccine development. He showed that while Pleistocene
bones in the La Brea tar pits retained clear microscopic
evidence of collagen fibers, their amino acid profiles were
highly variable and differed from that of collagen,50,51 a
finding he attributed to protein degradation and amino acid
instability. He found similar results for dinosaur bones53 and
mollusc shells,52 suggesting that fossil amino acid profiles were
generally unsuitable for inferring phylogeny.
Peter Wesbroek, a geologist from The Netherlands, was

influenced by the work of Margaret Jope,595 with whom he
trained in biochemistry. After returning to The Netherlands,
he established the Geobiochemistry workgroup at the
University of Leiden. He studied the process of biomineraliza-
tion and in doing so pioneered the use of antibodies to study
ancient shell (and bone) proteins55,596,597 as part of a wider
effort to understand the role of biological systems in
geological processes.598

Peggy Ostrom pioneered the use of mass spectrometry in
ancient protein studies, innovating new methods in organic
geochemistry, including stable isotope-based reconstruction of
paleoecologies599,600 and the use of isotopic analysis to
identify diagenesis and contamination in fossils.601,602 Later,
she was the first to make major gains in determining ancient
protein sequences by applying a variety of mass spectrometry
techniques, including peptide mass fingerprinting,3 postsource
decay sequencing,70 and tandem mass spectrometry,69 to the
study of bone osteocalcin.
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made the first major breakthrough in recovering ancient
protein sequences by successfully applying soft-ionization mass
spectrometry to ancient proteins for the first time (Figure 1).

1.2.4. Mass Spectrometry Revolution. To this day, it
seems remarkable that Peggy Ostrom’s breakthrough mass
spectrometry work3,70 was not deemed sufficiently significant

Figure 1. Milestones in ancient protein mass spectrometry. The broadest applications of protein mass spectrometry in archaeology today are
ZooMS (zooarchaeology by mass spectrometry), which applies MALDI-TOF MS peptide mass fingerprinting to collagens, keratins, and other high
abundance proteins (left), and shotgun proteomics, which uses high-resolution LC−MS/MS to identify diverse, low abundance proteins in
complex mixtures (right).

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00703
Chem. Rev. 2022, 122, 13401−13446

13405

https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00703?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00703?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00703?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00703?fig=fig1&ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00703?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


to be published in any of the highest impact journals, even with
the support of Geoff Eglington, the “father of organic
geochemistry”. Her landmark studies combined gel and
immunoassay work with MALDI-TOF peptide mass finger-
printing (PMF) and postsource decay (PSD) sequencing to
conclusively demonstrate the presence of osteocalcin in bison
bone and its survival into the late Pleistocene. This
combination of immunological and mass spectrometric tools
for the detection of ancient proteins, also applied by Mary
Schweitzer and colleagues on mammoth bones,64 is notable
not only for the prospect of triangulating evidence but as
marking the major point of transition between the two
methods. While mass spectrometry has subsequently become
the go-to tool for ancient protein studies, the use of
immunological approaches have waned. Nevertheless, given
the strengths and weaknesses of each method, there remains
scope for future integration, particularly with the potential of
immunoaffinity chromatography to target and enrich (or
deplete) specific proteins prior to sequencing by mass
spectrometry.71

The first widespread adoption of mass spectrometry within
archaeology came with the use of MALDI-TOF MS to aid in
the taxonomic discrimination of animal bones, initially sheep
and goat, based on collagen peptide mass fingerprints.72,73

While earlier efforts to characterize fossil proteins using
MALDI-TOF of intact purified osteocalcin3,69,70,74 had
ultimately proven impractical due to protein degradation,75

the application of MALDI-TOF to collagenase-digested76 and
later trypsin-digested bone collagen72 proved a major break-
through. This resulted in the development of the powerful
PMF technique known as zooarchaeology by mass spectrom-
etry,6,7,77 which was given the acronym ZooMS to highlight the
speed of the method and its roots in both zooarchaeology and
mass spectrometry.78 The low cost of the method and its
suitability for high throughput sample processing has made it
particularly powerful for many applications in archaeology,
ecology, and cultural heritage (for a review see7), and major
advances have been made over the past decade to expand the
number of ZooMS markers to include a wide range of both
terrestrial79 and aquatic80 mammals, as well as fish,81 birds,82

and reptiles83 (Figure 1). Similar PMF-based approaches are
also in development for additional proteins beyond collagen,
including keratins84,85 and matrix proteins in eggshell86,87 and
mollusc shell.88

Beyond postsource decay (PSD),70 the use of true tandem
mass spectrometry (MS/MS) to achieve a more accurate
determination of peptide sequences was first achieved by John
Asara and colleagues on mammoth bone using LCQ
quadrupole ion trap MS/MS.64 This was followed by the
characterization of Neanderthal osteocalcin by Christina
Nielsen-Marsh and colleagues using MALDI-TOF/TOF74

and of egg proteins in Renaissance paintings by Caroline
Tokarski and colleagues using nanoLC/nanoESI/Qq-TOF
MS/MS.89 These early applications of MS/MS utilized a wide
variety of instrument setups, ionization techniques, and
detectors, but current MS/MS analyses of ancient proteins
primarily rely on LC−MS/MS systems integrating UHPLC,
nano-ESI, and typically an Orbitrap90 high performance hybrid
mass spectrometer. Enhancements in speed, and more
significantly for ancient samples, resolution and mass accuracy,
have increased the numbers of acquired spectra and improved
the success of matching these spectra to peptides. Further
emerging techniques for improved ion separation, such as ion

mobility, also show great promise for improving data
acquisition. However, ancient proteomes typically contain
many fewer proteins, and with greater levels of modification,
than equivalent modern samples. Therefore, the discipline,
while still in its infancy, is currently more stifled by
downstream analysis than instrumental limitations.
The major strength of MS/MS is its capacity for analyzing

complex protein mixtures. The use of MS2 spectra to
determine the sequence of peptides from degraded whole
proteomes91 and its integration with genomics92 represented
the next steps in the maturation of the field, followed by
applications in phylogenetic interpretation,20,21,93 sex determi-
nation,94 food preparation,95 pathology,96 art history,97,98 and
residue analysis,99 among others. Major milestones in the
development of mass spectrometry techniques and applications
for the study of ancient proteins are highlighted in Figure 1.

2. ANCIENT PROTEINS
Today, paleoproteomics is a dynamic, fast-paced, and growing
field. Regardless of the analytical techniques applied, all ancient
protein studies share certain challenges and must (1) consider
the formation, incorporation, and degradation processes that
precede the recovery of ancient proteins, (2) apply methods to
extract and prepare proteins for analysis, and (3) select
appropriate analytical and interpretive strategies for character-
izing ancient proteins (Figure 2). During each stage, there is
progressive loss of the original proteome, an increase in
chemical complexity due to diagenesis, and the addition of
contaminants. Choices made in instrumentation, database
selection, and data processing steps can have large impacts on
the reconstruction and interpretation of ancient proteomes.
2.1. Pathways of Incorporation

Understanding the manner by which a protein was formed and
how it was incorporated into a given sample is the first step in
ancient protein analysis. For some samples, the manner of
protein incorporation is obvious, as is the case for endogenous
proteins in proteinaceous tissues such as collagens in skin and
bone, keratins in hair and feathers, amelogenin in tooth
enamel, and matrix proteins in mollusc shells. In such cases,
the proteins comprise the tissue itself and were incorporated at
the time of tissue formation. Nevertheless, some processes,
such as biomineralization, are extremely complex and remain
incompletely understood.100 During biomineralization, other
coassociated endogenous proteins, such as blood and plasma
proteins in bone, may also become incorporated into the
tissue, but the extent of biological variability related to such
protein incorporation is not well studied for many tissues.
In other cases, the manner of incorporation may be less

direct. Dental calculus, for example, is a calcified microbial
biofilm, but in addition to bacterial proteins the dental calculus
proteome is also rich in human digestive enzymes (e.g., salivary
α-amylase) and immune proteins (e.g., α-s1-antitrypsin,
myeloperoxidase, neutrophil defensin) that originate from
saliva and gingival crevicular fluid, respectively.92 The proteins
of these fluids, which continuously bathe the teeth, become
incorporated into dental calculus during periodic episodes of
dental plaque mineralization. Other exogenous proteins
transiently present in the oral cavity can also become
incorporated during these mineralization events, including
dietary proteins such as milk beta-lactoglobulin101 and seed
storage proteins.102 Similarly, proteins within cooking vessels
may become adventitiously preserved within calcified crusts
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(limescale) during evaporative comineralization99 and during
the corrosion of nearby items such as metal objects.103,104

In nearly all cases, mineralization is an important factor in
protein long-term survival. Excluding exceptional cases from
water-logged,105,106 arid,107,108 or very cold contexts,109

proteins not encapsulated in a mineralized matrix generally
do not persist over long periods, as has been shown
experimentally for proteins applied to ceramics110 and stone
tools.111−113 Beyond incorporation, it is also important to note
that some proteomes are also altered during the incorporation
process, whether by cross-linking during the tanning of
leather,114 heat denaturation during the cooking of foods,115

or by autodegradation at the time of formation, as is the case
for enamel.116

2.2. Processes of Decay and Diagenesis

Most organic material and proteins decay and are recycled into
the environment when they are shed by a living organism or
after an organism dies.117 Degradation is primarily mediated by
bacteria through enzymatic digestion, which occurs relatively
quickly.118 Experimental biodegradation of woolen fabrics and
feathers has shown that even relatively robust proteins, such as
keratins, which are hydrophobic and contain numerous
disulfide linkages, do not survive for long under unfavorable
microbial conditions.119,120

Only a very small percentage of the overall proteins are
expected to persist in the archaeological record,121 and those
that do are generally mineralized, highly abundant, and/or
have unusual properties. Type I collagen (COL1), for example,
is the longest persisting bone protein, and it makes up >80% of
the bone proteome (accounting for 20−30% of the mass of
fresh bone), is heavily mineralized, and is arranged into a
highly stable triple helix. Among dietary proteins identified in
dental calculus, many are either protease inhibitors or belong
to the seed storage superfamily,102 both of which are known to
be highly stable against proteolysis and thermal processing.
Likewise, milk beta-lactoglobulin, which is perhaps the best
attested ancient food protein, has a small molecular size and
stability to changing pH levels and enzymatic degradation,122

all properties that are known to contribute to protein survival
under harsh conditions.123 Following the initial stages of
decomposition, surviving proteins are then subject to slower
taphonomic processes that continue the diagenetic alter-
ations.124,125 In this way, nearly all ancient proteins undergo
some degree of degradation or chemical damage.
Because of the diversity of proteins in terms of composition,

chemical properties, size, shape, function, and incorporation
(or lack thereof) into mineralized tissues, the taphonomic
factors that drive post-mortem protein degradation and decay
are highly variable and more poorly characterized than those
for other ancient biomolecules, such as DNA. This “black box”
of taphonomy is therefore an ongoing challenge for the analysis
of ancient proteins, not because of a lack of research effort, but
rather because of the immense complexity of the problem.
Nevertheless, there are some factors that are known to play a
consistent role in the protein degradation process: (1) local
environment, including soil chemistry, pH, and water
availability; (2) the chemical and structural composition of
the matrix in which the proteins are incorporated; (3) the
composition of the proteins individually and as a proteome;
and (4) the local thermal history including time, temperature,
and humidity.126 These factors combine to create “diageneti-
forms”, or diagenetically modified protein fragments,127

Figure 2. Conceptual stages of protein incorporation and recovery in
archaeological samples. Archaeological proteins represent a small
fraction of the proteins that were once present during life. Careful
consideration of the full history of a sample, from incorporation to
analysis, must be taken into account in order to make accurate
inferences about the past.
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formed through hydrolysis of peptide bonds and amino acid
degradation, as well as racemization.
Protein fragmentation, the progressive, irreversible process

of backbone cleavage into increasingly smaller pieces of the
original protein, is among the most important forms of
degradation. As the weakest covalent bond in a protein, the
peptide bond is susceptible to spontaneous hydrolysis, with
variable rates across the protein depending upon water
accessibility to the peptide bond. This is mediated by the
primary amino acid sequence, the protein secondary and
tertiary structure, and surface stabilization by a mineral matrix.
Protein preservation is generally better under conditions of
limited water availability, such as in arid or frozen environ-
ments or where proteins are trapped in locally hydrophobic
environments or in the intracrystalline fractions of biomin-
erals.9,126

The other major form of protein degradation is the chemical
alteration of an amino acid R group or the C or N terminus of
a peptide. Such changes are myriad and incompletely
characterized,127,128 but the sheer diversity of potential
chemical reactions can be appreciated by simply considering
the enormous range of low molecular weight nitrogen-
containing compounds formed by the diagenesis of starch
storage tissues through so-called Maillard reactions.129 Dia-
genesis therefore affects the chemistry�and more importantly
the mass�of the affected amino acid, which can interfere with
the recovery and identification of peptides using mass
spectrometry. Rates of modification are again highly dependent
on the primary amino acid sequence, secondary and tertiary
protein structure, and surface stabilization of the protein or
peptide. Indeed, it has been speculated that surface mediated
preservation may promote the formation of novel condensed
structures.130 Additional modifications can be further intro-
duced during the extraction process, either intentionally to
chemically disrupt the conformation of the proteins (e.g.,
carbamidomethylation of cysteine by reduction and alkylation)
or unintentionally through the production of undesired
reactions (e.g., protein carbamylation by urea derivatives in
the presence of heat).
Foundational studies on fossil invertebrates131 and more

recent studies of bone, enamel, dental calculus, and eggshell
have provided insights into the range of diagenetic
modifications present in ancient proteins,9,13,92,121,132 with
the most frequently identified being backbone cleavages and
the deamidation of asparagine and glutamine. Other common
diagenetic modifications are carboxymethylation of lysine (an
advanced glycation end-product), conversion of serine to
alanine, the conversion of histidine to hydroxyglutamate, the
formation of N-terminus pyroglutamic acid, decomposition of
arginine to ornithine, and various forms of oxidation,
phosphorylation, dephosphorylation, hydroxylation, and dehy-
droxylation.9,127,128 However, these represent only the forms of
damage that are observable in mass spectrometry studies.
Other forms of chemical modification that interfere with
protein extraction and ionization are much less well under-
stood and may mask pools of persisting but largely inaccessible
proteins.133 It is probable that many of the changes observed
over time are also occurring in the kitchen, and therefore, it is
worth paying attention to the expanding field of proteomics
applied to food science.134

2.3. Methods of Recovery
In order to be detected and analyzed, proteins must first be
extracted from the matrix to which they adhere or in which
they are embedded. Numerous protein extraction methods are
available, and their demonstrated success rates depend on the
source and chemical properties of the proteins under
experimental study. Compared to modern proteins, ancient
protein extraction is further challenged by protein diagenetic
alteration and the frequent incorporation of ancient proteins
into mineral matrices. Protein loss is inevitable during this
stage, both from an inability to fully “unstick” proteins from
the matrix that aided their successful integration into the
archaeological record and from differential recovery due to
performance variation in extraction and digestion methods.
Contamination may be introduced at this stage, and laboratory
contaminants that have been previously observed include latex
proteins from gloves, egg proteins from commercial cell lysis
buffers, common laboratory reagents such as serum albumin,
proteins from human sweat (e.g., dermcidin), and a wide range
of keratins from human skin and sheep wool. Public lists of
common laboratory contaminants, such as the common
Repository of Adventitious Proteins (cRAP; https://www.
thegpm.org/crap/), can aid in contaminant identification, but
other potential sources of local laboratory contamination
should also be considered. An awareness of potential
contaminant sources and adherence to best laboratory
practices is critical to mitigating laboratory contamination.4,135

2.3.1. Extraction Methods. Protocol development for
ancient protein extraction is an active field with multiple
methods in widespread use. When choosing an extraction
method, sample type, size, and preservation should be
considered, as well as the complexity of the proteome, the
protein(s) of interest, and the amount of protein needed for
analysis. The postdepositional history of the sample should
also be taken into account, as well as potential chemical
modifications introduced during the chosen extraction
protocol.136−141 In addition, because proteomic analyses
often require less sample material than other methods, such
as ancient DNA analysis, stable isotope analysis, and
radiocarbon dating, protein extractions can often be performed
on the leftover material or byproducts of these proto-
cols.139,142−145 Combining such protocols is desirable, as it
reduces sampling demands on irreplaceable material.
For mineralized samples, such as enamel, bone, dental

calculus, and shell, a demineralization step is generally required
using either a weak acid or a chelating agent, such as
ethylenediaminetetraacetic acid (EDTA). This is generally
followed by protein solubilization using a variety of possible
options, including heat, mechanical disruption, chaotropic
agents (e.g., urea or guanidinium hydrochloride), detergents
(e.g., sodium dodecyl sulfate, SDS), buffers, and salts. If the
proteins are complex or are known to contain cysteines,
reduction and alkylation steps are typically performed to
irreversibly disrupt disulfide bonds. At this point, buffer
exchange is frequently necessary to make the suspended or
solubilized proteins compatible with downstream analysis, and
different strategies for this are available including protocols
based on the use of polyacrylamide gels,95,146 filter-aided
sample preparation (FASP),91,102,147 gel-aided sample prep-
aration (GASP),148,149 single-pot solid-phase sample prepara-
tion (SP3),150,151 or simply physical removal of the insoluble
protein from the decalcification buffer in the case of collagen
pseudomorphs.152 This is then typically followed by enzymatic
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digestion of the proteins into peptides, followed by peptide
purification, typically using C18 resin (commercially available
as StageTips [Pierce] and ZipTips [Millipore]).
For nonmineralized samples, such as artist materials

(binders, glues), mummified tissues, and parchment, simplifi-
cations to the protocol can be made. Demineralization steps
can be avoided, and if protein solubilization is possible in a
buffer compatible with mass spectrometry (e.g., ammonium
bicarbonate or guanidinium hydrochloride), buffer exchange
can be avoided, which mitigates protein loss.137,146,153

Recently, bioactive films have been developed that allow
“lab-on-plate” protein extraction directly from sample material
such as artwork, which further simplifies extraction of surface-
available proteins.154

In studies focusing on a small number of highly abundant
proteins of interest, such as collagens in bone and parchment,
additional simplifications can be made, even for mineralized
samples. Less invasive techniques can be applied to sample
loosely bound proteins155−158 and even trace proteins left
behind in storage bags and containers.144,159 However, such
techniques are more susceptible to ambient contamination,
and because they target unbound and largely surface proteins,
the recovered proteins are likely to be more degraded.
Prior treatments or chemical exposures that interfere with

protein extraction and analysis can also be mitigated in many
instances. For example, synthetic adhesives, which are
sometimes applied by conservators to consolidate and stabilize
fragile materials, can be removed with acetone prior to protein
extraction. Likewise, nonproteinaceous chemical coextractants
that interfere with mass spectrometry, such as soil humic acids,
can be removed from both mineralized and nonmineralized
samples using sodium hydroxide (NaOH) washes during early
stages of the extraction process.160−162

Protein contamination can be a more challenging problem
to address, and is especially troublesome for AAR studies46,47

and PMF of eggshell.87 For mineralized tissues, however,
extraction methods can be modified to focus on only mineral-
bound and encapsulated proteins. A strong oxidizing agent,
such as sodium hypochlorite (NaOCl), can be applied to
destroy proteins not encased within mineral,9,163 leaving
behind only intracrystalline proteins.126 While not necessary
in all cases, this aggressive decontamination approach can
dramatically improve the proportion of endogenous proteins
recovered, even as it reduces the total protein recovery.
2.3.2. Digestion and Digestion-Free Methods. To date,

all mass spectrometry studies of ancient proteins have followed
a “bottom-up” proteomics approach, meaning that the target of
analysis is enzymatically digested peptides rather than intact
proteins.164 Most current protein mass spectrometers are best
suited for analyzing peptides in the size range of 6−30 amino
acids, and enzyme selection is based on maximizing peptide
digests within this range.165 Trypsin (which cuts C-terminal to
arginine and lysine residues), alone or in combination with
Lys-C (which reduces missed cleavages at lysine residues) are
the most commonly used enzymes for general purpose protein
mass spectrometry. Alternative enzymes are also available,166

and enzymes such as collagenase, elastase, pepsin, chymo-
trypsin, Glu-C, Lys-N, and ProAnalase have been used in
ancient studies to improve coverage of specific proteins or
protein regions of interest.76,167−169 However, proteins
characterized by low complexity repetitive domains, as are
common in mollusc shell, are difficult to sufficiently digest by
enzymatic methods alone and may require additional chemical

cleavage to generate peptides of suitable size for mass
spectrometry.170

Digestion free methods can be used when the proteins are
already broken down into fragment sizes suitable for analysis.
This primarily occurs in cases of high diagenetic backbone
fragmentation or when proteins are autodigested in vivo. A
study of 3.8 Ma ostrich eggshell was the first to successfully
apply a digestion free method to the recovery of highly
degraded struthiocalcin-1 (SCA-1) and struthiocalcin-2 (SCA-
2) proteins.9 More recently, the method has been applied to
enamel, including enamel from present-day periodontal
patients.171 Enamel is composed of >98% hydroxyapatite
mineral, and a critical step in its maturation is the enzymatic
breakdown of the proteins involved in its formation, such as
amelogenin.116 As such, its proteome is already in a fragmented
and degraded state during life, with protein fragments in a size
range suitable for mass spectrometry. The enamel proteome is
also small, comprising only a few major proteins, making it
more feasible to analyze and interpret than other proteomes
when cleavage positions are variable or unknown. Con-
sequently, digestion-free methods can be applied to enamel
proteins and have been used to obtain high quality protein
sequences from teeth spanning a wide time range.13,14,94,172

Such studies of eggshell and enamel are providing our first
glimpses of ancient proteins that have been minimally modified
by laboratory methods.
True “top-down” proteomics, the measurement and

interpretation of mass spectrometry data from intact and
native proteins, has not yet been achieved for ancient
samples.127,173 However, ongoing advances in both technology
and bioinformatics over the past decade are improving the
feasibility of “top-down” approaches.174

2.4. Detection by Mass Spectrometry

Once digested peptides or protein fragments have been
isolated and purified, they can be analyzed by mass
spectrometry. Today, the two main workhorses of paleopro-
teomics are peptide mass fingerprinting by MALDI-TOF and
shotgun proteomics by LC−MS/MS. With respect to cost,
time, sensitivity, scale, and scope, each brings different
strengths and weaknesses to the study of ancient proteins
(Table 1).
2.4.1. MALDI-TOF and Peptide Mass Fingerprinting.

Peptide mass fingerprinting (PMF) is a technique used to
identify proteins by the masses of the peptides produced
following enzymatic digestion. First developed in the 1990s,175

PMF works best on individual proteins, where ambiguities in
peak assignment are minimized, but it can also be applied to
proteomes of reliable composition or with one or more
dominant proteins, such as collagen in bone or keratins in wool
and feathers. PMF was made possible by the development of
the soft ionization method matrix-assisted laser desorption/
ionization (MALDI) during the late 1980s.176,177 MALDI
represented a major breakthrough in protein chemistry,
enabling large, nonvolatile molecules such as small proteins
and peptides to be ionized without fragmentation for
downstream mass spectrometry. Coupled with a time-of-flight
(TOF) analyzer, the MALDI-TOF mass spectrometry system
is a robust, simple, and sensitive instrument with a large mass
range175 that is ideally suited for PMF.
To measure protein digests for PMF, acidified peptides are

spotted onto a MALDI plate together with a matrix, typically
α-cyano-4-hydroxycinnamic acid (CHCA) or 2,5-dihydrox-
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ybenzoic acid (DHB), that cocrystallizes with the peptides.
The matrix is then excited with a laser causing the peptides to
vaporize and ionize with a + 1 charge. Electromagnets then
direct the ions into a time-of-flight tube, where they are
measured by a detector. Their time-of-flight (which is related
to their kinetic energy and mass) is then converted into a
spectrum of mass-to-charge ratios (m/z) vs intensity, and the
observed peaks are ready for analysis using a database of
protein and contaminant sequences.72,77,178 Figure 3a shows an
example collagen PMF from archaeological animal bone.
Informative peaks (markers) originating from the α1 and α2
chains of COL1 are highlighted. Using the principle of
parsimony, the nine markers collectively can be used to allow a
conclusive assignment to sheep (Ovis). Other (nonannotated)
peaks visible in the spectrum include matrix peaks, nonmarker
collagen peptides, and peptides from keratin contaminants,
noncollagenous proteins, and autodigested trypsin. For a more
detailed, step-by-step explanation of collagen PMF interpreta-
tion, see refs 7 and 77.
Because PMF involves matching a pattern of peaks

generated by tryptic peptides, and not sequence determination,
it requires access to databases with good taxonomic
representation, and identifications are made on the basis of
parsimony rather than unique peptide matches. Due to the
functional constraints of the protein, sequence variation of
COL1 is low, purifying selection is high, and mutational
saturation is a challenge for some clades.179−181 COL1 thus

carries only a weak phylogenetic signal, but if enough marker
peptides are sufficiently preserved, taxonomic assignments are
generally possible to the family level of birds, the family or
subfamily level of mammals, and the genus or species level of
fish.7 For a review of the use of PMF in archaeology, see ref 7.
Despite its limitations, PMF approaches offer several

important advantages over other methods. PMF requires
very little sample material and is compatible with a number of
minimally invasive methods, which will be described below. It
does not require specialized facilities, and it utilizes an
instrument that is currently widely available at many research
institutions and university core facilities. It is also fast and
inexpensive, which allows it to be performed at scale and with
high throughput. This combination of features makes it a
highly flexible method that can successfully support both small-
scale budget-restricted projects on specific questions182,183 as
well as large-scale exploratory studies of thousands of
samples.184,185

2.4.2. LC−MS/MS and Shotgun Proteomics. Tandem
mass spectrometry (MS/MS or MSn), as applied in the context
of paleoproteomics, is an approach whereby mass analysis is
conducted at least twice while performing a dissociation
process in order to characterize peptides in a protein mixture.
The first mass scan (MS1) measures the m/z of the ionized
peptides (called precursor ions) and selects some for
fragmentation by dissociation and further measurement by a
second mass scan (MS2) that determines the m/z of the

Figure 3. Example MS and MS/MS spectra obtained from archaeological samples. (A) Mass spectrum of sheep (Ovis) type I collagen obtained by
MALDI-TOF MS from an archaeological small ruminant bone bone at the site of Tepe Yahya, Iran (YTC-248, Peabody Museum No. 986-7-60/
22498). (B) Tandem mass spectrum of sheep (Ovis) β-lactoglobulin milk protein obtained by nano-HPLC−MS/MS from human dental calculus at
the Iron Age pastoralist site of Marinskaya 5, Russia (MKA018). (C) Tandem mass spectrum of sesame seed (Sesamum) 11S globulin protein
obtained by nano-HPLC−MS/MS from human dental calculus at the Late Bronze Age city of Meggido, Israel (MGD011).102
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peptide fragments (fragment ions). Depending on the method
of fragmentation, different types of fragment ions are
produced. Collision-induced dissociation (CID), which is
among the most widely used fragmentation methods, yields
mostly b- and y- fragment ions. The MS2 measurement of
these fragment ions allow the peptide’s amino acid sequence to
be inferred with the aid of a database (or even de novo under
certain conditions186), which allows greater confidence in
peptide identification than the m/z of the precursor ion alone.
The MS2 spectra for two peptides recovered from ancient
human dental calculus and analyzed by LC−MS/MS are
provided in Figure 3. In both cases, a near complete y-ion
series was observed, as well as a partial b-ion series, allowing
the peptide sequences to be determined with high confidence.
The first sequence is a highly specific match to the β-
lactoglobulin milk protein in sheep (Figure 3b); the second
sequence is consistent with the 11S globulin protein of sesame
seeds (Figure 3c). The ability to accurately measure both
precursor and fragment ions makes MS/MS a powerful
technique for identifying ancient proteins.
Although tandem mass spectrometers had been available in

various configurations since the late 1960s, it was not until the
development of soft ionization methods such as MALDI and
electrospray ionization (ESI) in the late 1980s that MS/MS
could be applied to proteins.187 Early uses of MS/MS in
paleoproteomics utilized a variety of mass analyzers, including
ion traps, quadrupoles, and TOFs64,74,89 but had relatively low
sensitivity and mass accuracy, which limited the number of
proteins that could be identified. The commercial introduction
of the Orbitrap mass analyzer in the mid-2000s and subsequent
hybrid systems marked a major improvement in protein mass
spectrometry188 and dramatically improved the detection and
identification of proteins in low biomass, complex mixtures,
which are characteristic of ancient samples. Gains in ancient
protein identifications were enormous from the first
commercial model, the Thermo LTQ Orbitrap, which
identified three collagen proteins in a mastodon bone in
2007,189 to the subsequent Thermo LTQ-Orbitrap Velos,
which enabled the identification of a proteome of more than
100 proteins in a mammoth bone in 2012,91 and then the
Thermo Q-Exactive Hybrid Quadrupole Orbitrap, which
allowed the characterization of a metaproteome comprising
hundreds of proteins in human dental calculus in 2014.92

Current MS/MS systems used in paleoproteomics are even
more powerful and typically consist of an ultrahigh perform-
ance liquid chromatography (UHPLC) system coupled to a
nano-ESI that interfaces with a high performance (high
resolution fast duty cycle) mass spectrometer. Greater
chromatographic separation, fractionation of samples, and/or
the use of ion mobility190,191 can further enhance resolution,
and alternative ionization methods, such as desorption
electrospray ionization (DESI) and liquid extraction surface
analysis (LESA),192−195 offer additional capabilities, including
ambient ionization and in situ analysis; however, these
approaches have not yet been extensively explored in
paleoproteomics.
Tandem mass spectrometry is well-suited for the analysis of

ancient proteins from diverse sample types. It can identify high
and low abundance proteins in complex mixtures, and it does
not require reliable - or even known - protein composition
prior to analysis. Because it involves the simultaneous analysis
of many proteins, it can be used to achieve higher taxonomic
resolution than PMF, which is particularly important for

resolving vertebrate14,21,196 phylogenies. Moreover, it can also
be used to identify protein variants, PTMs, and diagenetic
alterations. These features make it ideal for discovery
proteomics applications, such as phylogenetic analysis of
extinct hominids,13,172 taxonomic identification of worked
shell,197 determination of unknown binders in artwork137 and
the identification of dietary proteins in pottery crusts99 and
dental calculus.101,102 Beyond shotgun approaches, MS/MS
can also be used to some extent to target ancient proteins of
interest using multiple reaction monitoring (MRM; also
known as selected reaction monitoring, SRM)198−201 and
parallel reaction monitoring (PRM).202 Although current MS/
MS approaches largely rely on data-dependent acquisition
(DDA) for precursor ion selection, which maximizes the
success of peptide sequence determination but limits the
method’s reproducibility and quantitative potential, data-
independent acquisition (DIA) approaches203,204 are in now
development for ancient protein analysis. DIA offers the
potential to extend the dynamic range of MS/MS by
generating data from more peptides, and especially lower
abundance peptides, while also improving reproducibility and
quantification. A DIA-based approach has recently been
integrated into a new paleoproteomics workflow known as
species by proteome investigation (SPIN), which enables rapid
mammalian species assignment using LC−MS/MS.205
Although currently limited in scope due to its computational
complexity, further improvements in DIA development,
improved databases, and the application of machine learning
may soon allow DIA to become more mainstream in ancient
protein studies.
The major downside of MS/MS in ancient proteomics is its

significant infrastructure needs, time, and cost. Samples for
MS/MS should be prepared in a dedicated ancient
biomolecules laboratory, in part because the higher sensitivity
of the instruments and the discovery nature of the research
makes distinguishing ancient proteins from contamination
more difficult. Highly specialized and expensive mass
spectrometers are required that may not be widely available
at local core facilities, and the instrument time per sample is
high (an hour or more), limiting daily throughput. Currently,
the costs of MS/MS are typically 30−50 times higher on a per
sample basis than PMF, although new specialized applications,
such as SPIN, are faster and more affordable. Despite its
difficulties, the power and performance of LC−MS/MS, and
most importantly its ability to provide sequence data, make it a
highly valuable�and even indispensable�technique to
answer many paleoproteomic questions.
2.5. Analysis and Interpretation of Data

With the exception of largely experimental work still in
development,186 nearly all mass spectrometry data analysis
methods relevant for ancient proteins rely on the use of
specialized software, protein sequence or peptide marker
databases, and the selection of priors.
2.5.1. MALDI-TOF and ZooMS. Analysis of PMF data for

the purpose of taxonomic identification is most frequently
performed manually through the visualization of spectra using
FlexAnalysis (Bruker Daltonics) or mMass206 software.
Unfortunately there is no centralized database or public
repository of PMF spectra or markers at present, and
consequently peptide markers (peaks that have been
empirically demonstrated to be taxonomically informative)
must be retrieved from literature searches. Taxonomic
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identifications are made by applying the principles of
parsimony to the combination of markers observed.77

Depending on the potential species present, additional tools
have been recently proposed to help with identification based
upon machine learning, hierarchical clustering, principal
components analysis (PCA), and theoretical spectra match-
ing.207,208 During spectra interpretation, it is essential to
consider the possibility of mixed or composite proteome
representation (e.g., in the case of glues), and potential
contamination must also be taken into account.
2.5.2. LC−MS/MS, Protein Identification, and De Novo

Sequencing. The analysis of MS/MS data is usually
conducted with the aid of software that matches precursor
ion masses and individual MS2 spectra against a set of
theoretical masses calculated from a protein database and
preselected priors, producing a peptide match score, as well as
other metrics. This approach requires the input of: (1) a
database, (2) instrument parameters, and (3) search priors.
Some software also integrates de novo sequencing, machine
learning algorithms, or other alternative workflows, which can
reduce the reliance on databases and enable the character-
ization of novel sequences. The most commonly used software
for paleoproteomics are MASCOT,209 MaxQuant,210 SE-
QUEST,211 PEAKS,212 and Byonic.213 Additional software,
such as Scaffold,214 can be used to further authenticate and
filter the results by protein and peptide probability and by false
discovery rate (FDR), and peptide identifications are typically
manually validated by searching them against the NCBI nr
database using BLASTp to ensure specificity.
Although reference proteins can be directly sequenced, the

vast majority of protein sequence data available in major
protein databases derives from genetic coding sequences
(CDS) submitted to NCBI (GenBank), EMBL-EBI (EMBL-
Bank), and DDJB, the three major public nucleic acid
databases that together form the International Nucleotide
Sequence Database Collaboration (INSDC). Other sources of
genome-derived annotated protein sequences include NCBI
RefSeq215,216 and Ensembl Genomes,217,218 as well as
WormBase219 and ParaSite220 for parasitic nematodes, and
VectorBase221 for pathogen vector genomes. UniProtKB, the
world’s largest public repository of protein information,
aggregates data from the INSDC and releases it in two
databases: (1) SwissProt, which contains manually annotated
and reviewed sequences; and (2) TrEMBL, which consists of
all remaining nonreviewed, automatically annotated sequences.
Specific databases are also available for individual species
proteomes (e.g., UniProt Proteomes, NCBI RefSeq), and
custom databases can be created using curated lists of
genomes, such as the Human Oral Microbiome Database
(HOMD),222 or metagenomes, such as NCBI env_nr. In
addition, specialty databases for identifying common labo-
ratory contaminants, such as the common Repository of
Adventitious Proteins (cRAP; https://www.thegpm.org/crap/
) and databases for assessing preservation in specific ancient
sample types, such as dental calculus,223 have also been
developed. These databases contain different numbers of
sequences, varying levels of metadata, and different database
biases.224 Decoy databases, or other integrated target-decoy
search procedures, are included during analysis in order to
calculate FDR.225 Care should be taken to ensure that the
selected databases are appropriate for the sample type. For
example, studies of microbial substrates, such as dental calculus
and paleofeces, or tissues that have been degraded by

environmental bacteria, such as skeletal and mummified
tissues, should include microbial proteomes in database
searches in order to ensure that microbial proteins are not
better matches for spectra putatively assigned to dietary or
host-derived proteins. Likewise, investigations of pathogens
(e.g., Mycobacterium tuberculosis) should also include protein
sequences from related microbial taxa (e.g., soil Mycobacteria)
in order to ensure taxonomic specificity. Discovery-based
proteomics, especially when applied to complex metapro-
teomes, is particularly sensitive to database selection, and
overly restrictive databases should be avoided in order to
mitigate false positives.
Once one or more databases have been selected, instrument

parameters and search priors are required. Instrument
parameters correspond to the particular mass spectrometer
used for the analysis, and include information about peptide
ionization and MS1 and MS2 mass accuracies. Search priors
relate to the sample itself, and consist of information about the
enzymatic digestion, isotopic composition, and anticipated
chemical modification of the peptides. This includes specifying
the digestive enzyme (e.g., trypsin), which should match the
experimental enzyme used, as well as the assumed fidelity,
making allowances for missed cleavages (typically 1−3). The
number of anticipated 13C atoms is typically preselected, and
fixed and variable chemical modifications resulting in mass
changes are also specified as priors. These include any
intentional modifications introduced during extraction (e.g.,
carbamidomethylation of cysteine), common biological PTMs
(such as oxidation and phosphorylation), and diagenetic
modifications (such as deamidation and glycosylation).
While the ability to match against every known protein

sequence and all possible chemical modifications would be
ideal for ancient samples, computational effort scales linearly
with the number of sequences in the database and
exponentially when relaxing chemical modification and
digestion parameters. Therefore, choices must be made to
limit the search space to allow reasonable computational
efforts. For example, in vivo and diagenetic backbone cleavage
can be accounted for in searches by selecting enzyme options
such as “semi-trypsin”, but this increases the search space of
the algorithm. Likewise, searches can also be conducted in
“error tolerant” mode, which allows for amino acid
substitutions and unspecified chemical modifications, but this
increases the FDR and can reduce the number of successfully
identified ancient proteins. For ancient samples, error tolerant
searches are generally reserved for assessing the range of
chemical modifications in a sample prior to further analysis
(e.g., refs 92 and 102) or for determining novel sequences in
already well characterized proteins (e.g., collagen226) or
proteomes (e.g., enamel13,172).
In phylogenetic studies of taxa for which the exact protein

sequence is unknown, software is available for de novo
sequencing.227 This is especially valuable for determining
sequences in extinct species for which genomic data cannot be
obtained20,172,226,228 or authenticating PMF markers.73,182,229

A variety of software has been used to perform de novo
sequencing on ancient proteins, including PEAKS, Byonic, and
MaxNovo. Algorithmic differences between the different
software influence the accuracy of identification. The
taxonomy of tryptic peptides identified by de novo sequencing
can be inferred using tools such as UniPept.230

After a search is completed, potential identifications are
evaluated on the basis of a number of metrics, including
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peptide match scores, the number of assigned peptides for a
given protein, and the peptide and protein FDRs. Taxonomic
assignment for high scoring identifications should be further
validated for specificity using additional sequence alignment
tools, a diverse database, and manual validation of critical
spectra. It is essential to take into account potential database
and search biases when interpreting results, especially when
conducting discovery-based proteomics studies. Great care
must be taken in selecting parameters to obtain optimal and
accurate results,231,232 and improbable results233,234 should be
subject to further scrutiny. Recommendations for minimum
standards of authentication and validation are described in ref
4.
2.5.3. Taxonomic Discrimination. Once peptides are

identified to proteins, their sequences can be used to infer
taxonomy and to discr iminate between re la ted
taxa.20,73,86,88,235 The taxonomic resolution of a given set of
peptide sequences can vary widely, however, depending on the
evolutionary history of the protein and the specific evolu-
tionary forces acting on it. Overall, protein sequences provide
less taxonomic resolution than DNA sequences, but proteins
can persist millions of years longer than DNA, they are
biologically present in much higher amounts than DNA, and
they are found even in acellular tissues (e.g., enamel, eggshell).
As such, they are our most valuable form of molecular
sequence data for providing successful and reliable taxonomic
identifications in deep time fossils and in the study of
processed and manufactured objects that have undergone
activities that are destructive to nucleic acids (e.g., leather
tanning, liming of parchment).
Overall, sequence change is generally more constrained and

occurs more slowly in proteins than in DNA. This is because,
unlike DNA, where noncoding regions and redundancy in the
genetic code allow for mutations independent of selective
pressures, amino acid changes directly affect the protein and�
depending on the chemical properties of the altered amino acid
and the location of the substitution within the peptide�can
strongly influence the protein’s structure and function.236,237 In
addition, the synthesis or acquisition of specific amino acids for
incorporation into proteins can have different metabolic costs
depending on the organism and the environment.238 This
means that almost all proteins are under some level of selective
pressure, and substitutions between amino acids with similar
chemistry generally occur at a higher rate than amino acids
with different chemistry.239,240 Consequently, there is a higher
probability for convergent, parallel, and back substitutions in
proteins, which can result in distantly related species sharing
the same substitutions (homoplasy)�a particular problem for
proteins under high functional constraint.241−244

Protein sequence conservation among closely related taxa
determines the level to which taxonomic discrimination is
possible. In some cases, taxonomic discrimination is not
possible because there are no sequence differences between a
set of taxa for a given protein of interest. For example, wild
(Ovis ammon, Ovis gmelini) and domesticated (Ovis aries)
sheep have identical milk β-lactoglobulin protein sequences,
and thus, taxonomy derived from this protein cannot be
assigned at a level lower than that of genus (Ovis). Even in
cases where sequence differences do occur, taxonomic
discrimination may fall short of theoretical predictions because
not all variant sites fall within peptides that are likely to be
observed using mass spectrometry, either because the
corresponding tryptic peptides are too long or too short or

because they are too hydrophobic. For example, the COL1a2
amino acid sequences of domesticated horse and donkey differ
by 4 out of 1038 residues in the mature protein. Theoretically,
discrimination between the two species should be possible on
the basis of these four residues, but in practice tryptic digests of
this protein result in all four of these taxonomically informative
amino acids falling in peptides that are unlikely to be detected
by mass spectrometry. As a result, horses, donkeys, and mules
(horse/donkey hybrids) cannot be distinguished using stand-
ard ZooMS techniques. In contrast, sheep and goat COL1a2
proteins, despite being even more similar (differing by only 2
out of 1038 residues), are generally distinguishable by ZooMS
because their taxonomically informative residues fall on a
tryptic peptide that is frequently observed by MALDI-TOF
mass spectrometry.73,78,245

Taphonomic alterations and digestion efficiency can also
further influence taxonomic specificity. Within the β-
lactoglobulin protein, for example, the tryptic peptide TPEVD-
(D/N/K)EALEK is the most frequently recovered peptide
containing a taxonomically variant site.4 However, the residue
that distinguishes cattle (D) from sheep (N) is unreliable in
archaeological samples because a cattle aspartic acid (D)
cannot be distinguished from a taphonomically deamidated
asparagine (N). Thus, peptides bearing the aspartic acid
residue must be provisionally assigned as cattle/sheep.
Moreover, the lysine (K) residue in this peptide that
distinguishes goats is also a tryptic cut site (which cuts the
peptide into fragments too short for MS detection), and thus, a
taxonomic assignment of goat can only be made if there is a
missed tryptic cleavage in this peptide. Such complications
must be factored into strategies for taxonomic discrimination
of archaeological proteins, and as a result, the taxonomic
resolution of ancient protein data in practice is often lower
than would be predicted from protein sequence alignments
alone.
In some cases, additional metadata, such as the time period

or location from which the sample was obtained, can provide
information allowing a greater degree of taxonomic specificity
to be inferred. For example, Ovis β-lactoglobulin sequences
obtained from locations outside the range of wild Ovis species,
such as in colonial-era Americas, can be reasonably assumed to
have originated from domesticated Ovis aries. Likewise,
Holocene-era Bos sequences obtained from European Neo-
lithic sites postdating the decline of aurochs (Bos primigenius)
and outside the range of zebu (Bos indicus) and yaks (Bos
mutus, Bos grunniens) can be reasonably assigned to
domesticated cattle (Bos taurus). Such context-based infer-
ences, however, must be applied with care, especially in places
and periods where multiple species may have been present or
where former species ranges are not well-known.
Finally, since mass spectrometry recovers peptides and not

entire proteins, and these peptides have varying levels of
taxonomic specificity, taxonomic assignments are typically
made on the basis of parsimony, with the assumption that the
peptides derive from the fewest number of species possible. In
the case of endogenous tissues, such as bone, peptide sets for
proteins such as collagen are assumed to derive from a single
organism. However, the assumption that all peptides derive
from a single organism does not hold in the case of
manufactured or mixed proteomes, such as collagenous glues,
dental calculus, or pottery food crusts. In these cases,
taxonomic identification is undertaken by examining the full
range of peptide sequences obtained from many proteins, and
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also taking into account biogeographical and archaeologically
relevant prior information in order to make the most
reasonable taxonomic identification(s) from the available data.

3. APPLICATIONS IN PALEOPROTEOMICS
Although ancient proteins are studied in a wide variety of ways
in the fields of archaeology, cultural heritage, and paleontology
(for a review see ref 5), most applications can be grouped into
one of three broad categories based the nature and
composition of the sample: (1) proteins, where a single
protein is the primary target of analysis; (2) proteomes, where
groups of endogenous proteins inherent to a tissue or substrate
are studied (e.g., bone, enamel, shell); and (3) metaproteomes,
where protein and proteome mixtures of diverse biological or
manufactured origin are analyzed (e.g., dental calculus,
paleofeces, pottery crusts, artist materials). Here, we describe
each application in turn and highlight its uses, strengths, and
challenges.
3.1. Proteins

A large proportion of ancient protein research has been
dedicated to the detection and taxonomic assignment of highly
abundant proteins that form the dominant structural
components of tissues. PMF by MALDI-TOF is particularly
suited to this situation, but when preservation is poor or when
higher resolution sequence data is needed, more powerful
tandem mass spectrometry approaches, such as MALDI-TOF/
TOF or LC−MS/MS, can be applied. The most frequently
analyzed ancient protein is COL1, a robust structural
protein246−248 that is capable of surviving more than 3 million
years under ideal conditions.10 Other proteins of interest
include keratins84 to identify wool, horn, hair, feathers, turtle
shell, and baleen, and fibroin,249 the dominant protein
component of silk. In addition, the enamel protein amelogenin,
which is important for tooth formation, can be used to
determine the genetic sex of some mammal species.94,250

While mineralized tissues, such as bone, enamel, and shell,
are frequently the target of ancient protein analysis due to their
durability, some proteinaceous soft tissues are also suitable for
analysis. Collagens, keratins, and fibronins are collectively the
major components of textiles and parchments produced from
primary and secondary animal products, such as hide, skins,
leather, wool, fur, felt, and silk. These materials are often
culturally important, but ephemeral and underrepresented in
the archaeological record,251 although their preservation can be
enhanced by contact with antimicrobial metals such as copper.
Paleoproteomic methods can increase their visibility by
improving taxonomic identifications and identifying trace
remains.
3.1.1. Collagens: Bone, Dentine, Antler, Ivory, Parch-

ment, Leather, Gut, and Scales. ZooMS analysis of COL1
is the most frequently conducted type of paleoproteomic
analysis,178 and it can be conducted on almost any collagenous
tissue, including mineralized tissues such as bone, dentine,
antler, ivory, and horn core,72,252,253 as well as nonmineralized
tissues such as skin, parchment, leather, gut, scales, and other
soft tissues.156,160,254 It is especially useful for identifying
material that has lost its diagnostic features, such as worked
bone159 and bone fragments,185 and it can be used to screen
large numbers of nondiagnostic fragments for species of
interest.184 It has also been proposed as one possible screening
method for assessing collagen preservation prior to radio-

carbon dating,255 although ZooMS requires less collagen than
either radiocarbon dating or stable isotope analysis.139

ZooMS identification using MALDI-TOF is performed
using a database of taxonomically informative marker peaks,
and it is important that the sequences of newly developed
markers are first verified as authentic collagen sequences with
taxonomically informative amino acid substitutions using
MALDI-TOF/TOF or LC−MS/MS,79,178 although there are
cases where this has not been feasible.182,256 Large mammals,
particularly European species, make up a large proportion of
the published markers, e.g.,72,257,258 but markers for other
taxonomic groups are increasingly being developed, including
for non-European large mammals,79,252,259−261 rodents,262,263

bats,262 cetaceans,80,264 marsupials,265 birds,77,82 fish,81,182,256

amphibians,266 and reptiles.83,262,266,267

Over the past decade, ZooMS has been used to answer a
wide range of cultural heritage, archaeological, ecological, and
paleontological questions. For example, ZooMS has been used
to study the manufacture of worked bones, artifacts, and
cultural heritage materials159,245,252,254,259,260,268−274 and to
better characterize archaeological faunal assemblages and past
human−animal relationships.80,82,185,257,263,275 It has been used
to better define past domestic animal management strat-
egies,73,261,276−279 document the introduction of commensal
species associated with human activities,280−284 and identify
the exploitation of wild species.79,83,285,286 It has contributed to
the reconstruction of past ecologies182,256,262,265,267,287−289 and
to the study of extinct megafauna.196,265 ZooMS has also been
notably used as a low-cost, high-throughput screening tool of
bone fragments in large Pleistocene cave sequences, leading to
the discovery of otherwise nondiagnostic hominid re-
mains,144,184,257,290 including the offspring of a Neanderthal
mother and Denisovan father.291,292 Finally, because ZooMS
can be performed using minimally invasive sampling
techniques,154,156,157,159 it has proven a breakthrough technol-
ogy in the emerging field of biocodicology,293 the multi-
disciplinary analysis of parchment manuscripts, codices, and
other historic documents.156,208,294−303

3.1.2. Keratins and Corneous β-Proteins: Wool, Hair,
Feathers, Baleen, and Turtle Shell. α-Keratins and
corneous β-proteins (CBPs, formerly β-keratins) are two of
the most important structural protein classes in vertebrates
after collagens, and they are the major components of hair/fur,
nails/claws, horns, hooves, feathers, beaks, turtle shells, quills,
and baleen. They are also present, along with collagen, in
skin.304−306 Like collagens, dozens of individual keratin and
CBP proteins have been characterized.307,308 They can also be
taxonomically distinguished by PMF using MALDI-TOF.309

Unlike collagen-producing cells, keratin-producing cells die
after producing keratins and CBPs, and consequently
keratinous tissues are not living and do not remodel.304

Keratinous tissues do not mineralize, and even the hardest
CBP tissues (e.g., turtle shells, beaks, claws, etc.) rarely contain
minerals and therefore are more subject to degradation than
mineralized proteins.310 However, under favorable preservation
conditions keratins and CBPs can preserve due their
hydrophobicity and resistance to many proteases,311 and they
are also found archaeologically when embedded in mineral
matrix produced by the degradation of nearby metal items
(e.g., weapons, crowns, pins, buckles).104,310

MALDI-TOF marker peptides to identify furs and textiles
were originally developed using PCA methods and have been
subsequently verified using LC−MS/MS or MALDI-TOF/
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TOF, providing genus level resolution for some groups of
mammals104,109,251,309,312−317 and whale baleen.318 The only
taxonomic group with available CBP markers providing genus
level resolution is sea turtles.310,319 The use of immunological
assays to detect wool on metal artifacts and from textile
imprints in soils is currently being investigated.320,321

Increasing understanding of keratin and CBP diversity, for
example differences in sheep wool pigmentation and curl/
crimp related to domestication, selective breeding, and
diet322,323 and keratin texture variation associated with body
location, disease, and age in humans,324,325 may allow more
information to be gleaned than just taxonomic classification.
3.1.3. Fibroin: Silk. Silks are structural proteins, composed

of highly repetitive β-sheet motifs interspersed with flexible
domains. Raw silkworm silk is composed primarily of two
proteins, fibroin and sericin, with several additional proteinases
and functional proteins making up a minor component. During
textile production, the nonfibroin proteins are removed,
leaving fibroin as the dominant protein in archaeological
silk.251,326 While silks in modern and historic periods all derive
from a single domesticated silkworm species from China
(Bombyx mori), a number of other insects can also produce
silk, including other wild silkworms and moths (especially
Bombyx mandarina, Samia cynthia, Antheraea sp., and
Philosamia sp.) and spiders (e.g., Nephila clavipes and Araneus
diadematus), and use of these silks has been documented
historically and archaeologically in Asia, India, Europe, North
America, and Australia.251,327−330 Silks from B. mori and
Antheraea pernyi can be distinguished proteomically by LC−
MS/MS and immunological assays.251,331 This has allowed silk
textiles and their species of origin to be identified from
sediments with textile imprints249,332 as well as trace amounts
of textile in contact with metal artifacts.333,334 Further work on
the characterization of fibronins from other species has the
potential to greatly improve the understanding of silk
production and trade and silkworm domestication.
3.1.4. Amelogenin: Sex Typing of Humans and Other

Mammals. Amelogenin (gene AMEL) plays an important role
in enamel formation and mineralization in newly secreted
enamel. During enamel maturation, amelogenin is cleaved by
proteases and trapped within the enamel matrix.116,335 In
monotremes, marsupials, and nonmammalian species, AMEL is
an autosomal gene, while in eutherian mammals it is located on
the sex chromosomes.250,336 In most mammals, only AMELX is
functional, and AMELY expression is low. In some species,
there are no sequence differences between AMELX and
AMELY. Other species have lost AMELY entirely. However, for
species with sequence differences between AMELX and
AMELY and where AMELY is expressed, protein analysis can
allow sex descrimination.336,337 These species include
humans,338,339 cattle,340 bison,341 sheep,342 goats,343 deer,342

pigs,344 horses,345 and bears.346

Before the widespread application of LC−MS/MS to
archaeological samples, attempts to use MALDI-TOF/TOF
to identify both AMELX and AMELY for sex determination
were met with minimal success.347,348 Subsequent efforts using
LC−MS/MS have proven much more productive for sex
determination in ancient humans94,171,198,202,349−354 and
archaic hominids.172 Sex determination for other species has
been limited to date, but includes extinct species of rhinoceros
(Stephanorhinus sp.14), probocideans (Notiomastodon platen-
sis), and rodents (Myocastor coypus355). Although there are
concerns that the method could produce inaccurate results due

to the presence of low frequency of AMELY deletion variants
in some populations,356,357 sexing using amelogenin is
generally a robust technique, and it is an important
biomolecular tool in cases where mophological sex determi-
nation is not possible, especially for incomplete skeletons and
juveniles,94 or when ancient DNA analysis is unsuccessful or
infeasible.354

3.2. Proteomes

The first ancient proteome, from mammoth bone, was
published in 2012.91 Consisting of more than 100 proteins,
it was a singular achievement and marked the field’s transition
from the study of ancient proteins to true paleoproteomics.
Proteomes are the suite of proteins present in a given tissue,
and while the genome of an organism remains relatively
constant throughout the body and lifetime, the proteome can
differ substantially. Proteomes consist of protein mixtures,
which often have a high degree of complexity and a wide
dynamic range of protein expression.358,359 LC−MS/MS
approaches are necessary to profile proteomes, but compre-
hensive proteome characterization is still highly challenging
even for modern proteomes, let alone ancient ones. Never-
theless, significant progress has been made, particularly toward
characterizing the proteomes of ancient bone, enamel, eggshell,
and mollusc shell, with mummified tissues being less explored.
Although proteome data can be used to provide taxonomic
assignments, they are also capable of addressing much more
complex questions regarding phylogenetic relationships, health,
and aging and development. Below, we describe the current
state of research on ancient proteomes and explore their
applications.
3.2.1. Bone and Dentine. Bone and dentine have similar

developmental origins and correspondingly similar, but not
identical, proteomes.141,360 While they are both dominated by
the structural protein COL1, they also contain a diverse array
of hundreds of other collagens and non collagenous proteins
(NCPs).100,361−363 Many proteins are shared between bone
and dentine, including interstitial fibrillar collagens (e.g., types
I, III, and V), as well as proteins that support collagen fibril
organization (e.g., lumican, LUM) and facilitate biomineraliza-
tion (e.g., biglycan, BGN; fetuin-A, AHSG). Other proteins are
more tissue specific, such as periostin (POSTN), which is
disproportionately expressed in bone periosteum, chondroad-
herin (CHAD), a cartilage-associated protein expressed on
bone articular surfaces, and asporin (ASPN), a protein that
facilitates tooth attachment to the periodontal ligament.
Plasma proteins and blood clotting proteins are also typically
present in bone and dentine proteomes, including prothrombin
(F2), coagulation factor IX (F9), and coagulation factor X
(F10). To date, ancient bone proteomes have been studied in
humans,96,168,258,364,365 mammoths,91,366 moas,128 cattle,121,132

horses,12,168 turkeys,367 rabbits,367 squirrels,367 extinct rhinoc-
eros,14 and ancient dentine proteomes have been studied in
humans92,141,365 and extinct rhinoceros.14

Because many of the NCPs and some of the collagens have
higher mutation rates than COL1, they are better targets for
phylogenetic reconstructions, especially between closely
related species.258,368 Analyses of bone and dentine proteomes
have successfully aided in resolving the phylogenetic relation-
ships of extinct megafauna,14,20,21,196 including archaic
hominins.258,365 In addition, bone proteome-scale analyses
using new high-throughput LC−MS/MS workflows, such as
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SPIN, show great promise for enabling genus and species-level
taxonomic assignments of nondiagnostic bone.205

Proteome-level analyses can also be used to detect altered
bone proteomes, such as those that occur in association with
changes in activity levels,369 health and disease,370 and age.371

Chronic bone infections, such as osteomyelitis, and bone
cancers are known to alter the bone proteome,372−375 and a
number of studies have attempted to diagnose archaeological
cases of cancers based on proteomic evidence,96,376 although
the results so far have been mostly qualitative and nonspecific.
Changes in bone proteome composition and chemical
modifications also occur with advancing biological age across
multiple tissues, including bone marrow,371,377 and composi-
tion changes and modifications correlated with biological age
and post-mortem interval have been observed in the
proteomes from modern and archaeological skeletal materi-
al.141,258,364,378−382 However, bone is one of the poorer
characterized tissues in the Human Proteome Organization
(HUPO) Human Proteome Project383 and proteome changes
observed in archaeological bone samples could be the result of
diagenetic factors in addition to biological age, physiological
stress, life history traits, and disease. More work is needed to
assess the reliability of chemical modifications and proteome
composition as signals in archaeological samples.
3.2.2. Enamel. Enamel is the hardest tissue in the

vertebrate body.384 Composed mostly of hydroxyapatite
crystals, the amount of organic matrix in mature enamel is
very small, making up less than 2% of its total mass.385 Enamel
has a small proteome, consisting of only five abundant
proteins: amelogenins (AMELX and AMELY), ameloblastin
(AMBN), amelotin (AMTN), enamelin (ENAM), and
odontogeneic ameloblast-associated protein (ODAM). Of
these, amelogenin is the most abundant and best characterized,
comprising 90% of all enamel protein.385 Other proteins,
including keratins (e.g., KRT75),386,387 as well as collagens and
blood proteins,116 have also been detected in enamel at trace
levels, but the latter likely represent contamination from
dentine. Enamel proteins are degraded in vivo by the matrix
proteases enamelysin (MMP20) and kallikrein related
peptidase 4 (KLK4), resulting in only enzymatically cleaved
proteins being present in mature enamel.384,385 These
degraded proteins are concentrated in the enamel tufts at the
dentine−enamel junction (DEJ) and along hydroxyapatite rod
sheaths.386 Although early attempts to directly analyze enamel
proteins from modern and archaeological teeth typically only
detected amelogenin,348,388 methodological improvements
have increasingly allowed the recovery of a richer enamel
proteome.14,94,171

Due to the protective nature of enamel in comparison to
bone, enamel proteins are some of the longest surviving
proteins in the vertebrate body.171 Although the enamel
proteome is small and carries less phylogenetic resolution than
other tissues, such as bone, ancient enamel proteins have
nevertheless been used to successfully determine the
phylogenetic relationships of extinct species,13,14,172,355 and
enamel proteins are especially valuable in cases when DNA or
other proteins are unlikely to survive.389

3.2.3. Avian Eggshells. Like enamel, the shell biomineral
matrix provides the potential for better protection from water
and thus degradation of proteins than bone.9 As such, eggshell
holds great promise for surviving into deep time, and eggshell
currently holds the record for the oldest successfully

determined and independently verified peptide sequence�
from a 3.8 Ma ostrich eggshell in East Africa.9

Avian eggshells mineralize around the egg membrane in a
multistage process mediated by the organic matrix pro-
teins.390,391 Although ∼500−1000 proteins have been
identified using proteomic methods in fresh eggshell,392,393

considerably fewer are typically identified in archaeological
samples.86 Prior to analysis, archaeological eggshells are
typically treated using bleach to remove intercrystalline
components, leaving only intracrystalline proteins for analysis.
LC−MS/MS analysis of eggshell has recovered a wide range of
eggshell proteins, notably ovocleidins, ovocalyxins, ovalbumin,
struthiocalcin, rheacalcin, ansocalcin, ovomucoid, ovotransfer-
rin, ovostatin, and mucins, among others.86

Further characterization of eggshell proteomes using both
MALDI-TOF and LC−MS/MS86,87 have allowed the develop-
ment of a large number of marker peptides that can reliably
distinguish common bird taxa (most importantly chicken, duck
and goose) using PMF.394−397 PMF is a rapid and inexpensive
method for identifying archaeological eggshell, but due to the
complexity of the eggshell proteome and the limited number of
characterized species, not all eggshell can be identified using
this method. When MALDI-TOF analysis is unable to
taxonomically identify the species, LC−MS/MS analysis can
be conducted on those samples that have distinct MALDI-
TOF spectra in order to facilitate identification.398,399 Success
will increase as more bird genomes are sequenced and
deposited in genomic and proteomic databases.392

Eggshell proteomes are powerful means to increase the
taxonomic resolution of archaeological eggshells and allow
more nuanced interpretation of the interactions between
humans and birds at archaeological sites. For example, because
diet and age influences eggshell strength and quality,400 future
studies of archaeological eggshell may be able to provide
insights regarding the early husbandry and feeding practices of
domesticated birds, such as turkeys,401 as well as captive wild
birds subjected to intensive breeding programs, such as scarlet
macaws.402,403

3.2.4. Mollusc Shells. Molluscs have evolved a biominer-
alized exoskeleton, or shell, that provides support, protection,
and defense and also serves as a reserve of calcium ions.404

Important to proper shell formation are the shell matrix
proteins that can persist in the intracrystalline matrix of
biomineralized shells, where they are protected from
contamination and degradation into deep time.405−409 Shell
matrix protein sequences are diverse and therefore have the
potential for providing genus or even species-level taxonomic
resolution.404,410,411 Recent protocols have been developed
that can successfully extract shell matrix proteins (“shellomes”)
from worked and unworked shells for analysis by MALDI-TOF
and LC−MS/MS.88,197,412 Although identification is currently
limited by the lack of available reference data,411 “palae-
oshellomic” analysis holds great potential for revealing humans’
longstanding relationship with shell and shellworking,197 which
stretches back more than 100,000 years,413 and will aid in the
better understanding and resolution of amino acid geo-
chronology.126

3.2.5. Mummified Remains. Although mummification is
relatively uncommon, it does occur under a variety of artificial
and natural conditions, providing a rare opportunity to study
ancient soft tissues.414 The most frequently preserved and
analyzed soft tissue is skin. Although most proteomic studies of
skin (and treated skin products, such as leather and
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parchment) have focused only on collagens, skin is a complex
tissue with a diverse proteome that also includes a large
number of less abundant proteins.415,416

Using LC−MS/MS, much of the ancient skin proteome can
be accessed, and studies of human skin to date have focused on
characterizing proteome preservation in artificially417 and
naturally418 mummified skin, with an emphasis on document-
ing proteins associated with innate immunity. Studies of animal
skins have gone beyond taxonomic assignment to further
identify fetal proteins differentially expressed in the months
just before and after birth (e.g., RPN2, HBBF, HSP90A),
allowing the identification of calf skin and an estimation of the
age of death of the animal.106,156 However, despite the large
number of questions that can be potentially addressed by
analyzing the proteomes of ancient skins, hides, and parch-
ments, the study of ancient skins has continued to focus mainly
on collagen. Studies of ancient skins are challenged by the
unavoidable ubiquity of modern human skin and hair proteins,
and the interpretation of proteins from ancient skins requires a
good understanding of their excavation and curation history in
order to account for contamination. Additionally, until very
recently, sampling of ancient skins required destructive
techniques that were strongly discouraged by museums and
archives. Recent successes with minimally invasive EVA films
on mummified tissues419 and PVC rubbings on parchments156

are changing the landscape of ancient skin studies and will
likely increase the number of available samples that can be
analyzed.419

In addition to skin, other mummified soft tissues and organs
have also been documented and occasionally analyzed using
proteomic techniques, including muscle417 and stomach
tissue.420 More surprising are the hundreds of preserved brains
that have been characterized,421 with likely thousands more
being preserved around the world.422 At the time of writing
only three have undergone proteomic analysis,422−425 with
highly variable numbers of proteins recovered. The success of
brain preservation is likely due to the formation of protein
aggregates that provide protection against degradation.422,424

While soft tissues still remain relatively rare in comparison to
other sample types, protein markers for health, age, and life
history could potentially be developed.
3.2.6. Plant Macroremains. Plant macroremains (e.g.,

seeds, fruits, wood) can preserve under extraordinary
conditions, such as in waterlogged or charred states, or in
cases of extreme aridity or cold.426 Although modern seeds
contain proteins numbering in the hundreds to low
thousands,427,428 protein recovery reported from ancient
seeds has been much lower. For example, only six plant
proteins, consisting of 2S albumin, 7S and 11S globulins,
peptidase A1, and a nonspecific lipid transfer protein, were
identified in waterlogged grape seeds from medieval York,
England, and none from Byzantine Lecce, Italy.429 Overall,
protein preservation of ancient seeds has been found to be
relatively low compared to other biomolecular classes, such as
carbohydrates and lipids,429−431 but improved methods of
protein recovery and recent successes in identifying plant
proteins from residues99 and stains432 warrant renewed efforts
to analyze ancient plant proteomes from plant macroremains.
3.3. Metaproteomes

Metaproteomes are protein mixtures deriving from more than
one proteome. The vast majority of metaproteome research
focuses on the study of mixed microbial communities, such as

those found in host-associated and environmental micro-
biomes,433 but many of the same methodologies also apply to
mixed proteomes of made or manufactured origin, such as food
crusts and artist materials, and so these materials will also be
considered here. Also considered here are proteins recovered
from microbially infected and diseased tissues. Studies of
metaproteomes are among the most exciting and fastest-
growing applications in paleoproteomics, but they also pose
unique challenges for protein identification and authentication.
3.3.1. Microbiomes. Microbiomes are diverse microbial

consortia that form stable complex communities. They may be
host-associated, such as the oral and gut microbiomes, or
environmental, such as the soil microbiome, and they can vary
spatially within a given site or across different conditions. For
example, within the oral cavity, the microbiota present on the
gums differs from that on the tongue which further differs from
that within dental plaque, and even within dental plaque, there
are differences between supragingival and subgingival dental
plaque.434,435 Likewise, soil microbiota differ greatly across
different environmental conditions, such as deserts, forests, and
agricultural fields.436 In spite of, or perhaps because of, this
enormous capacity for diversity and variation, the study of
modern and ancient microbiomes is highly valuable.437

The first metaproteome of an ancient microbiome was
characterized from human dental calculus,92 a form of calcified
dental plaque that forms naturally during life.438 Numerous
microbial proteins were identified, including virulence factors
specific to periodontal pathogens, such as TfsA and TfsB from
Tannerella forsythia, which were independently confirmed
using metagenomic techniques. However, despite searching
the metaproteomic data against all of UniProt, it was clear that
oral microbial proteins were being underidentified due to
insufficient representation of oral bacteria in the database. The
creation of a custom database based on the translation of
genomes in the HOMD222 produced improved microbial
results, and another custom database created by translating
metagenomic data from the same samples yielded even more
microbial identifications, but the latter approach failed to yield
a better understanding of the metaproteome since most of the
translated sequences lacked annotation or were categorized as
“hypothetical” proteins. Subsequent investigations of dental
calculus have confirmed that it preserves an extremely rich and
diverse microbial metaproteome,439,440 but underdeveloped
databases (both proteomic and genomic) limit the number of
identifications and interpretations that can be made at present.
Beyond microbial proteins, dental calculus also preserves a

rich mixed proteome of saliva and gingival crevicular fluid,
including proteins involved in host immunological response to
dental plaque and tissue destruction due to periodontal
disease.92 Many of the host proteins identified in both modern
and ancient dental calculus are expressed by neutrophils,92 the
major cell type involved in periodontal innate immunity.441,442

Nonimmunity related host proteins in dental calculus include
α-amylase, a starch digestive enzyme expressed in saliva.92
In addition to microbial and host proteins, dental calculus

also variably contains dietary proteins.149 The first dietary
protein to be identified in ancient dental calculus was beta-
lactoglobulin, a protein highly specific to milk.235 Milk proteins
were subsequently identified in archaeological dental calculus
from Europe,149,440,443,444 Africa,223 and Asia,101,445 contribu-
ting to an understanding of how dairying arose and spread in
prehistory. Plant proteins have also been identified in dental
calculus, and the number and diversity of identified plant
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proteins have steadily grown as both methods and
instrumentation have improved. The first study to recover
plant proteins from dental calculus surveyed the Iron Age to
medieval periods in Britain and identified dietary proteins from
oats, peas, and cruciferous vegetables only in the youngest
samples.149 Subsequent studies in the Bronze and Iron Age
Levant identified not only dietary staples, such as wheat and
sesame, but also spices, oilseed, and fruit likely introduced
through long-distance trade.102 Other dietary proteins that
have been identified to date in archaeological dental calculus
include chicken egg ovalbumin444 and ruminant hemoglo-
bin.149

Although the majority of ancient microbiome research has
focused on dental calculus, paleofeces are also now being
explored. A recent study of Alaskan dog paleofeces, for
example, identified a wide range of host proteins, including
proteinases, peptidases, and lipases related to gastrointestinal
digestion, as well as dietary proteins deriving from Salmonidae
fish that indicate the consumption of fish muscle, guts, and
eggs.446 Few bacterial proteins were identified, as these were
intentionally depleted prior to analysis. Cytochemical staining
indicates that proteins are present throughout paleofeces,447

and prior work on paleofeces using immunoassays has
suggested that gastrointestinal parasites are also accessible
through proteomic techniques.448−451 Future analyses of
paleofeces may yield insights into the structure and function
of the ancient gut microbiome, as well as reveal richer
information about health and diet.452,453

3.3.2. Residues, Crusts, and Food Remains. Ceramic
cooking vessels have been shown to preserve dietary lipids and
small metabolites (e.g., miliacin, tartaric acid) over long
periods, allowing the tracking of prehistoric food practices,
such as fish processing,454−456 the spread of millet,457

dairying,458−460 vegetal oil storage,461 and wine produc-
tion.462−464 However, efforts to recover dietary proteins from
similar vessels have been met with only limited success to
date.465−467 It appears that proteins generally do not persist in,
or cannot be extracted from, pottery.133,468

In contrast to the ceramic fabric itself, food crusts provide a
much more promising target for molecular analysis,456,469 and
calcified food crusts appear particularly suitable for proteomic
analysis. A recent proteomic study of 8,000-year-old calcified
deposits (limescale) built up on the interior surfaces of cooking
vessels at the Anatolian Neolithic site of Çatalhöyük yielded a
remarkably diverse range of food proteins,99 including milk
whey (e.g., β-lactoglobulin, α-lactalbumin), curd (e.g., α, β,
and κ caseins), and fat globule-associated proteins (butyr-
ophilin subfamily 1 member A1), as well as meat/blood
proteins (hemoglobin) and a wide variety of plant proteins
(e.g., hordeins, legumins, serpin-Z4) from cereals and legumes.
Dietary proteins were found to be concentrated within the
calcified crusts on the interiors of the vessels, and the analysis
of noncalcified ceramic fabric from the same vessels produced
comparatively few proteins. Importantly, this study showed
that ancient cooking vessels were used and reused to cook a
wide range of plant and animal foods, with few vessels
suggesting specialized use. Although lipid analyses, especially
those based on isotopic analysis of C16:0 and C18:0 fatty acids,
may be confounded by such culinary practices, proteomics is
ideally suited for sorting out and distinguishing these food
mixtures.99

Beyond food crusts, foods have occasionally survived
relatively intact under exceptional environmental conditions,

such as those found in the Taklamakan desert in western
China. There, whole pieces of kefir-like cheese were found
adorning mummies associated with the Bronze Age Xiaohe
horizon,107 and dried milk was identified lining the interiors of
grass baskets.108 In addition, sourdough bread made of barley
and millet was preserved at the Subeixi cemetery during the
subsequent Iron Age period.95 LC−MS/MS analyses of these
remarkably preserved foods yielded proteins not only integral
to the food itself but also provided insights into the
fermentation of these foods by lactic acid bacteria and yeasts,
providing an unprecedented glimpse at prehistoric culinary
technologies. Other examples of ancient foods directly
analyzed by proteomics include gut content studies of
unusually preserved corpses, such the Tyrolean Iceman Ötzi,
an Alpine glacier mummy dating to the Chalcolithic,420 and
Tollund Man, an exceptionally well preserved bog body from
the Danish Early Iron Age.470

3.3.3. Infections and Diseased Tissues. Ancient DNA
has contributed to major advances in paleomicrobiology and
pathogen genomics,437,471 and has led to the molecular
identification and characterization of more than a dozen
infectious pathogens, including Yersinia pestis, Mycobacterium
tuberculosis, Mycobacterium leprae, Helicobactor pylori, Trepone-
ma pallidum, Salmonella enterica, Plasmodium falciparum,
hepatitis B virus (HBV), and variola virus.472 By comparison,
paleoproteomic studies of ancient pathogens are in their
infancy, but offer the potential to study disease pathophysiol-
ogy and clinical presentation.
Most proteomics-based studies to date have focused on

infectious diseases that produce visible pathologies in the
skeleton, particularly tuberculosis. However, initial enthusiasm
for the identification of M. tuberculosis proteins by PMF473,474

was later tempered by LC−MS/MS studies that showed a lack
of peak specificity and the difficulty of distinguishing M.
tuberculosis peptides from those of other soil mycobacteria.475

Other studies tried to achieve higher specificity by applying an
immunoassay approach, but lacked controls for environmental
mycobacteria.476 Recently, promising results were obtained for
M. leprae infection using a combination of paleogenomic and
paleoproteomic techniques applied to dental calculus.477 In
this study of a middle-aged adult female with osteological
indications of leprosy, a 6.6-fold coverage M. leprae genome
was reconstructed using ancient DNA techniques, and LC−
MS/MS analysis recovered evidence of four mycobacterial
proteins. Although none of the mycobacterial peptides were
specific to M. leprae, taken together the osteological, genomic,
and proteomic data provide a convincing portrait of a leprosy
infection. Beyond its findings, the study highlights the
difficulties of studying infectious diseases using a proteomics
approach. Just as the field of ancient DNA only overcame its
challenges in paleopathology with the transition to whole
genome sequencing,478 the field of paleoproteomics will also
need to achieve greater pathogen proteome coverage before its
full potential can be reached.
Beyond pathogen proteins, there has been recent interest in

characterizing innate immune proteins within mummified and
skeletal remains as a proxy for inflammation and disease.364,418

While promising, more work is needed to understand the
natural levels of immune proteins within healthy tissue, both
from modern and ancient contexts, before such findings can be
fully interpreted.
3.3.4. Cultural Heritage Materials and Works of Art.

The application of mass spectrometry and other methods for
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inferring proteinaceous components of artwork and other
cultural heritage objects has been comprehensively reviewed
elsewhere.479−483 Both MALDI-TOF and LC−MS/MS can be
used to analyze artwork and cultural heritage materials, and
their uses are described briefly below.
In ancient and historic times, proteinaceous materials (e.g.,

milk, eggs, blood, and gelatin from skin or bone) were widely
used as binders for pigments in works of art and for building

materials, such as mortars. Understanding the composition of
these materials allows insight into past practices and provides
information that will inform curation choices. Proteomic
analysis of paintings has allowed identification of many widely
used binder proteins, including caseins and beta lactoglobulin
from milk, collagens from gelatin, vitellogenins, apolipopro-
teins, and low-density lipoprotein receptor from egg yolk, and
ovalbumin, ovotransferrin, and lysozyme from egg white. While

Figure 4. Sources of bias in ancient protein identification. Differences in the density of enzymatic cut sites, number of disulfide bonds, and protein
length influence protein detectability (A). The representation of proteins across taxa is highly uneven in major databases, such as UniProtKB (B,C).
(A) Comparison of four Ovis aries (sheep) proteins of archaeological interest: AMELX, used for determining sex; BLG, a milk protein; KAP4-2, a
protein component of wool; COL1α1, a bone protein used for taxonomic identification. Selected properties influencing protein detectability using
LC−MS/MS techniques include predicted peptide size following trypsin digestion (cut sites are shown as dashed lines) and location of disulfide
linkages (green boxes). Peptide lengths of 6−30 amino acids are most suitable for detection,165 and those outside this range are marked as less
likely to be found due to size (red border). Note that endogenous proteolysis of amelogenin during dental development causes additional cleavages
that are not shown.603 Only half (736 amino acids) of the collagen protein is shown for space reasons. (B) Comparison of the number of
characterized species to the number of protein entries in UniProtKB (SwissProt and TrEMBL) for the major taxonomic classes Magnoliopsida
(flowering plants), Mammalia (mammals), Aves (birds), and Actinopterygii (ray-finned fishes); inset shows enhanced view of the number of
reviewed (SwissProt) protein entries. Numbers of characterized species were obtained from refs 604−607. (C) Reviewed and unreviewed protein
entries available in UniProtKB for humans and common plants and animals consumed in ancient Mesoamerican diets; inset shows enhanced view
of taxa with <1000 protein entries.
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some studies have found that binders from a single source were
used,89,98,157,484−488 many binders are composed of mixed
sources, such as milk from at least two different species or
various combinations of milk, eggs, and gelatin.97,199,489−497

Proteins introduced unintentionally during the creation of
binders, such as muscle or blood proteins in collagen-based
glues, might be able to provide insight into gelatin production
or the addition of other animal products into the binders.489

Beyond paints, binder proteins were also added to construction
materials, such as mortars. Blood and milk are frequently
recorded as mortar additives, and they have been detected in
ancient mortars using a variety of techniques498−500

There are many historically recorded recipes for binders, and
proteomics can illuminate the use of different recipes as they
correlate with pigment color, type of canvas or statue,
properties and availability of the binder, and cultural and
personal choice.97 Currently this is limited to some extent by
detection bias and the limited number of samples analyzed.
Because caseins and some egg proteins are not detected well
with trypsin alone, multienzyme digests using both trypsin and
chymotrypsin can improve detection of these binding
materials.169 In cases where the proportion or preservation of
binder proteins is very low, targeting techniques such as MRM
can help improve the detection of binder peptides, and this has
proven particularly useful for identifying egg proteins in cases
where their presence was suspected but not previously
detected.199 The recent development of low cost, minimally
destructive sampling techniques that can be conducted without
specialist training154,157,169,490,501−503 promises to make
proteomic studies of artwork more feasible, and further
development of PMF using MALDI-TOF will facilitate larger
scale data collection.
In addition to paint and mortar binders, a number of other

historical and archaeological cultural heritage items have also
been analyzed using proteomics techniques. Collagenous glues
made from both mammal and fish gelatin have been identified
in historical and archaeological samples.201,504,505 Many other
varying items have been analyzed including cosmetic sticks,506

metal coated gut threads,507 organic coatings on skulls and
artifacts,508 a birth girdle,432 photographs,503 and collections of
museum items.254 Proteomic analysis of these items can assist
in better understanding the knowledge, processes, and choices
used to create material culture.
Proteomics is also proving useful for understanding past

conservation practices and guiding future efforts. For example,
a recent study of historically conserved calfskin revealed cross-
linked calf-rabbit collagen peptides, indicating that form-
aldehyde and rabbit glue had been used to conserve the
piece.509 In addition, identification of mixed and even
mislabeled glues as part of conservation practices is just
beginning to be explored.490 Proteomic techniques can also
help identify fungi and bacteria living on the surface of cultural
heritage objects, such as parchment,510 and in future it may be
possible to use this information to identify objects at risk and
to enhance methods of conservation.

4. CURRENT CHALLENGES
Paleoproteomics is revolutionizing the way we study the past
and providing unprecedented insights into evolution, phylog-
eny, human economies, cuisine, art, and other forms of
material culture. However, current inefficiencies in protein
recovery and measurement, limits of instrumentation, and
insufficient databases and computational power hamper our

ability to fully access ancient proteomes. Combined, these
problems can result in the failure to identify key proteins that
are present in a sample, create biases of detection, or limit the
ability to quantitatively analyze archaeological and historical
proteomes. Here we discuss major challenges still to be
overcome with respect to the detection, identification, and
authentication of ancient peptides and proteins.
4.1. Protein Detection

In order for proteins to be detected they must become
incorporated into the archaeological record, survive over time,
denature, solubilize, and be digested during the extraction
process, ionize in the mass spectrometer, and fall within the
instrument’s dynamic range of detection. These are hard limits
for mass spectrometry, and any peptides that remain
undetected are unrecoverable. Biological and diagenetic
variation can lead to proteins and peptides being unequally
incorporated, degraded, extracted, digested, and ionized in
ways that are influenced by the protein’s amino acid sequence,
hydrophobicity, protein structure, chemical modifications,
interactions with a mineral matrix, and choice of extraction
method.9,140,366,511,512 Instrument design and performance also
limits the detection and reproducibility of find-
ings.92,188,191,513,514 Some of these factors can be anticipated,
while others not.
Biases related to protein size and sequence are among the

most predictable. For example, some proteins (e.g., COL1) are
extremely large, and thus produce many peptides, making their
detection more likely than smaller proteins, even if both
proteins are present in equal quantities (Figure 4A). Other
proteins, such keratins, have a large number of cysteine
disulfide linkages that can be difficult to fully break during
extraction, resulting in underdetection (Figure 4A). Following
digestion, some peptides can be predicted to have low
recoverability because they are either too small or too large
for efficient ionization and measurement by a given instrument
(Figure 4A). In addition, diagenetic changes can also alter
protease cut sites, changing detectability. For example, the
positively charged side chains of Arg and Lys are prone to
deamination and glycation, which contributes to missed
cleavages and reduces the efficiency of trypsin in older
samples. In vivo autodigestion (e.g., enamel proteins) and
diagenetic backbone cleavage also alter expected peptide
profiles.
Peptides from a given protein that are able to be consistently

detected are known as proteotypic peptides; however, despite
great effort, attempts to predict proteotypic peptides have been
met with only limited success.515−517 The inability to
adequately correct for detection biases across the proteome
represents a major challenge for protein quantitation518 and is
even more challenging for ancient samples and discovery-based
applications.
One of the most vexing problems in shotgun proteomics is

its limited reproducibility, especially for low abundance
proteins, which are often the main proteins of interest in
ancient protein studies. Two factors combine to contribute to
this problem. First, gene expression, and hence protein
abundance, typically varies by more than 6 orders of magnitude
within a given tissue,358,359,519 and even up to 12 orders of
magnitude within biofluids.520,521 This is starkly different from
DNA, where most genes are present in a single copy and even
multicopy genes rarely differ in abundance by more than 1
order of magnitude.522 Thus, the dynamic range of a proteome
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is enormous. Second, current tandem mass spectrometers are
not powerful enough to selectively fragment and analyze all
precursor ions generated from a given sample,514 and thus only
a fraction of the complex peptide mixture is accessible by
conventional shotgun proteomics.523 For a given mass-to-
charge (m/z) window, current instruments either select the
most abundant ion for fragmentation and MS2 (DDA) or they
select all ions, producing a mixed MS2 (DIA).204 Neither are
satisfying solutions for ancient proteins. DDA leads to poorly
reproducible ion selection and underselection of low
abundance peptides, while DIA produces MS2s that are
difficult to deconvolute and still suffer from low signal-to-noise
ratios for low abundance peptides. Targeting methods, such as
MRM or PRM, only partially address the problem and are
wasteful of sample, as they only measure preselected
peptides,524 which can be difficult to know in advance for
discovery-based studies or when diagenetic modifications of
target proteins are unknown. Better chromatography, ion
mobility, faster, more powerful instruments, and computational
improvements may soon ease some of these prob-
lems,191,525−529 but at present ancient protein studies have
yet to achieve the high degree of reproducibility that
paleogenomics enjoys.
4.2. Protein Identification

Protein identification, especially from complex mixtures of
unknown composition, remains an ongoing challenge.
Sequence-based identification remains the gold standard in
paleoproteomics, but such identification is strongly influenced
by the choice of database and anticipated modifications,
meaning that only peptides that are looked for can be
identified. In the light of these limitations, some analysis
strategies include error-tolerant or de novo sequencing
approaches in order to increase the number of identified
MS2 spectra beyond that of the database. However, as the
sample search space increases through the addition of
sequences or permitted modifications, computational demands
can quickly exceed current feasibility. Fortunately, unlike
detection limits, identification limitations are soft in that data
can be later reanalyzed with updated software, algorithms,
databases, computing infrastructure, and chemical modification
parameters to improve identifications.
Databases are currently a major limiting factor in ancient

protein identification. Although the proteomes of humans359

and some model organisms519,530,531 are now well curated and
annotated, the proteomes of many taxa of archaeological
interest, from molluscs to microbiomes, remain insufficiently
or poorly characterized. Most databases suffer from inclusion
bias, with model organisms and economically important taxa
being vastly overrepresented compared to other species.
Domesticated taurine cattle (Bos taurus), for example, has a
published genome and a well-annotated proteome, with
140,740 entries in UniProtKB and 9,936,498 in NCBI
GenBank. In contrast, only limited genetic sequence data are
available for the banteng (Bos javanicus), a related species of
cattle from Southeast Asia for which there are fewer than 400
protein sequences in NCBI GenBank and UniProtKB. Even in
cases where a full genome for a species is available, there can
be significant delays between when genomic data is submitted
to a database, such as NCBI GenBank, and when its annotated
proteome becomes available across linked platforms, such as
UniProtKB. For example, at the time of writing, UniProtKB
contained only 97 reviewed and 2,985 unreviewed proteins for

domesticated water buffalo (Bubalus bubalis), but its entire
genome was available through NCBI GenBank, including
64,378 annotated proteins. In addition, although UniProtKB
aggregates data from major genetic databases, it does not
incorporate all annotated genomic data, and some curated
protein databases continue to be independent, such as the
HOMD, WormBase, ParaSite, and VectorBase. Thus, protein
representation even within large protein databases, such as
UniProtKB, is highly variable across major taxonomic groups,
especially when accounting for the number of known species
per group (Figure 4B), and careful consideration must be given
to database selection and database biases during study design.
Several commonly observed data artifacts in paleoproteo-

mics studies are database-dependent and can be avoided by
accounting for the known biases of specific databases and
search algorithms. For example, where there is a substantial
imbalance in the amount of protein sequence coverage for
related taxa, database searching may incorrectly identify the
protein as originating from the wrong species due to the higher
number of conserved peptide matches to the better covered
species, which may have more complete sequences as well as
more isoforms. This is commonly observed in studies of
domesticated bovids, which are frequently targeted for
taxonomic discrimination using proteomic methods. Taurine
cattle have roughly 1.5 times the amount of protein entries in
UniProtKB than sheep (91,483) and goat (90,609) and the
imbalance is even greater in NCBI GenBank, with taurine
cattle having 20 times the amount of protein entries as sheep
(336,178) and 40 times the amount of protein entries than
goat (156,078). Proteomic analyses of these and other less well
studied bovids generally return at least some protein
taxonomic assignments to taurine cattle, the latter being an
artifact of the more extensive representation of taurine cattle
proteins in the database. While some taurine cattle protein
entries in these databases are redundant, others contain
important allelic sequence variants, and sequences generated
from transcriptome data additionally include isoforms deriving
from alternative splicing that are highly relevant for proteomics
studies. When attempting to use proteomics to distinguish
between closely related species, not only is the coverage of
each species in the protein database important, so is the
difference between the number of protein entries present.
Another common artifact occurs when databases contain

entries for a protein with differing degrees of completeness,
and entries containing only the mature protein sequence are
preferentially (and sometimes incorrectly) identified over
entries that also contain the signal peptides and other regions
that are removed during mature protein formation. This has
been observed in studies of mammalian collagen when search
algorithms return spurious high-scoring assignments to extinct
species, such as the giant South American ungulate Toxodon. In
the case of Toxodon, the fossil COL1A1 protein entry in
UniProtKB consists of only the helical region of the protein
(UniProtKB C0HJP7, ∼1000 amino acids), whereas COL1A1
entries for extant taxa also include the flanking signal peptide,
propeptide, and telopeptide regions, making it ∼500 amino
acids longer. Signal and propeptides are removed during
mature protein formation and are therefore never recovered
from archaeological samples, while telopeptides are only rarely
recovered. Because collagen is highly conserved across
mammals, many recovered peptides will be shared among all
ungulates, but these conserved peptides will have a higher
percentage of protein coverage to Toxodon COL1A1 compared
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to extant taxa, making Toxodon a higher ranked match. Such
artifacts can be easily identified and corrected by manually
checking the sequence alignments and verifying the taxonomic
specificity of the matches. Thus, sequence and taxonomic
validation are important steps of data analysis in exploratory
paleoproteomics studies.
Beyond issues of database completeness, databases also

contain entries with varying levels of quality, annotation, and
associated metadata. Within UniProtKB, the vast majority of
sequences are unreviewed (TrEMBL), meaning that they are
generated through an automated annotation process, while
proteins whose annotations are manually reviewed (SwissProt)
make up <0.5% of currently available protein data for flowering
plants, mammals, birds, and fish (Figure 4B). While automati-
cally annotated sequences in TrEMBL are largely accurate,
they often require further review of the source entry and
comparison with the same gene in other species. Sometimes it
can be helpful to search against translated nucleotide databases
(tblastn) in order to assess the range of species in which similar
sequences have been identified. Many unreviewed entries also
lack sufficient metadata for downstream analysis and may be
simply annotated as a hypothetical or uncharacterized protein.
Collectively, these problems can be particularly acute for

paleodietary studies in which ancient groups consumed a wide
variety of foods that may or may not have adequate database
representation. Consider, for example, the components of a
hypothetical ancient Mesoamerican diet shown in Figure 4C,
which includes common foods consumed in Central Mexico
and the Maya lowlands. The human proteome is also included
for comparison. At the time of writing, the number of total
protein entries in UniProtKB for maize (Z. mays, 171,947)
vastly exceeded that of other staple grains, such as amaranth
(A. cruentus, 138), the database representation of white-tailed
deer (O. virginianus, 37,513) and dwarfs that of red brocket
deer (M. americana, 59). Protein entries for turkey (M.
gallopavo, 17,051) greatly exceed those of muscovy duck (C.
moschata, 146), as do entries for common beans (P. vulgaris,
32,845) compared to other legumes (L. esculenta, 9). Other
food items, such as common vegetables (C. pepo, 667; D.
ambrosioides, 124), local fish (A. felis, 37; M. urophthalmus, 65),
and edible snails (L. esculenta, 9; P. f lagellata, 4; P. indiorum, 1)
have very few protein entries, effectively making them invisible
in proteomic studies of ancient diets. Using an alternative
database, such as NCBI RefSeq or GenBank, substantially
improves the protein representation for some foods (e.g., C.
pepo, 43,466) but not others (e.g., D. ambrosioides, 250; A.
felis, 61; and P. indiorum, 1). Thus, while changing or
combining databases can improve the identification of some
genetically well-studied taxa, little can be done to improve the
visibility of many other ancient Mesoamerican foods until
more genetic data is available. Paleoproteomic characterization
of ancient diets is therefore largely opportunistic. As such,
while the identification of a dietary protein can be taken as
positive evidence of its presence, the failure to identify a given
food cannot be taken as evidence of its absence.
Beyond using existing protein databases, mining sequences

from genetic and transcriptomic databases (proteogenomics)
that are not automatically annotated by UniProtKB to create
custom databases can increase identifications, as can de novo
sequencing of proteins or peptides of interest. However, these
options can be time-consuming and low-throughput if the
proteins of interest are not already known or if the taxa
themselves are understudied, which limits their feasibility in

discovery-based applications. Massive gains in annotated
genomic sequence data are needed to overcome this problem,
and large-scale international efforts to dramatically increase the
cataloging and characterization of eukaryotic biodiversity, such
as the Earth BioGenome Project,532 the Vertebrate Genomes
Project,533,534 and the Darwin Tree of Life Project,535 offer
great promise for improving the detection of dietary proteins in
future paleodietary studies.
For now, however, even taxonomic identifications based on

extremely well characterized proteins, such as COL1, face
challenges. For example, there are currently no curated
databases for COL1 PMF markers, which poses a large barrier
to the exponentially growing ZooMS community. Beyond the
taxonomic biases of proteomic databases, such as UniProtKB,
and especially the underrepresentation of fish and birds, COL1
genes are often incorrectly translated from genetic data or
contain incorrect annotations. In the absence of sufficient
databases, multivariate analysis and other statistical tools have
been successful at clustering COL1 and keratin peptide groups
for taxonomic identification of sample types such as bone and
hair.315,536 Moreover, in the case of COL1 the charge pairing
in the molecule required for fibril formation results in highly
conserved tryptic cleavage sites, meaning that it is possible to
compute all potential variants for every arginine- and lysine-
terminated peptide, generating theoretically huge databases of
10222 collagen sequences,20 and thereby potentially, albeit
impractically, allowing the de novo identification of COL1
peptides with high fidelity from MS2 spectra.
As the field of paleoproteomics progresses, more consistent

reporting of search settings and the percentage of identified
spectra will help to highlight the extent of the problem of
identification, as well as allow metaanalysis of the success of
different search strategies for different types of samples. With
the exponential growth of genomes, transcriptomes, and
proteomes, increasing characterization of modifications, and
development of new PMF markers, reanalysis of previous
samples will likely result in an increasing amount of detected
proteins and/or taxonomic resolution. However, this requires
publication of raw data to facilitate reanalysis, as is already
recommended for ancient LC−MS/MS data4 and facilitated by
the ProteomeXchange consortium537 via repositories such as
PRIDE.538 As no global repository exists for MALDI-TOF
data, it is currently less common for PMF raw data to be
published, although growing numbers of data sets are found on
the open-access general purpose repository Zenodo (https://
zenodo.org/search?q=zooms), which was developed under the
European OpenAIRE program and is run by CERN.
4.3. Protein Authentication

One challenge that particularly affects paleoproteomics is the
difficulty of distinguishing authentically ancient peptides,
proteins, and proteomes from environmental and modern
contamination.
4.3.1. Sources of Contamination. Potential sources of

contamination are myriad, but for modern proteomics they are
mostly lab-derived and easily mitigated. Contamination poses a
much more challenging problem for paleoproteomics, where
the proteins of interest are degraded, in low abundance, and
frequently unknown. Sources of contamination from the
laboratory are well described135 and can be identified and
controlled through the analysis of extraction and instrument
blanks and the application of best practices.4
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Less controllable are environmental contaminants that are
introduced over time by the burial or depositional context.
Environmental contamination can be accounted for to some
degree by collecting and analyzing control samples from other
associated remains or nearby sediment or soil, although this is
not always feasible. The inclusion of controls in the
experimental design is particularly important for paleoproteo-
mic studies on: (1) open systems, such as the identification of
a nursing female dog from milk proteins found in rib bones;539

(2) sediments or soils, such as the identification of silk from
textile imprints in the soil;332 and (3) infectious pathogens,
especially taxa that have close environmental relatives, such as
Mycobacterium tuberculosis.437,475

Even more variable and often unpredictable are contami-
nants introduced during excavation, handling, storage, and
conservation. This is a particular problem when analyzing

museum collections where handling and curation history are
not well documented. Contamination can occur during
handling when collections are used for teaching or placed on
display, and contaminants can also be unintentionally
introduced through local storage conditions and may include
proteins from bacteria, fungi, and rodent or insect pests, as well
as treatments used in their control.540 Object conservation is
also a major source of contamination. Although today
museums and conservators have synthetic options for
consolidants, adhesives, and preservatives, natural products
were almost exclusively used in the past, and some continue to
be used as they provide certain benefits over synthetic
materials.541,542 Those most relevant for paleoproteomics
research are collagen based glues,543 fibroin used to repair
silk,544 and egg and milk based glazes and treatments, such as
the application of egg whites and phytic acid as a flame

Figure 5. Representative examples of ancient proteomes. Well-preserved ancient proteomes contain distinctive groups of proteins that reflect the
protein composition of the original tissue or material, such as human bone364 (A), human dental calculus445 (B), artist materials137 (C), and
pottery crusts99 (D). As such, the composition of an ancient proteome can aid in its authentication. Data were searched against the SwissProt
database using Mascot using the parameters described in ref 102. Protein identifications were established at <5.0% protein FDR and <1.0% peptide
FDR in Scaffold v.5 (Proteome Software), and proteins with a minimum of 97% protein identification probability and at least two unique peptides
were accepted. The top 15 proteins (by number of PSMs) per sample source were visualized as a treemap and labeled by their corresponding gene
name; trypsin, keratins, serum albumin, and microbial proteins were excluded from the analysis. *Ovostatin; **riboflavin-binding protein; ***B3-
hordein.
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retardant.545 While the impact of conservation efforts on
ancient DNA, stable isotope, and radiocarbon analyses has
been extensively investigated,546−548 their effect on paleo-
proteomics has been less systematically studied. Best practices
involve avoiding samples where treatment or extensive
handling has taken place.
4.3.2. Methods of Authentication. There are two main

approaches to authenticating ancient proteins. The first
involves the identification of damage patterns characteristic
of ancient proteins. The second examines the broader context
of the proteins, including its associated metaproteome and
other corroborating lines of evidence.
Among ancient biomolecules, DNA undergoes regular and

predictable forms of degradation that produce characteristic
types of ancient DNA damage,549,550 the most important of
which are DNA fragmentation and cytosine deamination.551

Their mechanisms of formation are well understood, and they
are so consistent that they can be used to authenticate ancient
DNA552 and even distinguish ancient and modern DNA
sequences in heavily contaminated samples.553 Proteins also
undergo processes of degradation, and methods have been
proposed to authenticate ancient proteins or proteomes in
cases where sufficient numbers of identified MS2s are available
for statistical analysis (e.g., ref 554). The biochemical and
structural complexity of proteins, however, makes damage-
related authentication of ancient proteins considerably more
complicated than for ancient DNA.
For very ancient samples, hydrolysis is expected to cause

protein fragmentation, resulting in a bias toward shorter
enzymatic peptides, and an increased number of nontryptic
cleavage sites (reviewed in127). Diagenetic amino acid
modifications have also been proposed as markers of
authenticity, but due to the increased biological complexity
of proteins, other factors besides age can strongly influence the
production or prevention modifications.9,555 In particular,
deamidation of asparagine and glutamine have been proposed
as markers of authentication in both PMF and LC−MS/MS
data.275,365,554,556−558 Unlike deamination in aDNA, however,
deamidation also occurs in vivo559 and is strongly impacted by
both local depositional chemistry560 and choice of extraction
method.140,561 Therefore, its use as a reliable age-related
indicator has been questioned.555,560,562,563

In MALDI-TOF applications, COL1 deamidation has been
used as a relative age marker and proposed as a criterion to
identify intrusive samples. In practice, however, this requires
very large data sets, and even when data for large numbers of
samples (>2,000) are available, the accuracy of seriating
samples by relative age class is less than 50%.560 For LC−MS/
MS studies, deamidation has mostly been analyzed semi-
quantitatively at the metaproteome level (e.g., refs 14, 92, 197)
in order to show that deamidation is a top modification in the
data set. Some studies have attempted to authenticate specific
proteins using deamidation patterns,101,439 but this requires a
relatively large data set to perform statistical analysis, which is
not always possible,223 and even in cases where enough data is
available, the results are not straightforward to interpret.562

Nevertheless, proteins of ancient origin should exhibit evidence
of diagenesis. Caution should be exercised if reports contain
evidence of unexpected chemical behavior such as the lack of
any degradation of proteins over extended periods of
archaeological or geological time564 or if unexpected proteins
are detected that are commonly used in the same facility.565

Future improvements in understanding and modeling protein

diagenesis at specific amino acid sites may one day enable
protein damage to be used more reliably and quantitatively as
an age indicator. For now, however, it is most effectively used
as a qualitative indicator of age in combination with other
authentication approaches.
Contextual analysis focusing on the composition of the

metaproteome as a whole, together with other corroborating
lines of evidence, is currently the most robust authentication
approach for ancient proteins. One important feature of
proteins is that their expression is tissue specific, and thus the
composition of the ancient metaproteome itself can be used to
aid in its authentication. Different tissues and substrates, such
as bone, dental calculus, artist materials, and pottery food
crusts, are expected to each have a different and distinctive
protein composition, and this is reflected empirically in ancient
samples (Figure 5). Clear patterns are readily apparent. Bone is
dominated by collagens and proteins involved in fibrilar
organization and mineralization, as well as blood clotting
factors and plasma proteins.364 Dental calculus is enriched in
collagen and proteins associated with the innate immune
system (especially neutrophils), and also contains salivary
amylase and occasional dietary proteins.92,445 Artist materials,
such as paints, tend to be dominated by a single protein source,
such as egg,137 and pottery food crusts are highly diverse but
contain elevated levels of animal and plant proteins associated
with foods, in this case foods independently known to have
been consumed at the site.99 For sample types that naturally
contain a microbial component, such as microbiomes, the
bacterial protein and taxonomic composition can also serve as
an authentication aid,92,440,566 and for sample types that do not
contain a microbial component during life or use, the relative
proportions of microbial proteins to presumed endogenous
proteins can also serve a relative preservation indicator.
As more modern and ancient metaproteomes are charac-

terized and their data made public, the characteristic features
and composition of well-preserved metaproteomes can be
defined and used as benchmarks for paleoproteomic
authentication. Such data, in combination with independent
corroborating lines of evidence, such as paleogenomic data,
paleoethnobotanical evidence, or zooarchaeological findings,
can be used to assist in establishing the plausibility of findings,
particularly those that are extraordinary or unanticipated.

5. FUTURE DIRECTIONS: TAKING ON THE DARK
PROTEOME

Despite significant technological advances, much of the ancient
proteome still remains “dark” as seen in the consistently low
percentage of identified MS2 spectra. This darkness, however,
also represents an opportunity, as it means that there are still
ancient proteins and proteomes to be discovered if only the
right tools can be developed to access them. On the basis of
current knowledge, the dark proteome can be divided into
three types: (1) “structurally dark” regions of proteins567 that
are intrinsically disordered, never resolved, or (in the case of
bottom up proteomics) lacking suitable cleavage sites; (2)
“overlooked” peptides, peptides that have been modified to
such a degree that their spectra are not recognizable by
conventional MS2 analysis; and (3) “unidentifiable” protein
fragments that have cross-linked or condensed into novel
chimeric structures that have not been previously studied.
Below we discuss new technologies that may assist with
understanding and accessing the dark proteome, as well as
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consider the potential of emerging nonmass spectrometry-
based sequencing approaches in paleoproteomics.
5.1. Emerging Technologies in Mass Spectrometry

Many of the unmatched queries found in ancient protein data
sets are presumably the result of poor ion selection,
fragmentation, and/or detection. A range of new instrumenta-
tion options are being developed that include faster data
acquisition, higher sensitivity, and increased ion transfer
efficiency. However, mass spectrometers are now reaching
the point where chromatography will need to be improved in
order for these instrument improvements to actually provide
better data,191 and yet paleoproteomic samples often suffer
from poor chromatography due to unknown coextracted
compounds or other factors. Alternatively, chromatography
may be augmented or even eventually replaced by enhanced
gas phase separation and fractionation, such as ion mobility, as
is currently being implemented in Direct Infusion Shotgun
Proteome Analysis (DISPA).568 Future research development
needs to focus on specific optimization for paleoproteomic
samples, with the aim of improving precursor separation,
reducing peak width, and generating better MS2 spectra. This
will ultimately improve peptide identification and even enable
de novo sequencing to resolve some of the overlooked peptides.
This can be combined with improvements in databases,
characterization of proteins, structural determination (e.g.,
AlphaFold569), and digestion168 to aid in the recovery of
structurally dark sequences.
Although chromatography improvements and database

expansions represent low hanging fruit, identifying overlooked
proteins and novel chimeric structures will be much more
difficult, and it will require a better understanding of the
diagenetic processes that facilitate preservation but inhibit
recovery and challenge identification. In addition to side chain
modification, backbone hydrolysis, and cyclization, peptides
can undergo condensation with other molecules in the
archaeological environment, including other proteins, lipids,
carbohydrates, nucleic acids, metabolites, and inorganic
compounds. Some of these reaction types are already targets
for methodological improvement due to their presence in vivo
(e.g., glycoproteins and some types of protein−protein and
protein-nucleotide cross-linking).509 However, many are likely
novel degradation products or uncharacterized interactions
that involve hydrolysis and reformation of the peptide
backbone to form truly chimeric proteins.
One approach to this problem is to use experimental time

series data to attempt to recreate the process of diagenesis. A
time series has the advantage that even if compounds cannot
be directly identified, their rise and fall highlights their place in
a complex diagenetic pathway. Thankfully, the technologies to
analyze these are routine rather than emerging. Raman
spectroscopy can give insights into chemical character, amino
acid analysis can detect the building blocks, and FT-ICR MS
can establish the atomic composition of the masses. Similar
approaches are used to understand the humification of soil
organic matter570,571 and the formation of melanoidins, the
condensation products of proteins and carbohydrates. Greater
structural insights into these diagenetic products will likely
reveal a multiplicity of products each present in vanishingly
small concentrations much like the hydrocarbon “hump”
(unresolved complex mixtures of diagenetic components found
in crude oils572) or the myriad of compounds identified in
humic extracts.

An alternative approach is to visualize the interactions
between the different combinations of peptides, proteins, and
mineral surfaces that play a role in protecting sequences over
deep time, but also likely inhibit recovery. Atomic force
microscopy and high resolution 2D electron microscopy and
3D tomography imaging have already begun to inform the
intimate association between, and therefore survival mecha-
nisms of, collagen and mineral in bone.573 Continued
investigation into bone, as well as other biominerals and
degradation products that produce mineral surfaces, will allow
for both a better understanding of protein survival and, more
importantly, modifications unique to such protein mineral
interactions. Building a greater understanding of these
modifications into search strategies will hopefully uncover
more peptides, while pattern based discrimination analyses
(e.g., machine learning) will assist in identifying groups of new
products forming over time.
Spatial subcellular proteomics is still in its infancy,574 but

will likely make considerable advances over the next decade.575

It combines super-resolution microscopy and top-down
proteomic analysis to enable in situ mass spectrometry imaging
(MSI). Spatial resolution will enhance our understanding of
layered and otherwise structurally organized proteins such as
cross sections of artwork or incremental precipitation of
biologically induced or mediated mineral formation. The best
known and highest resolution method is MALDI MSI, which is
already providing detailed molecular images of tissues, but it is
limited by its need for surface matrix deposition in many cases.
Although their resolution is not as good as MALDI MSI,
instruments which do not require matrix deposition and may
be better suited to the size of paleoproteomic samples are
being explored such as in situ DESI, nano-DESI, and LESA
MSI.194,195,576 Although current super-resolution microscopy
approaches rely on fluorescence based methods577 which are
challenging for ancient samples, this is a growing field of
research with new approaches being proposed and developed
(e.g., Akoya Bioscience’s CODEX, Resolve’s Molecular
Cartography combined with Zeiss Microscopes) which push
the limits of imaging. Even if such imaging approaches are not
suited for ancient samples, they can be used to investigate
experimental samples to better characterize “overlooked” and
“unidentifiable” parts of the dark proteome.
5.2. Beyond Mass Spectrometry?

For the past two decades, mass spectrometry has been the
workhorse of proteomics and protein-based studies; never-
theless, mass spectrometry is also limited in that “instead of
truly sequencing, it classifies a protein and typically requires
about a billion copies of a protein to do it”.67 A variety of other
non-MS based technologies are currently emerging that offer
the promise of both higher sensitivity and greater scale, such as
massively parallel sequencing by nanopore, fluorosequencing,
and image-based Edman.67,68,578 At present, these techniques
are not ideally suited to paleoproteomics due to the anticipated
and unexpected modifications present in ancient samples,579 as
well as the autofluorescence caused by diagenesis,580 but as
these technologies continue to be optimized, their use may
come within reach of paleoproteomics. In addition, the
increasing focus on MS-based spatial and single cell proteomics
mean that these technologies are far from the only options that
will become available over the next decade as alternatives to
conventional mass spectrometry.
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6. CONCLUSION
The mass spectrometry revolution in paleoproteomics has
contributed to unprecedented findings over the past two
decades, from the discovery of new archaic human
fossils184,291,292 to the detailed characterization of Neolithic
and Bronze Age cuisines.95,99,101,102,107,108,223,445 Ancient
proteins have been particularly valuable for revealing
ephemeral aspects of the past, such as the care and repair of
art and museum objects,509 the construction methods of
books,156,295 and even the difficulties of labor and childbirth.432

While much of the ancient protein research over the past two
decades has been exploratory and opportunistic in nature, the
data produced and the knowledge gained will allow for larger
scale and more directed questions to be explored in the coming
decades. With this expansion, paleoproteomics is poised to
provide insights from the past that can inform on matters
ranging from ecological conservation to human health and
wellbeing. Exciting new instruments and capabilities are on the
horizon that promise to push the limits of our detection even
farther, but only a better fundamental understanding of how
proteins both degrade and persist will allow us to access the
dark proteome that predominates in most archaeological
samples. The past 20 years have been characterized by
unprecedented gains in the ability to detect and identify
ancient proteins, proteomes, and metaproteomes through
advances in mass spectrometry. The next 20 years will surely
hold many surprises as we begin to apply this analytical power
to answer long-standing questions about the past and innovate
new solutions to old problems.
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GLOSSARY OF ABBREVIATIONS AND ACRONYMS

AAR = amino acid racemization; the chiral conversion of L-
amino acids into D-amino acids
AHSG = α2-HS glycoprotein, also known as fetuin-A; a
protein that contributes to biomineralization
AMBN = ameloblastin; a major protein in enamel
AMBP = α-1-Microglobulin/Bikunin Precursor; a protein
that has been detected in pottery residues
AMELX = X-chromosome isoform of the amelogenin
protein; a major protein in enamel
AMELY = Y-chromosome isoform of the amelogenin
protein; a major protein in enamel
AMTN = amelotin; a major protein in enamel
ASPN = asporin; a protein that facilitates tooth attachment
to the periodontal ligament
AVD = avidin; a protein present in egg white
b ions = in protein tandem mass spectrometry, b ions are a
series of fragment ions that extend from the N-terminus.
Low energy collision induced dissociation (CID) typically
produces pairs of b ions and y ions by breaking the peptide
amide bond.
BGN = biglycan; a protein that facilitates biomineralization
BLASTp = protein−protein basic local alignment search
tool; a tool that identifies regions of local similarity between
protein sequences; it can be used to infer functional and
evolutionary relationships
BLG = β-lactoglobulin; a major protein in the whey fraction
of milk
bp = base pairs of double-stranded DNA
BP = Before Present, a standard unit of time used in
radiocarbon dating that is calculated as radiocarbon years
before 1950. May be uncalibrated (radiocarbon years before
present, RCYBP) or calibrated (cal BP). For date
estimations obtained without radiometric methods, the
units Ka (kiloannuum, thousand years ago) or Ma
(megaannuum, million years ago) are recommended.
CERN = Conseil Europeén pour la Recherche Nucleáire;
the European Organization for Nuclear Research
CID = collision-induced dissociation; a method of precursor
ion fragmentation in tandem mass spectrometry that is
widely used in proteomics and which primarily produces b
and y ions
C-terminus = left-to-right nomenclature of an amino acid
chain, referring to the last amino acid in the chain that has a
free carboxylic acid group.
C3 = complement component 3; a protein of the innate
immune system that plays a key role in the complement
system
C18 = octadecyl carbon chain (C18)-bonded silica; used for
protein and peptide purification
CBP = corneous β-proteins, formerly known as β-keratins; a
group of structural proteins that are the predominant
proteins in the hard corneous material of avian and reptilian
scales, claws, beaks, and feathers and turtle shells
CD14 = cluster of differentiation 14; a protein of the innate
immune system predominantly produced by macrophages
that binds bacterial lipopolysaccharide (LPS)
CDS = coding DNA sequence; the portion of a gene that is
expressed into protein
CHAD = chondroadherin; a cartilage-associated protein
expressed on bone articular surfaces

CHCA = α-cyano-4-hydroxycinnamic acid; a commonly
used matrix in MALDI-TOF MS
CLU = clusterin; a widely expressed secretory glycoprotein
in mammals, and also in bird eggshell and egg white
COL1 = Type I collagen; the most abundant form of
collagen in animals
COL12 = Type XII collagen; a collagen protein that is
found in association with type I collagen
cRAP = Common Repository of Adventitious Proteins; a list
of common contaminants in mass spectrometry laboratories
CSN1S1 = α S1 casein; a major milk protein
CSN2 = β casein; a major milk protein
CTSG = cathepsin G; a defensive protein produced by cells
of the innate immune system, especially neutrophils
D-amino acid = stereoisomeric form of an amino acid in the
D-configuration (dextrorotatory, rotates polarized light
rightwards). Although present in peptidoglycan and
produced by bacteria, D-amino acids contribute minimally
to the proteins of most living organisms. Most D-amino acids
are believed to form through diagenetic racemization.
Da, kDa = dalton, kilodalton; a dalton is defined as one
twelfth the mass of a free neutral atom of 12C at rest
DDA = data-dependent acquisition; a mode of data
collection in tandem mass spectrometry in which the most
intense precursor ions in a first stage of tandem mass
spectrometry are then fragmented and analyzed in a second
stage of tandem mass spectrometry
DDJB = DNA Databank of Japan; one of three consortium
members in the INSDC
DEFA = defensin α 1, also known as neutrophil defensin 1;
a cytotoxic protein produced by cells of the innate immune
system, especially neutrophils
DEJ = dentine−enamel junction. The junction between the
enamel crown and the underlying tooth dentine; a key site
of enamel production during development.
DESI = desorption electrospray ionization
DHB = 2,5-dihydroxybenzoic acid
DIA = data-independent acquisition; a mode of data
collection in tandem mass spectrometry in which all
precursor ions within a narrow m/z window in a first
stage of tandem mass spectrometry are then fragmented in a
second stage of mass spectrometry
DISPA = direct infusion shotgun proteome analysis
DNA = deoxyribonucleic acid
DPT = dermatopontin; an extracellular matrix protein that
accelerates collagen fibril formation and stabilizes collagen
fibrils
EDTA = ethylenediaminetetraacetic acid (EDTA), notable
for its 2+ cation chelating ability. Widely used in ancient
biomolecular studies to demineralize skeletal remains.
ELISA = enzyme-linked immunosorbent assay; a solid-phase
type of immunoassay that can detect protein ligands in
solution using antibodies
EMBL-EBI = European Bioinformatics Institute, based in
Hinxton, UK; a component of the European Molecular
Biology Laboratory, an intragovernmental organization
headquartered in Heidelberg, Germany. One of three
consortium members in the INSDC and a member of the
UniProt Consortium
ENAM = enamelin; a major protein in enamel
Ensembl = a project run by EMBL-EBI that imports primary
data from genome and genetic data archive resources and
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provides annotation of transcript structures, genomic
variants, and regulatory regions
ESI = electrospray ionization; a form of soft ionization used
by LC−MS/MS systems
EVA = ethylene-vinyl acetate; an elastomeric polymer used
for minimally invasive protein sampling
F2 = coagulation factor II, also known as prothrombin; a
protein involved in blood coagulation
F7 = coagulation factor VII; a protein involved in blood
coagulation
F9 = coagulation factor IX; a protein involved in blood
coagulation
F10 = coagulation factor X; a protein involved in blood
coagulation
FASP = filter-aided sample preparation; a method used for
protein extraction
FDR = False Discovery Rate; a statistical method for
estimating type I errors. FDR-controlling procedures are
applied to peptide and protein identifications to minimize
spurious results
FT-ICR MS = Fourier-transform ion cyclotron mass
spectrometry
GAPB = glyceraldehyde-3-phosphate dehydrogenase; a
ubiquitous enzyme involved in glycolysis
GASP = Gel-Aided Sample Preparation; a method used for
protein extraction
GenBank = genetic sequence database containing an
annotated collection of all publicly available DNA sequences
maintained by NCBI
Glu-C = endoproteinase that preferentially cleaves peptide
bonds C-terminal to glutamic acid residues; also known as
V-8 protease
GLYCAM1 = glycosylation-dependent cell adhesion mole-
cule-1; a mucin-like glycoprotein present in milk
HBA1 = hemoglobin subunit α 1; a major component of
hemoglobin in blood
HBBF = fetal hemoglobin subunit beta; a protein differ-
entially expressed in the months before and after birth;
relevant for studies animal skins and parchments
HBV = Hepatitis B virus
HOMD = Human Oral Microbiome Database; a curated
online database of human oral microbes and associated
genomic data and metadata developed and maintained by
the Forsyth Institute
HPLC = high performance liquid chromatography; form of
chromatographic separation widely used in protein tandem
mass spectrometry workflows
HSP90A = inducible cytosolic isoform of heat shock protein
90; a protein differentially expressed in the months before
and after birth. Relevant for studies animal skins and
parchments.
INSDC = International Nucleotide Sequence Database
Collaboration; a global body operated by the EMBL-EBI,
NCBI, and DDJB that coordinates the storage and sharing
of genetic sequence data, alignments, assemblies, and
functional annotations
Ka = kiloannuum; thousand years ago
KAP4-2 = keratin associated protein 4−2; a protein
component of wool
kDa = unit of mass corresponding to 1000 Da
α-keratins = Alpha-keratins are a group of structural proteins
that are the predominant proteins of vertebrate hair/fur,

nails/claws, horns, hooves, quills, and baleen; a minor
component of skin
KLK4 = kallikrein related peptidase 4; an enamel protein
KRT75 = Keratin type II cytoskeletal 75; a keratin protein
that has been identified within enamel
L-amino acid = stereoisomeric form of an amino acid in the
L-configuration (laevorotatory, rotates polarized light left-
wards). With few exceptions, proteins within living
organisms are made up of L-amino acids.
LC−MS/MS = liquid chromatography tandem mass
spectrometry
LEGK = legumin K; an abundant protein in many plant
seeds
LESA-MSI = liquid extraction surface analysis mass
spectrometry imaging
LPO = lactoperoxidase; a defensive enzyme secreted by
mammary and other mucosal glands
LRG1 = leucine rich α-2-glycoprotein 1; a secreted
glycoprotein of the innate immune system
LUM = lumican; a protein that supports collagen fibril
organization
Lys-C = endoproteinase that cleaves peptide bonds C-
terminal to lysine residues
Lys-N = metalloendoprotease that cleaves peptide bonds N-
terminal to lysine residues
LYZ = lysozyme; an antimicrobial enzyme that is part of the
innate immune system
Ma = megaannuum; million years ago
MALDI-MSI = matrix-assisted laser desorption/ionization
mass spectrometry imaging
MALDI-TOF = matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry
MGP = matrix gla protein; regulates biomineralization
MMP20 = matrix metalloproteinase-20, also known as
enamelysin; an enamel protein
MPO = myeloperoxidase; a prevalent protein in dental
calculus that is produced by cells of the innate immune
system, especially neutrophils
MRM = multiple reaction monitoring; a method that can be
used in the targeted acquisition of tandem mass
spectrometry data
MS1 = first mass scan in tandem mass spectrometry
MS2 = second mass scan in tandem mass spectrometry
MSI = mass spectrometry imaging
MUC5B = mucin 5B; a major gel-forming mucin in saliva
and other mucus
m/z = mass-to-charge ratio
N-terminus = left-to-right nomenclature of an amino acid
chain, referring to the first amino acid in the chain that has a
free amine group
NCBI = National Center for Biotechnology Information; a
governmental agency based in Bethesda, USA, that develops
and coordinates information technology, databases, and
software to support research in molecular biology,
biochemistry, and genetics. One of three consortium
members in the INSDC, it maintains the databases
GenBank and RefSeq, among other resources
NCP = noncollagenous protein; refers to the non-
collagenous proteins present within predominantly collage-
nous tissues, such as bone
ODAM = odontogeneic ameloblast-associated protein; a
major protein in enamel
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OIH = ovoinhibitor; antimicrobial protease inhibitor found
in egg white and egg yolk
PCA = principal components analysis
PMF = peptide mass fingerprinting
PIP = prolactin induced protein; a protein involved in
immunological function and fluid production
PIR = Protein Information Resource; a UniProt Consortium
member
POSTN = periostin; a protein highly expressed in bone
periosteum
PRIDE = PRoteomics IDEntifications (PRIDE) database; a
major data repository of mass spectrometry-based proteo-
mics data operated by EMBL-EBI
PRM = parallel reaction monitoring; a method that can be
used in the targeted acquisition of tandem mass
spectrometry data
ProAlanase = endoprotease that preferentially cleaves
peptide bonds C-terminal to proline and, to a lesser extent,
alanine
PSD = postsource decay
PTM = post-translational modification
PVC = polyvinyl chloride, a synthetic polymer of plastic;
used in minimally destructive sampling protocols to obtain
protein through the triboelectric effect
R group = a functional group within a molecule that has
distinctive chemical properties; the R group of an amino
acid determines which amino acid it is
RefSeq = a database of nonredundant annotated sequences
representing genomic data, transcripts and proteins
maintained by the NCBI
RIA = radioimmunoassay
RNA = ribonucleic acid
RPN2 = ribophorin II; a protein expressed in the rough
endoplasmic reticulum; relevant for studies animal skins and
parchments
S100A8 = S100 Calcium Binding Protein A8; a protein
involved in the regulation of inflammation and immune
response
S100A9 = S100 Calcium Binding Protein A9; a protein
involved in the regulation of inflammation and immune
response
SDS = sodium dodecyl sulfate; a surfactant used during
protein extraction
SERPINA1 = Serpin Family A Member 1, also known as α-
1-antitrypsin; a serine protease inhibitor
SERPINB14 = ovalbumin; a storage protein that is the most
abundant protein in egg white
SERPINF1 = Serpin Family F Member 1; neurotrophic
protein, also inhibits angiogenesis
SIB = Swiss Bioinformatics Institute; a member of the
UniProt Consortium
SP3 = single-pot, solid-phase-enhanced sample preparation;
a method used for protein extraction
SPIN = species by proteome investigation; a DIA workflow
for identifying mammalian species using tandem mass
spectrometry
SPINK7 = Serine Peptidase Inhibitor Kazal Type 7, also
known as ovomucoid; an abundant serine peptidase
inhibitor in egg white
SRM = selected reaction monitoring; a synonym for
multiple reaction monitoring (MRM)

SwissProt = manually annotated and nonredundant protein
sequence database component of the UniProtKB; main-
tained by the Swiss Institute of Bioinformatics (SIB)
TENP = transiently expressed in neural precursors, also
known as BPI fold-containing family B, member 2 and
ovoglobulin G2; a major protein in egg white
TF = transferrin; an iron binding transport protein
TfsA = tannerella surface protein A; a major component of
the S-layer in Tannerella forsythia, a bacterium associated
with dental plaque
TfsB = tannerella surface protein B; a major component of
the S-layer in Tannerella forsythia, a bacterium associated
with dental plaque
TOF = time-of-flight mass spectrometry
TrEMBL = translated EMBL Nucleotide Sequence Data
Library; nonreviewed protein sequences translated from
genetic data supplied by EMBL-EBI that have been
computationally analyzed and enriched with automatic
annotation and classification
UHPLC = ultra high performance liquid chromatography
UMOD = uromodulin; a glycoprotein produced by
mammalian kidneys, abundant in urine
UniProtKB = UniProt Knowledgebase; centralized resource
for protein metadata, including annotated structural and
functional information; maintained by the UniProt con-
sortium, which consists of the EMBL-EBI, SIB, and PIR
VIM = vimentin; a major cytoskeletal protein in
mesenchymal cells
VTN = vitronectin; a cell adhesion protein found in serum
and tissues
y ions = in protein tandem mass spectrometry, y ions are a
series of fragment ions that extend from the C-terminus.
Low energy collision induced dissociation (CID) typically
produces pairs of b ions and y ions by breaking the peptide
amide bond.
ZooMS = Zooarchaeology by Mass Spectrometry; an
application of MALDI-TOF collagen PMF for taxonomic
identification
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Klütsch, C. F. C.; Abraham, K.; Wilson, P. J. Parallel Evolution of Site-
Specific Changes in Divergent Caribou Lineages. Ecol. Evol. 2018, 8,
6053−6064.
(243) Lee, J.-H.; Lewis, K. M.; Moural, T. W.; Kirilenko, B.;
Borgonovo, B.; Prange, G.; Koessl, M.; Huggenberger, S.; Kang, C.;
Hiller, M. Molecular Parallelism in Fast-Twitch Muscle Proteins in
Echolocating Mammals. Sci. Adv. 2018, 4, No. eaat9660.
(244) A von der Dunk, S. H.; Snel, B. Recurrent Sequence Evolution
after Independent Gene Duplication. BMC Evol. Biol. 2020, 20, 1−17.
(245) Brandt, L. Ø.; Mannering, U. Taxonomic Identification of
Danish Viking Age Shoes and Skin Objects by ZooMS (Zooarchaeol-
ogy by Mass Spectrometry). J. Proteomics 2021, 231, 104038.
(246) Shoulders, M. D.; Raines, R. T. Collagen Structure and
Stability. Annu. Rev. Biochem. 2009, 78, 929−958.
(247) Perumal, S.; Antipova, O.; Orgel, J. P. R. O. Collagen Fibril
Architecture, Domain Organization, and Triple-Helical Conformation
Govern Its Proteolysis. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2824−
2829.
(248) Henriksen, K.; Karsdal, M. A. Chapter 1 - Type I Collagen. In
Biochemistry of Collagens, Laminins and Elastin (Second ed.); Karsdal,
M. A., Ed.; Academic Press, 2019; pp 1−12. DOI: 10.1016/B978-0-
12-817068-7.00001-X.
(249) Gong, Y.; Li, L.; Gong, D.; Yin, H.; Zhang, J. Biomolecular
Evidence of Silk from 8,500 Years Ago. PLoS One 2016, 11,
No. e0168042.
(250) Sire, J.-Y.; Delgado, S.; Fromentin, D.; Girondot, M.
Amelogenin: Lessons from Evolution. Arch. Oral Biol. 2005, 50,
205−212.
(251) Solazzo, C. Characterizing Historical Textiles and Clothing
with Proteomics. Conserv. patrim. 2019, 31, 97−114.
(252) Coutu, A. N.; Whitelaw, G.; le Roux, P.; Sealy, J. Earliest
Evidence for the Ivory Trade in Southern Africa: Isotopic and ZooMS
Analysis of Seventh-Tenth Century Ad Ivory from KwaZulu-Natal.
Afr. Archaeol. Rev. 2016, 33, 411−435.
(253) von Holstein, I. C. C.; Ashby, S. P.; van Doorn, N. L.; Sachs,
S. M.; Buckley, M.; Meiri, M.; Barnes, I.; Brundle, A.; Collins, M. J.
Searching for Scandinavians in Pre-Viking Scotland: Molecular
Fingerprinting of Early Medieval Combs. J. Archaeol. Sci. 2014, 41,
1−6.
(254) Kirby, D. P.; Buckley, M.; Promise, E.; Trauger, S. A.;
Holdcraft, T. R. Identification of Collagen-Based Materials in Cultural
Heritage. Analyst 2013, 138, 4849−4858.
(255) Harvey, V. L.; Egerton, V. M.; Chamberlain, A. T.; Manning,
P. L.; Buckley, M. Collagen Fingerprinting: A New Screening
Technique for Radiocarbon Dating Ancient Bone. PLoS One 2016,
11, No. e0150650.
(256) Rick, T.; Harvey, V. L.; Buckley, M. Collagen Fingerprinting
and the Chumash Billfish Fishery, Santa Barbara Channel, California,
USA. Archaeol. Anthropol. Sci. 2019, 11, 6639−6648.

(257) Welker, F.; Soressi, M.; Rendu, W.; Hublin, J.-J.; Collins, M.
Using ZooMS to Identify Fragmentary Bone from the Late Middle/
Early Upper Palaeolithic Sequence of Les Cotteś, France. J. Archaeol.
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Rendu, W.; Sinet-Mathiot, V.; Wilcke, A.; McPherron, S. J. P.; Soressi,
M.; Steele, T. E. Non-Destructive ZooMS Identification Reveals
Strategic Bone Tool Raw Material Selection by Neandertals. Sci. Rep.
2020, 10, 7746.
(269) Pétillon, J.-M.; Chauvier̀e, F.-X.; Speller, C.; McGrath, K.;
Rodrigues, A. S. L.; Charpentier, A.; Baleux, F. A Gray Whale in
Magdalenian Perigord. Species Identification of a Bone Projectile
Point from La Madeleine (Dordogne, France) Using Collagen
Fingerprinting. Paleó 2019, 30−1, 230−242.
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M.; Nikolic-́Mandic,́ S. D.; Tabet, J. C. Identification of Protein

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.1c00703
Chem. Rev. 2022, 122, 13401−13446

13442

https://doi.org/10.1590/S0074-02762003000900016
https://doi.org/10.1590/S0074-02762003000900016
https://doi.org/10.1016/S0035-9203(03)00011-7
https://doi.org/10.1016/S0035-9203(03)00011-7
https://doi.org/10.1016/j.jas.2007.11.017
https://doi.org/10.1016/j.jas.2007.11.017
https://doi.org/10.1016/j.jas.2007.11.017
https://doi.org/10.1016/j.jhevol.2014.10.016
https://doi.org/10.1016/j.earscirev.2020.103196
https://doi.org/10.1016/j.earscirev.2020.103196
https://doi.org/10.1016/j.quascirev.2017.06.032
https://doi.org/10.1016/j.quascirev.2017.06.032
https://doi.org/10.1038/nature12109
https://doi.org/10.1111/j.1475-4754.2007.00292.x
https://doi.org/10.1111/j.1475-4754.2007.00292.x
https://doi.org/10.1111/j.1475-4754.2007.00292.x
https://doi.org/10.1038/srep38767
https://doi.org/10.1038/srep38767
https://doi.org/10.1038/nature07180
https://doi.org/10.1038/nature07180
https://doi.org/10.1073/pnas.1920309117
https://doi.org/10.1073/pnas.1920309117
https://doi.org/10.1038/nature11698
https://doi.org/10.1038/nature11698
https://doi.org/10.1016/j.jas.2008.11.024
https://doi.org/10.1016/j.jas.2008.11.024
https://doi.org/10.1016/j.jas.2008.11.024
https://doi.org/10.1371/journal.pone.0218001
https://doi.org/10.1371/journal.pone.0218001
https://doi.org/10.1371/journal.pone.0218001
https://doi.org/10.1080/20548923.2020.1738728
https://doi.org/10.1080/20548923.2020.1738728
https://doi.org/10.1080/20548923.2020.1738728
https://doi.org/10.1073/pnas.1714728114
https://doi.org/10.1073/pnas.1714728114
https://doi.org/10.1016/j.jas.2004.06.009
https://doi.org/10.1016/j.jas.2004.06.009
https://doi.org/10.1038/35042684
https://doi.org/10.1038/35042684
https://doi.org/10.1021/ac800515v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac800515v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0022-1759(99)00242-2
https://doi.org/10.1016/S0022-1759(99)00242-2
https://doi.org/10.1016/S0022-1759(99)00242-2
https://doi.org/10.15184/aqy.2021.98
https://doi.org/10.15184/aqy.2021.98
https://doi.org/10.1146/annurev-micro-090817-062436
https://doi.org/10.1146/annurev-micro-090817-062436
https://doi.org/10.1038/s41576-019-0119-1
https://doi.org/10.1038/s41576-019-0119-1
https://doi.org/10.1038/s41576-019-0119-1
https://doi.org/10.1016/j.jas.2010.09.008
https://doi.org/10.1016/j.jas.2010.09.008
https://doi.org/10.1590/S0074-02762012000800014
https://doi.org/10.1590/S0074-02762012000800014
https://doi.org/10.1016/j.jas.2016.01.003
https://doi.org/10.1016/j.jas.2016.01.003
https://doi.org/10.1016/j.tube.2015.02.034
https://doi.org/10.1016/j.tube.2015.02.034
https://doi.org/10.1016/j.tube.2015.02.034
https://doi.org/10.1098/rstb.2019.0584
https://doi.org/10.1098/rstb.2019.0584
https://doi.org/10.1038/nature10549
https://doi.org/10.1038/nature10549
https://doi.org/10.1021/acs.chemrev.5b00037?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.5b00037?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1111/1751-7915.13480
https://doi.org/10.1111/1751-7915.13480
https://doi.org/10.1515/psr-2018-0011
https://doi.org/10.1515/psr-2018-0011
https://doi.org/10.1515/psr-2018-0011
https://doi.org/10.1007/s00253-018-8963-z
https://doi.org/10.1007/s00253-018-8963-z
https://doi.org/10.1016/j.microc.2015.12.024
https://doi.org/10.1016/j.microc.2015.12.024
https://doi.org/10.1016/j.talanta.2013.03.071
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00703?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Binders in Artworks by MALDI-TOF/TOF Tandem Mass
Spectrometry. Talanta 2013, 113, 49−61.
(485) Hynek, R.; Kuckova, S.; Hradilova, J.; Kodicek, M. Matrix-
Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrom-
etry as a Tool for Fast Identification of Protein Binders in Color
Layers of Paintings. Rapid Commun. Mass Spectrom. 2004, 18, 1896−
1900.
(486) Kuckova, S.; Hynek, R.; Kodicek, M. Identification of
Proteinaceous Binders Used in Artworks by MALDI-TOF Mass
Spectrometry. Anal. Bioanal. Chem. 2007, 388, 201−206.
(487) Leo, G.; Cartechini, L.; Pucci, P.; Sgamellotti, A.; Marino, G.;
Birolo, L. Proteomic Strategies for the Identification of Proteinaceous
Binders in Paintings. Anal. Bioanal. Chem. 2009, 395, 2269−2280.
(488) Pozzi, F.; Arslanoglu, J.; Galluzzi, F.; Tokarski, C.; Snyder, R.
Mixing, Dipping, and Fixing: The Experimental Drawing Techniques
of Thomas Gainsborough. Herit. Sci. 2020, 8, 1−14.
(489) Levy, I. K.; Neme Tauil, R.; Rosso, A.; Valacco, M. P.;
Moreno, S.; Guzmán, F.; Siracusano, G.; Maier, M. S. Finding of
Muscle Proteins in Art Samples from Mid-18th Century Murals by
LC−MSMS. J. Cult. Herit. 2021, 48, 227−235.
(490) Calvano, C. D.; Rigante, E.; Picca, R. A.; Cataldi, T. R. I.;
Sabbatini, L. An Easily Transferable Protocol for in-Situ Quasi-Non-
Invasive Analysis of Protein Binders in Works of Art. Talanta 2020,
215, 120882.
(491) Calvano, C. D.; van der Werf, I. D.; Palmisano, F.; Sabbatini,
L. Identification of Lipid- and Protein-Based Binders in Paintings by
Direct On-Plate Wet Chemistry and Matrix-Assisted Laser Desorption
Ionization Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407,
1015−1022.
(492) Kuckova, S.; Sandu, I. C. A.; Crhova, M.; Hynek, R.; Fogas, I.;
Schafer, S. Protein Identification and Localization Using Mass
Spectrometry and Staining Tests in Cross-Sections of Polychrome
Samples. J. Cult. Herit. 2013, 14, 31−37.
(493) van der Werf, I. D.; Calvano, C. D.; Palmisano, F.; Sabbatini,
L. A Simple Protocol for Matrix Assisted Laser Desorption Ionization
- Time of Flight-Mass Spectrometry (MALDI-TOF-MS) Analysis of
Lipids and Proteins in Single Microsamples of Paintings. Anal. Chim.
Acta 2012, 718, 1−10.
(494) Fremout, W.; Dhaenens, M.; Saverwyns, S.; Sanyova, J.;
Vandenabeele, P.; Deforce, D.; Moens, L. Tryptic Peptide Analysis of
Protein Binders in Works of Art by Liquid Chromatography-Tandem
Mass Spectrometry. Anal. Chim. Acta 2010, 658, 156−162.
(495) Chambery, A.; Di Maro, A.; Sanges, C.; Severino, V.;
Tarantino, M.; Lamberti, A.; Parente, A.; Arcari, P. Improved
Procedure for Protein Binder Analysis in Mural Painting by LC-
ESI/Q-Q-TOF Mass Spectrometry: Detection of Different Milk
Species by Casein Proteotypic Peptides. Anal. Bioanal. Chem. 2009,
395, 2281−2291.
(496) Tripkovic,́ T.; Charvy, C.; Alves, S.; Lolic,́ A. Đ.; Baosǐc,́ R.
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