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Abstract

Generative Adversarial Networks (GAN) have many potential medical imaging applications, 

including data augmentation, domain adaptation, and model explanation. Due to the limited 

memory of Graphical Processing Units (GPUs), most current 3D GAN models are trained on 

low-resolution medical images, these models either cannot scale to high-resolution or are prone to 

patchy artifacts. In this work, we propose a novel end-to-end GAN architecture that can generate 

high-resolution 3D images. We achieve this goal by using different configurations between 

training and inference. During training, we adopt a hierarchical structure that simultaneously 

generates a low-resolution version of the image and a randomly selected sub-volume of the 

high-resolution image. The hierarchical design has two advantages: First, the memory demand 

for training on high-resolution images is amortized among sub-volumes. Furthermore, anchoring 

the high-resolution sub-volumes to a single low-resolution image ensures anatomical consistency 

between sub-volumes. During inference, our model can directly generate full high-resolution 

images. We also incorporate an encoder with a similar hierarchical structure into the model to 

extract features from the images. Experiments on 3D thorax CT and brain MRI demonstrate 

that our approach outperforms state of the art in image generation. We also demonstrate clinical 

applications of the proposed model in data augmentation and clinical-relevant feature extraction.
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I. Introduction

Generative Adversarial Networks (GANs) have succeeded in generating realistic-looking 

natural images [1], [2]. It has shown potential in medical imaging for augmentation [3], 

[4], image reconstruction [5] and image-to-image translation [6], [7]. The prevalence of 3D 

images in the radiology domain renders the real-world application of GANs in the medical 

domain even more challenging than the natural image domain. In this paper, we propose 

an efficient method for generating and extracting features from high-resolution volumetric 

images.

The training procedure of GANs corresponds to a min-max game between two players: a 

generator and a discriminator. While the generator aims to generate realistic-looking images, 

the discriminator aims to defeat the generator by recognizing real from the fake (generated) 

images. When the field of view (FOV) is the same, a higher resolution is equivalent to more 

voxels. In this way, we use “high-resolution image” and “large-size image” interchangeably 

in the paper. In clinical application, radiologists rely on high-resolution CT to make accurate 

diagnose decisions [8]. While there are previous works that propose to use 3D GAN for 

diverse medical applications [9], [10], the generated images are limited to the small size of 

128 × 128 × 128 or below, due to insufficient memory during training.

In this paper, we introduce a Hierarchical Amortized GAN (HA-GAN) to bridge the gap. 

Our model adopts different configurations between training and inference phases. In the 

training phase, we simultaneously generate a low-resolution image and a randomly selected 

sub-volume of the high-resolution image. Generating sub-volumes amortizes the memory 

cost of the high-resolution image and keeps local details of the 3D image. Furthermore, 

the low-resolution image ensures anatomical consistency and the global structure of the 

generated images. We train the model in an end-to-end fashion while retaining memory 

efficiency. The gradients of the parameters, which are the memory bottleneck, are needed 

only during training. Hence, sub-volume selection is no longer needed and the entire 

high-resolution volume can be generated during inference. In addition, we implement an 

encoder in a similar fashion. The encoder enables us to extract features from a given image 

and prevents the model from mode collapse. We test HA-GAN on thorax CT and brain 

MRI datasets. Experiments demonstrate that our approach outperforms baselines in image 

generation. We also present two clinical applications with proposed HA-GAN, including 

data augmentation for supervised learning and clinical-relevant feature extraction. Our code 

is publicly available at https://github.com/batmanlab/HA-GAN

In summary, we make the following contributions:

1. We introduce a novel end-to-end HA-GAN architecture that can generate high-

resolution volumetric images while being memory efficient.
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2. We incorporate a memory-efficient encoder with a similar structure, enabling 

clinical-relevant feature extraction from high-resolution 3D images. We show 

that the encoder improves generation quality.

3. We discover that moving along specific directions in latent space results in 

explainable anatomical variations in generated images.

4. We evaluate our method by extensive experiments on different image modalities 

as well as different anatomy. The HA-GAN offers significant quantitative and 

qualitative improvements over the state-of-the-art.

II. Related Work

In the following, we review the works related to GANs for medical images, memory-

efficient 3D GAN and representation learning in generative models.

A. GANs for Medical Imaging

In recent years, researchers have developed GAN-based models for medical images. 

These models are applied to solve various problems, including image synthesis [11], 

data augmentation [12], modality/style transformation [13], and model explanation [14]. 

However, most of these methods concentrate on generating 2D medical images. In this 

paper, we focus on solving a more challenging problem, i.e., generating 3D images.

With the prevalence of 3D imaging in medical applications, 3D GAN models have become a 

popular research topic. Shan et al. [15] proposed a 3D conditional GAN model for low-dose 

CT denoising. Kudo et al. [16] proposed a 3D GAN model for CT image super-resolution. 

Jin et al. [17] propose an auto-encoding GAN for generating 3D brain MRI images. Cirillo 

et al. [9] proposed to use a 3D model conditioned on multi-channel 3D Brain MR images to 

generate tumor masks for segmentation. While these methods can generate realistic-looking 

3D MRI or CT images, the generated images are limited to the small size of 128 × 128 × 

128 or below, due to insufficient memory during training. In contrast, our HA-GAN is a 

memory-efficient model and can generate 3D images with a size of 256 × 256 × 256.

B. Memory-Efficient GANs

Some works are proposed to reduce the memory demand of high-resolution 3D image 

generation. In order to address the memory challenge, some works adopt slice-wise [7] or 

patch-wise [10] generation approach. Unfortunately, these methods may introduce artifacts 

at the intersection between patches/slices because they are generated independently. To 

remedy this problem, Uzunova et al. [18] propose a multi-scale approach that uses a GAN 

model to generate a low-resolution version of the image first. An additional GAN model 

is used to generate higher resolution patches of images conditioned on the previously 

generated patches of lower resolution images. However, this method is still patch-based; the 

generation of local patches is unaware of the global structure, potentially leading to spatial 

inconsistency. In addition, the model is not trained in an end-to-end manner, which makes 

it challenging to incorporate an encoder that learns the latent representations for the entire 
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images. In comparison, our proposed HA-GAN is global structure-aware and can be trained 

end-to-end. This allows HA-GAN to be associated with an encoder.

C. Representation Learning in Generative Models

Several existing generative models are fused with an encoder [2], [19], [20], which learns 

meaningful representations for images. These methods are based on the belief that a good 

generative model that reconstructs realistic data will automatically learn a meaningful 

representation of it [21]. A generative model with an encoder can be regarded as a 

compression algorithm [22]. Hence, the model is less likely to suffer from mode collapse 

because the decoder is required to reconstruct all samples in the dataset, which is impossible 

if mode collapse happens such that only limited varieties of samples are generated [2]. 

Variational autoencoder (VAE) [19] uses an encoder to compress data into a latent space, 

and a decoder is used to reconstruct the data using the encoded representation. BiGAN [20] 

learns a bidirectional mapping between data space and latent space. α-GAN [2] introduces 

not only an encoder to the GAN model, but also learns a disentangled representation 

by implementing a code discriminator, which forces the distribution of the code to be 

indistinguishable from that of random noise. Variational auto-encoder GAN (VAE-GAN) 

[23] adds an adversarial loss to the variational evidence lower bound objective. Despite their 

success, the methods mentioned above can analyze 2D images or low-resolution 3D images, 

which are less memory intensive for training an encoder. In contrast, our proposed HA-GAN 

is memory efficient and can be used to encode and generate high-resolution 3D images 

during inference.

D. Our Previous Work

Sun et al. [24] first proposed to utilize hierarchical amortized GAN for high resolution 3D 

medical image generation. The current work presents several extensions compared to the 

preliminary version: 1) We incorporate a memory-efficient encoder into our model, enabling 

clinical-relevant feature extraction from high-resolution 3D images. We also show that the 

encoder improves generation quality. 2) We perform two new clinical applications, including 

characterizing the severity of COPD, and data augmentation for supervised learning. 3) 

We discover that moving along specific directions in latent space results in explainable 

anatomical variations in generated images. 4) We perform cross-validation evaluation and 

statistical tests for comparison of generated image quality with baseline methods to improve 

the adequacy of performance evaluation. We also conduct ablation studies to validate the 

contribution of proposed components.

III. Method

We first review Generative Adversarial Networks (GANs) in Section III-A. Then, we 

introduce our method in Section III-B, followed by the introduction of the encoder in 

Section III-C. We conclude this section with the optimization scheme in Section III-D and 

the implementation details in Section III-E. The notations used are summarized in Table I.
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A. Background

Generative Adversarial Networks (GANs) [1] is widely used to generate realistic-looking 

images. The training procedure of GANs corresponds to a two-player game that involves a 

generator G and a discriminator D. In the game, while G aims to generate realistic-looking 

images, D tries to discriminate real images from the images synthesized by G. The D and G 
compete with each other. Let PX denote the underlying data distribution, and PZ denote the 

distribution of the random noise Z. Then the objective of GAN is formulated as below:

min
G

max
D

E
X PX

[logD(X)] + E
Z PZ

[log(1 − D(G(Z)))] .
(1)

B. The Hierarchical Structure

Generator: Our generator has two branches that generate the low-resolution image XL and 

a randomly selected sub-volume of the high-resolution image Xr
H, where r represents the 

index for the starting slice of the sub-volume. The two branches share initial layers GA and 

after they branch off:

XL = GL(GA(Z)
A

), (2)

Xr
H = GH(SL GA(Z); r

Ar

),
(3)

where GA(·), GL(·) and GH(·) denote the common, low-resolution and high-resolution blocks 

of the generator, respectively. SL(·, r) is a selector function that returns the sub-volume of 

input image starting at slice r, where the superscript L indicates that the selection is made 

at low resolution. The output of this function is fed into GH(·), which lifts the input to 

the high resolution. We use A and Ar as short-hand notation for GA(Z) and SL(GA(Z); r), 
respectively. We let Z ~  (0, I) be the input random noise vector. We let r be the randomly 

selected index for the starting slice that is drawn from a uniform distribution, denoted 

as r ~ ; i.e., each slice is selected with the same probability. Therefore, the randomly 

selected sub-volumes can be overlapping, which can better cover the junctions between 

sub-volumes than non-overlapping sub-volume selection. The schematic of the proposed 

method is shown in Fig. 1. Note that Xr
H depends on a corresponding sub-volume of A, 

which is Ar. Therefore, we feed Ar rather than complete A into GH during training, making 

the model memory-efficient.

Discriminator: Similarly, we define two discriminators DH and DL to distinguish a 

real high-resolution sub-volume Xr
H and a low-resolution image XL from the fake ones, 

respectively. DH makes sure that the local details in the high-resolution sub-volume look 

realistic. At the same time, DL ensures the proper global structure is preserved. Since we 

feed a sub-volumes SH(XH; r) rather than the entire image XH into DH, the memory cost 
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of the model is reduced. The location of the sub-volume r is also fed into DH to help it 

distinguish sub-volumes from different locations.

There are two GAN losses ℒGAN
H  and ℒGAN

L  for high and low resolutions respectively:

ℒGAN
H GA, GH, DH = min

GH, GA
max
DH

E
r U

E
X PX

log DH SH XH; r , r

+ E
Z PZ

log 1 − DH Xr
H, r ,

(4)

ℒGAN
L GL, GA, DL = min

GL, GA
max
DL

E
X PX

log DL XL + E
z PZ

log 1 − DL XL . (5)

Note that the sampler SH(·; r) in (3) and SL(·; r) in (4) are synchronized, such that r 
corresponds to the indices for the same percentile of slices in the high- and low-resolution.

Inference: The memory space needed to store gradient is the main bottleneck for 3D 

GANs models; however, the gradient is not needed during inference. Therefore, we can 

directly generate the high-resolution image by feeding Z into GA and GH sequentially, 

i.e., XH(Z) = GH GA(Z) . Note that to generate the entire image during inference, we 

directly feed the complete feature maps A = GA(Z) rather than its sub-volume Ar into the 

convolutional network GH.

C. Incorporating the Encoder

We also adopt a hierarchical structure for the encoder, by defining two encoders EH(·) 

and EG(·) encoding the high-resolution sub-volume and the entire image respectively. We 

partition the high-resolution image XH into a set of V non-overlapping sub-volumes, i.e., 

XH = concat SH XH, Tv v = 1
V

, where concat represent concatenation, SH(·) represents 

the selector function that returns a sub-volume of a high-resolution image, and Tυ represents 

the corresponding starting indices for the non-overlapping partition.

We use Av to denote the sub-volume-level feature maps for the υ-th sub-volume, 

i.e., Av = EH SH XH; Tv . To generate the image-level representation Z, we first 

summarize all sub-volume representation for the image through concatenation, such that 

A = concat Av v = 1
V . Then we feed A into the encoder EG(·) to generate the image-level 

representation Z, i.e., Z = EG(A) In order to obtain optimal EH and EG, we introduce the 

following objective functions:

ℒrecon
H EH = min

EH
E

X PX, r ∈ U
SH XH; r − GH Ar 1, (6)
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ℒrecon
G EG = min

EG
E

X PX
XL − GL GA(Z) 1

+ E
r U

SH XH; r − GH SL GA(Z); r 1 .
(7)

Equation (6) ensures a randomly selected high-resolution sub-volume SH(XH; r) can be 

reconstructed. (7) enforces both the low-resolution image XL and a random selected SH(XH; 

r) can be reconstructed given Z. Note that in (6), the sub-volume is reconstructed from 

the intermediate feature maps Av; while in the second term in (7), the sub-volume is 

reconstructed from the latent representations Z. In these equations, we use ℓ1 loss for 

reconstruction because it tends to generate sharper result compared to ℓ2 loss [25]. The 

structure of the encoders are illustrated in Fig. 1.

When optimizing for (6), we only update EH while keeping all other parameters fixed. 

Similarly, when optimizing for (7), we only update EG. We empirically find that this 

optimization strategy is memory-efficient and leads to better performance.

Inference: In the inference phase, we can get the latent code Z by feeding the sub-volumes 

of XH into EH, concatenating the output sub-volume feature maps into A and then feeding 

the results into EG, i.e., Z = EG concat EH SH XH; Tv v = 1
V

. The idea is illustrated at 

the bottom of Fig. 2.

D. Overall Model

The model is trained in an end-to-end fashion. The overall loss function is defined as:

ℒ = ℒGAN
H GH, GA, DH + ℒGAN

L GL, GA, DL + λ1ℒrecon
H EH

+ λ2ℒrecon
G EG ,

(8)

where λ1 and λ2 control the trade-off between the GANs losses and the reconstruction 

losses. The optimizations for generator (GH, GL and GA), discriminator (DH, DL), and 

encoder (EH, EG) are altered per iteration.

During training, we sample noise from Gaussian distribution and pass it through the 

generator to create randomly synthesized images for minimizing the adversarial loss. We 

also sample real images and pass it through the encoder, followed by the generator to 

create reconstructed images for minimizing the reconstruction loss. Our overall optimization 

balances between the losses to learn parameters for the encoder, generator, and discriminator 

in end-to-end training.

E. Implementation Details

We train the proposed HA-GAN for 80000 iterations, the training and validation curves can 

be found in Supplementary Material. We let the learning rate for generator, encoder, and 

discriminator be 1 × 10−4, 1 × 10−4, and 4 × 10−4, respectively. We also set β1 = 0 and β2 = 
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0.999 for the Adam optimizer. The batch size is set as 4. We let the size of the XL be 643. 

The size of the randomly selected sub-volume SH(XH; r) is defined to be 32 × 2562, where 

r is randomly selected on the batch level. We let feature maps A have 64 channels with 

a size of 643. The dimension of the latent variable Z is chosen to be 1,024. The trade-off 

hyper-parameters λ1 and λ2 are set to be 5. The experiments are performed on two NVIDIA 

Titan Xp GPUs, each with 12 GB GPU memory. The detailed architecture can be found in 

Supplementary Material.

IV. Experiments

We evaluate the proposed model’s performance in image synthesis, and demonstrate 

two clinical applications with HA-GAN: data augmentation and clinical-relevant feature 

extraction. We also explore the semantic meaning of the latent variable. We perform 5-fold 

cross-validation for the image synthesis experiments. We compare our method with baseline 

methods, including WGAN [26], VAE-GAN [23], α-GAN [27], Progressive GAN [28], 3D 

StyleGAN 2 [29] and CCE-GAN [30].

A. Datasets

The experiments are conducted on two large-scale 3D datasets, including the COPDGene 

dataset [31] and the GSP dataset [32]. Both are publicly available and details about image 

acquisition are presented in Supplementary Material.

COPDGene Dataset: We use 3D thorax computerized tomography (CT) images of 9,276 

subjects from COPDGene dataset in our study. Only full inspiration scans are used in our 

study. We trim blank axial slices with all-zero values and resize the images to 2563. The 

Hounsfield units of the CT images have been calibrated and air density correction has been 

applied. The Hounsfield Units (HU) are mapped to the intensity window of [−1024, 600] 

and normalized to [−1, 1].

GSP Dataset: We use 3D Brain magnetic resonance images (MRIs) of 3,538 subjects 

from the Brain Genomics Superstruct Project (GSP) [32] in our experiments. The FreeSurfer 

package [33] is used to remove the non-brain region in the images, bias-field correction, 

intensity normalization, affine registration to Talairach space, and resampling to 1 mm3 

isotropic resolution. We trim the blank axial slices with all-zero values and rescale the 

images into 2563. The intensity value is clipped at top 0.1% quantile to remove outliers, and 

then normalized into [−1, 1].

B. Image Synthesis

We examine whether the synthetic images are realistic-looking quantitatively and 

qualitatively, where synthetic images are generated by feeding random noise into the 

generator.

1) Quantitative Evaluation: If the synthetic images are realistic-looking, then the 

synthetic images’ distribution should be indistinguishable from that of the real images. 

Therefore, we can quantitatively evaluate the quality of the synthetic images by Fréchet 
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Inception Distance (FID) [34], Maximum Mean Discrepancy (MMD) [35] and Inception 

Score (IS) [36]. Lower values of FID/MMD and higher values of IS indicate that the 

distributions of generated images are closer to real ones, implying more realistic-looking 

synthetic images. We evaluate the synthesis quality at two resolutions: 1283 and 2563. 

Due to memory limitations, the baseline models can only be trained with the size of 

1283 at most. To make a fair comparison with our model (HA-GAN), we apply trilinear 

interpolation to upsample the synthetic images of baseline models to 2563. We adopt a 3D 

ResNet model pre-trained on 3D medical images [37] to extract features for computing 

FID and MMD. Note the scale of FID relies on the feature extraction model. Thus our 

FID values are not comparable to FID value calculated on 2D images, which is based on 

feature extracted using model pre-trained on ImageNet. For the IS scores, following the 

practice of [29], we measure the Inception Scores on the middle slices on axial, coronal, 

and sagittal planes of the generated 3D images and report averaged performance. As shown 

in Table II and Table III, HA-GAN achieves lower FID and MMD as well as higher IS 

than the baselines, which implies that HA-GAN generates more realistic images. We found 

that at the resolution of 1283, HA-GAN still outperforms the baseline models, but the 

lead has been smaller compared with the result at the resolution of 2563. In addition, we 

performed statistical tests on the evaluation results at 2563 resolution between methods. 

More specifically, we performed two-sample t-tests (one-tailed) between HA-GAN and each 

of the baseline methods. At a significance level of 0.05, HA-GAN achieves significantly 

higher performance than baseline methods for both datasets.

2) Ablation Study: We perform three ablation studies to validate the contribution of 

each of the proposed components. The experiments are performed at 2563 resolution. Shown 

in Table IV, we found that adding a low-resolution branch can help improve results, since 

it can help the model learn the global structure. Adding an encoder can also help improve 

performance, since it can help stabilize the training. For the deterministic r experiments, 

we make the sub-volume selector to use a set of deterministic values of r (equal interval 

between them) rather than the randomly sampled r currently used. From the results, we can 

see that randomly sampled r outperforms deterministic r.

3) Qualitative Evaluation: To qualitatively analyze the results, we show some samples 

of synthetic images in Fig. 3. The figure illustrates that HA-GAN generates sharper images 

than the baselines.

To examine the diversity and authenticity of generated images, we embed the synthetic and 

real images into the latent space. If the synthetic images are indistinguishable from the 

real images, then we expect that the synthetic and real images occupy the same region in 

the embedding space. Following the practice of [27], we first use a pretrained 3D medical 

ResNet model [37] to extract features for 512 synthetic images by each method. As a 

reference, we also extract features for the real image samples using the same ResNet model. 

Then we conduct MDS to embed the exacted features into 2-dimensional space for both 

COPDGene and GSP datasets. The results are visualized in Fig. 4(a) and 4(b), respectively. 

To avoid cluttering dots, we only visualize four representative baseline methods. In both 

figures, we fit an ellipse for the embedding of each model with the least square. In the 

Sun et al. Page 9

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2022 August 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



figures, we observe that synthetic images by HA-GAN better overlap with real images, 

compared with the baselines. This implies that HA-GAN generates more realistic-looking 

images than the baselines.

C. Data Augmentation for Supervised Learning

In this experiment, we used the synthesized samples from HA-GAN to augment the training 

dataset for a supervised learning task. Previous work [38] has shown that GAN-generated 

samples improve the diversity of the training dataset, resulting in a better discriminative 

performance of the classifier. Motivated by their results, we designed our experiment with 

the following three steps: First, we extended our HA-GAN architecture to enable conditional 

image generation and trained a class-conditional variant of HA-GAN. Next, we used trained 

HA-GAN to generate new images with class labels. Finally, we combined the original 

training dataset and GAN-generated images to train a multi-class classifier, and evaluate 

the performance on the test set. We demonstrate our experiment on the COPDGene dataset 

using the GOLD score as a multi-class label. The GOLD score is a 5-class categorical 

variable ranging from 0–4.

We made two modifications to the original HA-GAN architecture to enable class-conditional 

image generation: 1) We updated the generator module GA(X; c) to take a one-hot code 

c ~ pc as input, along with latent variable Z ~  (0, I). c represents the target class for 

the conditional image generation. 2) We updated the discriminator to output two probability 

distributions, one over the binary real/fake classification (same as original HA-GAN), and 

another over the multi-class classification of class labels P (C|X). Thus, the discriminator 

also acts as an auxiliary classifier for the class labels [39]. A schematic of the modified 

model can be found in Supplementary Material. In addition, two new terms are added to the 

original HA-GAN loss function for conditional generation:

ℒclass
H GH, GA, DH = E log P C = c ∣ XrH + E log P C = c ∣ Xr

H

ℒclass
L GL, GA, DL = E log P C = c ∣ XL + E log P C = c ∣ XL

(9)

For comparison, we trained a class-conditional variant of α-GAN on COPDGene dataset. 

The same two modifications discussed above are incorporated into the original α-GAN 

model for conditional generation. We use a 3D CNN (implementation details are included 

in Supplementary Material Table VIII) as the classification model. We randomly sampled 

80% of subjects as training set and the rest are used as test set. We use an image size of 

1283 for this experiment. We divided 80% of the subjects into training set, while the rest 

are included in a test set. For creating the augmented training set, we combine randomly 

generated images from class-conditioned GAN (20%) with the real images in the training set 

(80%). The proportion of different GOLD classes for generated images is the same as the 

original dataset. We train two classifiers on the original training set and the GAN-augmented 

training set for 20 epochs respectively, and evaluated their performance on a held-out test set 

of real images.
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Table V shows the results on COPDGene dataset. Classifier trained with GAN augmented 

data performed better than the baseline model which trains on training set only consisted 

of real images. Augmentation with HA-GAN can further improve performance compared to 

α-GAN.

D. Clinical-Relevant Feature Extraction

In this section, we evaluate the encoded latent variables from real images to predict clinical-

relevant measurements. This task evaluates how much information about the disease severity 

is preserved in the encoded latent features.

We select two respiratory measurements and one CT-based measurement of emphysema to 

measure disease severity. For respiratory measurements, we use percent predicted values of 

Forced Expiratory Volume in one second (FEV1pp) and its ratio with Forced vital capacity 

(FVC) (FEV1/FVC). Given extracted features, we train a Ridge regression model with λ 
= 1 × 10−4 to predict the logarithm of each of the measurements. We report the R2 scores 

on held-out test data. Table VI shows that HA-GAN achieves higher R2 than the baselines. 

The results imply that HA-GAN preserves more information about the disease severity than 

baselines.

E. Exploring the Latent Space

This section investigates whether change along a certain direction in the latent space 

corresponds to semantic meanings. We segment the lung regions in the thorax CT images 

using Chest Image Platform (CIP) [40], and segment the bone tissues via thresholding. 

The detailed thresholding criteria can be found in Supplementary Material. Next, we train 

linear regression models that predict the total volume of the different tissues/regions with the 

encoded latent representations Z for each image, optimizing with least square. The learned 

parameter vector for each class represents the latent direction. Then, we manipulate the 

latent variable along the direction corresponding to the learned parameters of linear models 

and generate the images by feeding the resulted latent representations into the generator. 

More specifically, first a reference latent variable is randomly sampled, then the latent 

variable is moved along the latent direction learned until the target volume is reached, which 

is predicted by the linear regression model. As shown in Fig. 5, for thorax CT images, we 

identify directions in latent space corresponding to the volume of lung and bone respectively. 

When we go along these directions in latent space, we can observe the change of volumes 

for these tissues.

F. Memory Efficiency

In this section, we compare the memory efficiency of HA-GAN with baselines. We measure 

the GPU memory usage at the training time for all models under different resolutions, 

including 323, 643, 1283, and 2563. The results are shown in Fig. 6. Note that the 

experiments are performed on the same GPU (Tesla V100 with 16 GB memory), and we set 

the batch size to 2. The HA-GAN consumes much less memory than baseline models under 

different resolutions. In addition, HA-GAN is the only model that can generate images of 

sizes 2563. All other models exhaust the entire memory of GPU; thus, the memory demand 

cannot be measured. In order to investigate where the memory efficiency comes from, we 
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report the number of parameters for HA-GAN at different resolutions in Table VII. We 

found that as the resolution increases, the number of parameters only increases marginally, 

which is expected as the model only requires a few more layers as resolution increases.

In addition, we compare the computational efficiency of our HA-GAN model with baseline 

models. More specifically, we measure the number of iterations per second during training. 

One NVIDIA Tesla V100 GPU is used for each model and we set the batch size as 2. The 

comparison is performed under the 1283 resolution where all models can fit in memory. 

The result is shown in Table VIII. Our HA-GAN is more computationally efficient than the 

baselines.

V. Discussion

As shown quantitatively in Table II and Table III, HA-GAN achieves lower FID and MMD, 

as well as higher IS. This implies that our model generates more realistic images. This 

is further confirmed by the synthetic images shown in Fig. 3, where HA-GAN generates 

sharper images compared to other methods. We found that our method outperforms baseline 

methods at both the resolution of 1283 and 2563, but the lead is larger at 2563 resolution 

than 1283. Based on the results, we believe that the sharp generation results come from 

both the model itself and its ability to directly generate images at 2563 without interpolation 

upsampling. For the baseline models, we found that α-GAN and WGAN have similar 

performance, and VAE-GAN tends to generate blurry images. WGAN is essentially the 

α-GAN without the encoder. Based on qualitative examples shown in Fig. 3, it can generate 

sharper images compared to α-GAN and Progressive GAN. However, it also generates more 

artifacts. According to the quantitative analysis shown in Table II, overall the generation 

quality of α-GAN is comparable with WGAN. Although our proposed HA-GAN achieves 

the highest quality comparing to the baseline models, we admit that there is still a gap 

between HA-GAN generated images and real images. We also note that in order to achieve 

optimal performance for HA-GAN, most of blank axial slices of training images need to be 

removed, because empty sub-volume may confuse the model. There are several directions 

that may further improve the performance, including using a pretrained segmentation 

network to regularize the generated images, etc. We hope that our method establishes a 

strong baseline that can be pushed further by future work.

For the ablation studies, first we found that adding a low-resolution branch can help improve 

results, we think it’s because the low-resolution branch can help the model learn the global 

structure. Second, we observe in Table IV that HA-GAN with encoder outperforms the 

version without encoder in terms of image synthesis quality. The reconstruction loss in the 

objective function ensures that the reconstructed images are voxel-wise consistent with the 

original images. This term can encourage the generator to represent all data and not collapse, 

improving the performance of the generator in terms of image synthesis. Finally, using 

randomly selected r leads to randomly selected locations of sub-volumes. In this way, the 

junctions between sub-volumes can be better covered.

The embedding shown in Fig. 4(a) and Fig. 4(b) reveals that the distribution of the synthetic 

images by HA-GAN is more consistent with the real images, compared to all baselines. 
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The scatters of WGAN/α-GAN show compressed support of real data distribution, which 

suggests that samples of WGAN (cyan) and α-GAN (green) have lower diversity than the 

real images. We think one reason is that the models only learn few attributes of samples in 

the dataset. To be more specific, the models learn an overly simplified distribution, so the 

generated images are of lower diversity. The HA-GAN model we proposed has an encoder 

module, which encourages different latent codes to map to different outputs, improving 

the diversity of generated samples. A portion of scatters of Progressive GAN (blue) and 

StyleGAN2 (purple) lay outside of real data distribution (red), which suggests that some 

generated images may contain artifacts.

In clinical applications, high-resolution CT can help radiologists make reliable diagnose 

decisions, including pulmonary eosinophilic granuloma, lymphangiomyomatosis, and 

emphysema [8]. High-resolution CT is especially beneficial in imaging tasks in which 

small anatomy and pathologic structure is the target, such as in-stent stenosis, lung nodules, 

coronary calcification, and temporal bones [41]. There are previous works that propose to 

use 3D GAN for diverse clinical applications [9], [10]. For instance, synthesized images 

can be used for data anonymization which enables privacy-preserving data sharing between 

institutions [42]. However, the generated images are limited to the small size of 128 × 128 × 

128 or below, due to insufficient memory during training. In most clinical CT applications, 

image matrix size of 512 × 512 or larger is used for in-plane direction [41]. Our proposed 

HA-GAN bridges the gap between them and serve as a plug-and-play module to improve 

performance for many GAN-based medical imaging applications.

We demonstrate two clinical applications in our paper: data augmentation and clinical-

relevant feature extraction. For data augmentation, the results in Table V show that samples 

generated by HA-GAN can help the training of classification model. While samples 

generated by α-GAN can also help the training, the performance gain is smaller. We think 

one reason is that samples generated by HA-GAN are more realistic, also shown in Table II 

and Table III. GAN can learn a rich prior from existing medical imaging datasets, and the 

generated samples can help classifiers to achieve better performance.

For the experiment of feature extraction, we encode the full image into a flat variable 

to extract meaningful and compact feature representation for downstream clinical feature 

prediction. Table VI shows that HA-GAN can better extract clinical-relevant features from 

the images, comparing to VAE-GAN and α-GAN. Some clinical-relevant information might 

be hidden in specific details in the medical images, and can only be observed under high 

resolution. VAE-GAN and α-GAN can only process lowerresolution images of 1283. We 

speculate that the high-resolution information leveraged by HA-GAN helps it learn better 

representations.

From Table VII, we found that as the output resolution increases, the total number of model 

parameters does not increase much, but as the multiplier factor increases, the memory usage 

increases drastically. Therefore, we believe that the memory efficiency mainly comes from 

the sub-volume scheme rather than model parameters.
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VI. Conclusion

In this work, we develop a hierarchical GAN model that can generate 3D high-resolution 

images. Experiments on 3D thorax CT and brain MRI show that HA-GAN achieves 

state-of-the-art performance in image synthesis and clinical applications. Our method 

enables various real-world medical imaging applications that rely on high-resolution image 

generation and analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Left: The architecture of HA-GAN (encoder is hidden here to improve clarity). At the 

training time, instead of directly generating high-resolution full volume, our generator 

contains two branches for high-resolution sub-volume and low-resolution full volume 

generation, respectively. The two branches share the common block GA. A sub-volume 

selector is used to select a part of the intermediate feature for the sub-volume generation. 

Right: The schematic of the hierarchical encoder trained with two reconstruction losses, one 

on the high-resolution sub-volume level (upper right) and another one on the low-resolution 

full volume level (lower right). The meanings of the notations used can be found in Table I. 

The model adopts 3D architecture with details presented in Supplementary Material.
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Fig. 2. 
Inference with the hierarchical generator and encoder. Since the memory demand is lower at 

inference time, we directly forward input through the high-resolution branch for full image 

generation and encoding.
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Fig. 3. 
Randomly generated images by different models and the real images. The figure illustrates 

that HA-GAN generates sharper images than the baselines.
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Fig. 4. 
Comparison of the embedding of different models. We embed the features extracted from 

synthesized images into 2-dimensional space with MDS. The ellipses are fitted to scatters 

of each model for better visualization. The figures show that the embedding region of 

HA-GAN has the most overlapping with real images, compared to the baselines.
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Fig. 5. 
Latent space exploration on thorax CT images. The figure reports synthetic images 

generated by changing the latent code in two different directions, corresponding to the lung 

and bone volume respectively. The number shown below each slice indicates the percentage 

of the volume of interest that occupies the volume of lung region of the synthetic image. The 

segmentation masks are plotted in green.
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Fig. 6. 
Results of memory usage test. Note that HA-GAN is the only model that can generate 

images sized 2563 without memory overflow on high-end GPU with 16 GB VRAM.
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TABLE I

Important Notations in This Paper

Models

GA (·) The common block of the generator.

GL (·) The low-resolution block of the generator.

GH (·) The high-resolution block of the generator.

DH (·) The discriminator for high-resolution images.

DL (·) The discriminator for low-resolution images.

EH (·) The high-resolution block of the encoder.

EG (·) The ground block of the encoder.

Functions

SH (·, ·) The high-resolution sub-volume selector.

SL (·, ·) The low-resolution sub-volume selector.

Variables

Z Latent representations.

Z Reconstructed latent representations.

c GOLD score.

r The index of the tarting slice for sub-volume selection.

X H The real high-resolution image.

X L The real low-resolution image.

XH The generated high-resolution image.

Xr
H

The generated high-resolution sub-volume starting at slice r.

XL The generated low-resolution image.

A Intermediate feature maps for the whole image

A r Intermediate feature maps for the sub-volume starting at slice r

A Reconstructed intermediate feature maps for the whole image.

Av Reconstructed intermediate feature maps for the v-tii sub-volume.

Tv v = 1
V

The indices of the starting slices for a partition for XH.
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TABLE V

Evaluation Result for GAN-Based Data Augmentation

Method Accuracy(%)

Baseline 59.7

Augmented with α-GAN 61.7

Augmented with HA-GAN 62.9
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TABLE VI

R2 for Predicting Clinical-Relevant Measurements

Method log FEV1pp log FEV1/FVC log %Emphysema

VAE-GAN 0.215 0.315 0.375

α-GAN 0.512 0.622 0.738

HA-GAN 0.555 0.657 0.746

We do not include the results of WGAN and Progressive GAN, because they do not incorporate an encoder.
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TABLE VII

Number of Model Parameters and Memory Usage Under Different Resolutions

Output Resolution Memory Usage (MB) #Parameters

323 2573 74.7M

643 2665 78.7M

1283 3167 79.6M

2563 5961 79.7M
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TABLE VIII

Training Speed (iter/s) for Different Models (Higher is Better)

WGAN VAE-GAN PGGAN α-GAN CCE-GAN StyleGAN HA-GAN

2.0 1.0 1.3 1.6 0.35 0.23 3.8
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