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Abstract: In order to assist patients with finger rehabilitation training and grasping objects, we
propose a new type of soft rehabilitation gloves (SRGs), which has both flexion/extension and
abduction/adduction movement function for every finger. This paper describes the structure design
of the bending actuator and rotating actuator, the fabrication process of the soft actuator, and the
implementation of the soft wearable gloves based on a fabric glove. FEM simulation analysis and
experiments were conducted to characterize the mechanical behavior and performance of the soft
glove in terms of the angle output and force output upon pressurization. To operate this soft wearable
glove, we designed the hardware system for SRGs with a flexible strain sensor and force sensor
in the loop and introduced a force/position hybrid PID control algorithm to regulate the pressure
inputted. Experiment evaluation focused on rehabilitation training gestures; motions and the precise
grasping assistance function were executed. The rotating actuator between each finger can supply
abduction/adduction motion manner for patients, which will improve rehabilitation effect. The
experimental results demonstrated that the developed SRGs have the potential to improve hand
movement freedom and the range of grasping successfully.

Keywords: soft rehabilitation gloves; soft actuator; wearable devices; soft robot

1. Introduction

In people’s daily living activities, hands play an important role. However, a stroke,
incomplete spinal cord injury, brachial plexus injury, Parkinson’s disease, or muscular dys-
trophy may cause impairment of the hand, which will lead to the loss of hand function [1–3].
Car accidents or work injuries may also result in hand impairments [4]. A practical solution
for patients would be rehabilitation exercises [5], whereas the lack of rehabilitation devices
and one-on-one counseling treatment supplied by medical practitioners usually cannot
guarantee the training intensity for patients [6]. Over the past decades, developments in
robotics have enabled them to be an important part in the rehabilitation training process [7].

So far, two classes of rehabilitation devices are the focus of research: rigid hand
exoskeletons [8–10] and soft assistive gloves [11–13]. Traditional rigid robots, actuated
by electric motor, are commonly characterized by complex mechanism design and high
weight, which would introduce uncomfortable experience and hidden danger for patients.
Compared with rigid rehabilitation robots, soft wearable rehabilitation gloves are fabricated
by soft materials, mainly driven by cable, intelligent material, or a pneumatic/hydraulic
elastomeric actuator, which enables a jointless soft structure for the hand to be comfortable
and much safer. With many advantages such as their light weight, portable nature, high
power-to-weight ratio, low cost, and excellent human–machine interaction, soft wearable
gloves are expected to be more suitable and prospective for hand rehabilitation training
than their rigid counterparts. Soft rehabilitation gloves can bring certain positive effects
and improve the patient’s hand rehabilitation treatment, reduce the economic burden of
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patients, and enable the patient to return to society and family as soon as possible. Inspired
by the bionic method, soft joint structure based on composite fabric material is introduced
for the design of the soft glove [14]. 3D printing methods could produce rather light soft
gloves capable of flexion and extension [15]. Deep learning could be adopted for position
estimation and control of soft gloves [16]. Force feedback gloves were also proposed for
generating haptic signals, which could make the remote or virtual working tasks more
specific and controllable [17].

Soft robot actuation mainly includes pneumatic/hydraulic drive [18], cable/tendon
drive [19], and other smart material drives [20]. As for pneumatic- or hydraulic-actuated
soft wearable gloves, polymers or fabric materials are used to fabricate embedded cham-
bers that can generate desired motion manners such as bending and extending upon
pressurization. In recent years, several groups have explored various soft gloves for hand
rehabilitation training. The most representative of them is the Harvard University group.
Polygerinos et al. [21] utilized soft actuators consisting of elastomeric chambers with fiber
reinforcements to design a soft wearable glove that generates bending motion, twisting,
and extending trajectories under fluid pressurization. Yap of National University of Sin-
gapore [22] presented a soft robotic glove based on fabric material for hand-impaired
patients for rehabilitation training and assistance with activities of daily living. The glove
provides bidirectional motion manners including both active finger flexion and extension
with a folded chamber wrapped inside to enlarge the bending angle. Gu group [23] of
Shanghai Jiao Tong University developed a high-force fabric-based pneumatic actuator
with asymmetric chambers fabricated by two different layers of textiles and introduced
interference pads on adjacent-pleat surfaces to improve the stiffness of the pneumatic actu-
ators and heighten the output force. Cappello [24] developed a fabric-based rehabilitation
glove by using two fabric layers of unidentical materials. Through varying fabrics and
their layered arrangements based on air bags inside, the glove could assist hand opening
and closing. In a biomimetic study, Korean D. H. Kim et al. [25] developed a circular finger
stretching mechanism for hand rehabilitation, which mimicked the origin, structure, and
tendon orientation of the extensor tendon. Ning Guo [26] of the University of Hong Kong
designed a rehabilitation glove using a non-deformable rod as the bone and the deformable
soft actuator part as a separate part. To further improve the sensing property, PDMS may
be considered to be adopted on the skin of the soft hand due to its convenient regulated
electrical performance [20].

Despite the above impressive achievements, these soft wearable gloves mainly focus
on flexion and extension of five fingers; only the Gu group [23] paid attention to the thumb
abduction assistance. However, the abduction motion of the other four fingers is also
required to further improve the rehabilitation efficacy and enlarge assistance function.
Until now, few works have studied the effects of the abduction motion of all five fingers.

In this paper, we present a novel soft rehabilitation glove that can provide flexion,
extension, abduction, and adduction motion for every finger. The whole system comprises
a fabric glove, five bending actuators, and four rotating actuators and was fabricated with
soft materials. In Section 2, according to the design requirements of hand rehabilitation,
the structure design of the two classes of soft actuator were presented, and fabrication of
the soft actuator were conducted by using the silicone casting and the lost wax method. In
Section 3, finite element analysis for the different structural parameters of the soft actuator
on the deformation were conducted, and the simulation results were utilized to optimize
the structure of the rotating actuator. Based on the simulation results, the workspace of
a single bending actuator and the entire rehabilitation glove were depicted using Matlab
software. In Section 4, experiments were performed to test the angle and force output
of the bending actuator and rotating actuator; the experimental results agree well with
the finite element simulation. In Section 5, the control system hardware and the human–
computer interaction interface of the SRGs were designed and the force/position hybrid
PID control algorithm was realized. Finally, in Section 6, experiments on rehabilitation
training range and precision grasping ability of the SRGs were all conducted. Performance
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evaluation shows the presented SRGs have good flexibility and adaptability for hand
wearing, which can assist patients to fulfil rehabilitation training and provide grasping
assistance to improve daily living level. In order to achieve convenient, efficient, and
economic rehabilitation training strategies for hands, the existing method still needs to be
further improved.

2. Structure Design and Fabrication of Soft Gloves

The human hand is a complex and flexible organ in the human body, which has five
fingers including the thumb, index finger, middle finger, ring finger, and little finger. The
hand has a total of 29 muscles, 19 bones, and 19 joints, with 22 degrees of freedom, which
provides excellent operability, perception, and adaptability. The size of each person’s hand
is different. Finger movement is limited by physiological structure and has coupled motion
with joints. There are two main movement modes of the fingers: flexion/extension and
abduction/adduction.

2.1. Structure of Soft Gloves

SRGs are a combination of soft bending actuators and rotating actuators based on
fabric gloves to achieve finger rehabilitation training and grasping by controlling the
soft actuators. As shown in Figure 1, the SRGs consist of five bending actuators and
four rotating actuators. These soft actuators are sewed on a fabric glove with some elastic
bands, five bending actuators are fixed on each finger, a big rotating actuator is sewed
between the thumb finger and index finger, and three small rotating actuators are stitched
between the other four fingers.
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Figure 1. Soft Rehabilitation Gloves. (a) Schematic of SRGs and (b) Prototype of SRGs.

The bending actuator is utilized to realize the flexion and extension motion when
inflated or deflated with compressed air. The structure of the bending actuator is shown
in Figure 2, which consists of a strain layer with a semicircular cross-section, a restricted
layer, and a series of air chambers. When compressed air is filled in the airway, the actuator
bends to the restricted layer. The parameter value set for the four-finger bending actuator
is listed in Table 1.
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Table 1. Four-finger bending actuator structure scheme.

Structure
Parameter/mm

Outer Diameter of
the Air Chamber b1

Interval c1
Inner Diameter of
the Air Chamber t1

Thickness of
Restricted Layer h1

Length L1

Plan a 3 1 1 1 7
Plan b 3 1 2 1 7
Plan c 3 1 0.5 1 7
Plan d 3 2 1 1 8
Plan e 3 3 1 1 9
Plan f 3 1 1 0.5 7
Plan g 3 1 1 2 7

The rotating actuators among five fingers have the similar structure as the bending
actuator, which are used to adjust the range of angle between each finger. Because the
motion range of the thumb is much greater than others, a rotating actuator with more
air chambers is fixed between the thumb and the index finger. The rotating actuator has
a compact initial shape, and its structure is shown in Figure 3; the actuator for the index
finger to the little finger has two chambers and the actuator for the thumb finger has
four chambers. The parameter value set for the thumb rotating actuator is listed in Table 2.
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Table 2. Structure Scheme of Thumb rotating Actuator.

Structure
Parameter/mm

Outer Diameter of
the Air Chamber b2

Interval c2
Inner Diameter of
the Air Chamber t2

Thickness of
Restricted Layer h2

Length L2

Plan 5 2 2 2 33

2.2. Fabrication of Actuators for Soft Gloves

The manufacturing process of the bending actuator is mainly through the curing and
molding of silica gel, combined with the lost wax method. The production process is
as follows:

As shown in Figure 4, the A and B parts of silicone (Dragon Skin 20 by Smooth on
Inc., Macungie, PA, USA.) were mixed with a ratio of 1:1 and then stirred in a mixer to
remove foam. The silicone was then poured into the mold for the strain layer and solidified
after 4–5 h. Meanwhile, the melted wax was poured in the mold to fabricate the wax core.
Finally, the wax core, the flexible strain sensor, and the force sensor were placed into the
molds to cure. Finally, the bending actuator was placed into the oven (95◦) for 5 h to melt
the wax core.
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Figure 5. Fabrication process of rotating actuator: (a) the normal rotating actuator and (b) the thumb.

3. Finite-Element Analysis and Workspace of Soft Gloves

Compared to the mathematical model, the Finite element method can quickly depict
the response of an actuator for complex configuration and illustrate nonlinear behavior of
the soft actuator such as the interaction of internal layers of different materials.

To guide the design of the soft actuator, finite element simulation needed to be per-
formed on the soft actuator to analyze the influence of the structural parameters of the
soft actuator on its performance. For hyperplastic materials such as silicone, it is usually
assumed to be incompressible and isotropic, and the phenomenological theory is usually
used in the analysis. Here, the Yeoh form strain energy function was used to describe the
mechanical behavior of the soft actuator, and it can be shown as

W =
2

∑
i=1

Ci0(I1 − 3)i (1)

where I1 is the deformation tensor, dimensionless.

I1 = λ2
1 + λ2

2 + λ2
3 (2)

λi (i = 1, 2, 3) represents the main elongation ratio in each direction, dimensionless. The
true principal stress (also known as the Cauchy stress) is the force per unit area after
deformation; σi (i = 1, 2, 3) can be obtained by taking the partial derivative of the principal
elongation ratio through the strain energy function:

σi = λi
∂W
∂λi

− p0 = 2λ2
i [C10 + 2C20(I1 − 3)]− p0 (3)

p0—the hydrostatic pressure to keep the volume constant.
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The material parameters C10 and C20 for Dragon skin 20 (C10 = 0.1 1MPa, C20 = 0.02 MPa) [27]
material was determined by fitting the uniaxial tensile curve. All the components of the
actuator were modeled using solid tetrahedral quadratic hybrid elements C3D10H. The
ABAQUS simulation results of the bending angle for the soft bending actuator under
various pressure increments are shown in Figure 6. It can be seen that the bending angle
under 50 kPa is up to 130◦, which can meet the rehabilitation requirement.
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Figure 6. Simulation results of bending actuator.

The influence of the inner diameter of the chamber on the angle of bending actuator
for four fingers is shown in Figure 7. It can be seen that with the increase of applied air
pressure, the bending angle increases nonlinearly and monotonically. Under the same
pressure, the larger the inner diameter of the air chamber, the greater the deformation angle.
Taking into account the range of angular variations between the four fingers and the safety
of the rehabilitation training, the inner diameter of the air chamber of the rotary actuator is
taken as 1 mm.
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The influence of distance between air chambers on the performance angle variation is
illustrated in Figure 8, and it can be found that when the air pressure exceeds 27 kPa, the
angle variation is basically unchanged. Considering the rotating angle cannot exceed 45◦

and the initial size of SRGs, the best choice for the distance between air chambers is 1 mm.
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The rotating angle under various pressures is shown in Figure 9; it is easy to see that
with the increases of pressure applied, the rotating angle keeps increasing. Moreover, it can
be seen that after air pressure exceeds 24 kPa, some of the elastic energy is consumed in
the lateral deformation of sidewalls, which will not help to improve the rotating angle. To
improve the angle output and reduce the energy loss, the optimized air chamber structure
is shown in the Figure 10, and from the simulation result under 30 kPa, the expansion of
the sidewall is slightly reduced.
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Figure 10. Optimization of the four-finger rotating. (a) Structural optimization and (b) optimization
simulation comparison results.

Figure 11 illustrates the relationship between the rotating angle and pressure; in
addition, the central angle is two times the rotating angle, so the central angle under various
pressure is shown in Figure 11b. The angle output can meet the rehabilitation training.
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Figure 11. Simulation results of rotating actuator for thumb. (a) Simulation results of thumb actuator
and (b) simulation curve of thumb.

The workspace is an important performance parameter for the evaluation of the robot.
For SRGs, the overall working space is very complicated. To simplify this problem, we first
analyzed the space of a single finger. Taking the index finger as an example, the coordinate
system of the soft actuator must be established first to analyze the motion trajectory of the
soft actuator. The coordinate system of the soft actuator is shown in Figure 12. The trajectory
of point A for each actuator can be obtained through experiments, and the planar coordinate
set (X, Z) of the end trajectory of the soft actuator is obtained. The motion trajectory of
the soft rehabilitation glove is combining the bending angle of five soft actuators and the
rotating angle between five fingers to form the working space. The thumb rotation needs
to be studied separately; the rotating angles between the other four fingers are taken as the
same. The range of the rotating angle for the four fingers was 0–30◦, and the rotating angle
for the thumb ranged from 0 to 80◦. Using MATLAB to draw the trajectory of the endpoint
for each actuator for each finger, the working space of the SRGs can be obtained.
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Figure 12. Workspace for SRGs.

4. Testing of Soft Bending Actuator for Glove
4.1. Experiments for Bending Actuators

As shown in Figure 13, the experiment was carried out to test the bending angle
under the air pressure of 0–50 kPa (interval of 10 kPa). The voltage value of the flexible
bending sensor was acquired and converted into the bending angle of the actuator through
a calibration experiment [27]. As can be seen from Figure 13b, the bending angle gradually
increases with the increase in air pressure and agrees well with the simulation results.
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Figure 13. Bending angle test of bending actuator. (a) Bending Actuator Test Platform and (b) Bending
Characteristics of Bending Actuators.

This paper adopted a dynamometer (Kyoto, Japan, SHIMPO FGP-20) to measure
the force output of the endpoint for the bending actuator; the schematic diagram of the
measurement experimental platform is shown in Figure 14. When testing the force, the
actuator was fixed on the platform and the dynamometer was connected to the endpoint of
the actuator with Kevlar wire.
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Figure 14. The force output test of the bending actuator. (a) Schematic diagram of the force test;
(b) the force test device; and (c) bending angle of actuator.

From the 0◦ initial position to the 90◦ position (with intervals of 15◦), the force output
was recorded sequentially under various applied pressures (10 kPa to 50 kPa). The mea-
surement results show that the end force increases gradually as the air pressure increases.
Under the same air pressure, the closer to the initial position, the greater the force. The
reasons for these phenomena are easy to explain. In the working process of the pneumatic
actuator, the work performed by compressed air is converted into the elastic strain energy
and the force output. At positions closer to the 0◦ initial position, the elastic strain energy
is smaller, thus the force output will be larger.
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4.2. Experiments on Rotating Actuators

(1) Rotating angle and force output of rotating actuator for four fingers.

The abduction and adduction motion of the four fingers is realized by the rotating of
the actuator. As shown in Figure 15, adjusting the air pressure under 0–30 kPa with the
valve, the rotating angle was tested. The experimental results agree well with the simulation
analysis, though the experimental results are slightly larger than the simulation results.
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Figure 15. Angle test of rotating actuator. (a) Angle test. (b) Angle of rotating actuator.

As shown in Figure 16, a fixture was printed via 3D printer to clamp the rotating
actuator on the table and the dynamometer was used to test the force output of the actuator
under various pressures. It can be seen that with the increase of air pressure, the force also
gradually increases. In the low pressure range of 0–6 kPa, the rate of the force of rotating
actuator is smaller than that in the pressure range of 6–30 kPa. This may be caused by the
nonlinearity of soft material.
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Figure 16. Mechanical characteristics test of rotating actuator for four fingers. (a) Force test of rotating
actuator. (b) Force–pressure curve of rotating actuator.

(2) Rotating angle and force output of rotating actuator for thumb.

The experimental results are shown in Figure 17; it is easy to find that both the angle
and force increase with the air pressure and the angle test data are consistent with the
simulation results. The trends of the two curves are similar to the corresponding curves of
the rotating actuator for four fingers.
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5. Soft Rehabilitation Glove Control System

To meet the working requirements of SRGs, the hardware system mainly consists
of a pneumatic drive module, control system module, and sensor module, as shown in
Figure 18. The pneumatic drive module is composed of an air pump (OUTSTANDING
OTS-550), oil mist separator, solenoid valve (AIRTAC 3V2-08-NC), and proportional valve
(SMC ITV1010-312BL). The control algorithm is implemented in a STM32. The working
process of SRGs can be implemented by controlling the on–off of the solenoid valve and the
voltage of the proportional valve to regulate the air pressure. The sensing module includes
a flexible angle sensor and a force sensor, which is used to measure the bending angle and
contact force of each finger.
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PID controller is used here to improve control performance due to the nonlinearity
and complex of the soft actuator. In order to reduce the calculation amount of the processor,
the incremental PID is improved on the basis of the position PID, which is shown as follows

∆u(k) = u(k)− u(k − 1)
= Kp[e(k)− e(k − 1)] + Kie(k) + Kd[e(k)− 2e(k − 1) + e(k − 2)] (4)

where e(k), e(k−1), and e(k−2) is respectively the deviation value of the kth, (k−1)th, and
(k−2)th sampling of the system for the angle θ and contact force F.

The experimental data for angle position and contact force were collected using STM32,
with a sampling frequency of 256 Hz. In this experiment, the angle reference and force
could be chosen according to the demand of rehabilitation and assistive grasping within the
motion range of SRGs. By automatically adjusting the PID parameters, the control signal
of the voltage is output from STM32 to the proportional valve through the amplifier for
controlling each soft actuator. As can be seen from Figure 21a, the finger can reach the angle
position of 90◦ within 0.5 s with a deviation of ±2◦. For example, the SRGs are used to grasp
an object with 0.5 N on each actuator at an angle of 30◦. Firstly, the PID position control
is adopted to fulfill position control with adjusted PID parameters (kp = 0.01, ki = 0.067,
kd = 0.0001). When the soft actuator reaches the specified position and touches the object,



Sensors 2022, 22, 6294 13 of 16

it switches to the force algorithm control through the switching function, and the force
control algorithm works. The PID parameters of the force algorithm are kp = 0.06, ki = 0.08,
kd = 0.1. As can be seen from Figure 21b, the desired force 0.5 N was reached within 1 s
with a bias of 6%, and gradually became stable. In general, the soft actuator is difficult to
control due to the material nonlinearity and large deformation of soft material. However,
the SRGs can be effectively controlled with the PID algorithm.
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6. Experiments of Soft Rehabilitation Gloves

Figure 22 (Rotating joints work at 0–30 kPa air pressure and bending joints work at
0–50 kPa air pressure) shows some motion and gesture experimentation of soft rehabil-
itation gloves. Firstly, different instructions are sent to the host computer, and the soft
rehabilitation gloves will execute the preset programs according to the instructions to
achieve different postures. As illustrated in Figure 22, examples include the bending mo-
tion of every finger, the gesture “yeah”, and clenching a fist. The experimental results
demonstrate that the soft rehabilitation gloves can realize various movements of the human
hand and meet the requirements of rehabilitation training.
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Figure 22. Experimental of gesture training for SRGs.

In order to verify that the rehabilitation glove can realize the abduction and adduction
function of the human hand, the opening and closing test of the soft rehabilitation glove
was carried out. As shown in Figure 23 (rotating joints work at 0–30 kPa air pressure and
bending joints work at 0–50 kPa air pressure), the corresponding action shows that the
designed soft rehabilitation gloves can not only realize the bending rehabilitation training
of the fingers, but also realize the abduction of the fingers, which further improves the
rehabilitation training effect for the patients with finger hemiplegia.
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To verify the assistance ability of SRGs, grasping experiments were performed; as
shown in Figure 24, the soft rehabilitation gloves were worn on the hands of volunteers to
grab common objects in life, such as pill boxes, vitamins, milk, etc., and the experiment
demonstrated the SRGs could implement grasping action effortlessly. During the experi-
ment, the volunteer did not experience uncomfortable feelings. This proves the SRGs could
assisted the human hand to grasp objects, as well as accomplish the training motion within
the normal range. In order to obtain better mechanical capacities, steel materials would be
considered to enhance the holding and grasping force in the future work [28].
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7. Conclusions

In this paper, a novel soft rehabilitation glove that has extension/flexion and abduc-
tion/adduction functions for every finger was presented. Firstly, the design requirements
of the soft actuator were investigated and analyzed, and the structures of the bending
actuator and the rotating actuator were designed based on the deformation difference
principle of the strain layer and the restricted layer. We used 3D printing technology and
a casting method to fabricate soft gloves with a flexible strain/force sensor embedded in.
The influence of structure parameters on the mechanical behaviors upon pressurization
was then studied using ABAQUS to improve the actuation performance. The workspace of
the entire rehabilitation glove was drawn using MATLAB software (MathWorks, R2018a,
Nedic, MA, USA).

Furthermore, the experiments on the output motions and forces of the bending actuator
and rotating actuator were conducted and compared with the FEM simulation results.
The hardware system of the soft rehabilitation gloves and the force/position PID control
algorithm for SRGs were realized on the experimental platform. Finally, it was shown
that the SRGs can successfully assist the human hand to accomplish various gestures and
grasping motions.

This work mainly focused on structure design and fabrication, mechanical perfor-
mance, and the control algorithm of soft rehabilitation gloves. Flexible strain sensors and
force sensors were integrated into the SRGs to monitor the angle and force. Our job pro-
vides a basic platform for the hand rehabilitation and assistance grasping for patients with
hand injuries. The limitation of the current research is that the rotating actuator occupies
the room between each finger of the soft glove, which should be solved in the future. In
addition, we will accomplish the optimal design of SRGs and exploit the force/position
hybrid control algorithm in depth.
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